diff options
Diffstat (limited to 'vorlesungen/slides')
-rw-r--r-- | vorlesungen/slides/7/Makefile.inc | 4 | ||||
-rw-r--r-- | vorlesungen/slides/7/bch.tex | 76 | ||||
-rw-r--r-- | vorlesungen/slides/7/chapter.tex | 4 | ||||
-rw-r--r-- | vorlesungen/slides/7/dg.tex | 4 | ||||
-rw-r--r-- | vorlesungen/slides/7/einparameter.tex | 6 | ||||
-rw-r--r-- | vorlesungen/slides/7/integration.tex | 66 | ||||
-rw-r--r-- | vorlesungen/slides/7/liealgbeispiel.tex | 78 | ||||
-rw-r--r-- | vorlesungen/slides/7/vektorlie.tex | 206 | ||||
-rw-r--r-- | vorlesungen/slides/test.tex | 8 |
9 files changed, 441 insertions, 11 deletions
diff --git a/vorlesungen/slides/7/Makefile.inc b/vorlesungen/slides/7/Makefile.inc index 7512612..52c37d8 100644 --- a/vorlesungen/slides/7/Makefile.inc +++ b/vorlesungen/slides/7/Makefile.inc @@ -16,7 +16,10 @@ chapter5 = \ ../slides/7/einparameter.tex \ ../slides/7/ableitung.tex \ ../slides/7/liealgebra.tex \ + ../slides/7/liealgbeispiel.tex \ + ../slides/7/vektorlie.tex \ ../slides/7/kommutator.tex \ + ../slides/7/bch.tex \ ../slides/7/dg.tex \ ../slides/7/zusammenhang.tex \ ../slides/7/quaternionen.tex \ @@ -24,5 +27,6 @@ chapter5 = \ ../slides/7/ueberlagerung.tex \ ../slides/7/hopf.tex \ ../slides/7/haar.tex \ + ../slides/7/integration.tex \ ../slides/7/chapter.tex diff --git a/vorlesungen/slides/7/bch.tex b/vorlesungen/slides/7/bch.tex new file mode 100644 index 0000000..0148dc4 --- /dev/null +++ b/vorlesungen/slides/7/bch.tex @@ -0,0 +1,76 @@ +% +% bch.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Baker-Campbell-Hausdorff-Formel} +$g(t),h(t)\in G +\uncover<2->{\Rightarrow \exists A,B\in LG\text{ mit } +g(t)=\exp At, h(t)=\exp Bt}$ +\uncover<3->{% +\begin{align*} +g(t) +&= +I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \dots, +& +h(t) +&= +I + Bt + \frac{B^2t^2}{2!} + \frac{B^3t^3}{3!} + \dots +\end{align*}} +\uncover<5->{% +\begin{block}{Kommutator in G: $c(t) = g(t)h(t)g(t)^{-1}h(t)^{-1}$} +\begin{align*} +\uncover<6->{c(t) +&= +\biggl( + {\color<7,9-11,13-15,19-21>{red}I} + + {\color<8,16-19>{red}A}t + + \frac{{\color<12>{red}A^2}t^2}{2!} + + \dots +\biggr) +\biggl( + {\color<7,8,10-12,14-15,17-18,21>{red}I} + + {\color<9,16,19-20>{red}B}t + + \frac{{\color<13>{red}B^2}t^2}{2!} + + \dots +\biggr) +\exp(-{\color<10,14,17,19,21>{red}A}t) +\exp(-{\color<11,15,18,20-21>{red}B}t) +} +\\ +&\uncover<7->{={\color<7>{red}I}} +\uncover<8->{+t( + \uncover<8->{ {\color<8>{red}A}} + \uncover<9->{+ {\color<9>{red}B}} + \uncover<10->{- {\color<10>{red}A}} + \uncover<11->{- {\color<11>{red}B}} +)} +\uncover<12->{+\frac{t^2}{2!}( + \uncover<12->{ {\color<12>{red}A^2}} + \uncover<13->{+ {\color<13>{red}B^2}} + \uncover<14->{+ {\color<14>{red}A^2}} + \uncover<15->{+ {\color<15>{red}B^2}} +)} +\\ +&\phantom{\mathstrut=I} +\uncover<12->{+t^2( + \uncover<16->{ {\color<16>{red}AB}} + \uncover<17->{- {\color<17>{red}A^2}} + \uncover<18->{- {\color<18>{red}AB}} + \uncover<19->{- {\color<19>{red}BA}} + \uncover<20->{- {\color<20>{red}B^2}} + \uncover<21->{+ {\color<21>{red}AB}} +)} +\uncover<22->{+t^3(\dots)+\dots} +\\ +&\uncover<23->{= +I + \frac{t^2}{2}[A,B] + o(t^3) +} +\end{align*}} +\end{block} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/chapter.tex b/vorlesungen/slides/7/chapter.tex index 1c78ccc..172b78a 100644 --- a/vorlesungen/slides/7/chapter.tex +++ b/vorlesungen/slides/7/chapter.tex @@ -15,7 +15,10 @@ \folie{7/einparameter.tex} \folie{7/ableitung.tex} \folie{7/liealgebra.tex} +\folie{7/liealgbeispiel.tex} +\folie{7/vektorlie.tex} \folie{7/kommutator.tex} +\folie{7/bch.tex} \folie{7/dg.tex} \folie{7/zusammenhang.tex} \folie{7/quaternionen.tex} @@ -23,3 +26,4 @@ \folie{7/ueberlagerung.tex} \folie{7/hopf.tex} \folie{7/haar.tex} +\folie{7/integration.tex} diff --git a/vorlesungen/slides/7/dg.tex b/vorlesungen/slides/7/dg.tex index 4447bac..f9528a4 100644 --- a/vorlesungen/slides/7/dg.tex +++ b/vorlesungen/slides/7/dg.tex @@ -45,7 +45,7 @@ Ableitung von $\gamma(t)$ an der Stelle $t$: \vspace{-10pt} \uncover<7->{% \begin{block}{Differentialgleichung} -\vspace{-10pt} +%\vspace{-10pt} \[ \dot{\gamma}(t) = \gamma(t) A \quad @@ -66,7 +66,7 @@ Exponentialfunktion \vspace{-5pt} \uncover<9->{% \begin{block}{Kontrolle: Tangentialvektor berechnen} -\vspace{-10pt} +%\vspace{-10pt} \begin{align*} \frac{d}{dt}e^{At} &\uncover<10->{= diff --git a/vorlesungen/slides/7/einparameter.tex b/vorlesungen/slides/7/einparameter.tex index 5171085..a32affd 100644 --- a/vorlesungen/slides/7/einparameter.tex +++ b/vorlesungen/slides/7/einparameter.tex @@ -41,7 +41,7 @@ D_{x,t+s} \begin{column}{0.48\textwidth} \uncover<5->{% \begin{block}{Scherungen in $\operatorname{SL}_2(\mathbb{R})$} -\vspace{-12pt} +%\vspace{-12pt} \[ \begin{pmatrix} 1&s\\ @@ -61,7 +61,7 @@ D_{x,t+s} \vspace{-12pt} \uncover<6->{% \begin{block}{Skalierungen in $\operatorname{SL}_2(\mathbb{R})$} -\vspace{-12pt} +%\vspace{-12pt} \[ \begin{pmatrix} e^s&0\\0&e^{-s} @@ -78,7 +78,7 @@ e^{t+s}&0\\0&e^{-(t+s)} \vspace{-12pt} \uncover<7->{% \begin{block}{Gemischt} -\vspace{-12pt} +%\vspace{-12pt} \begin{gather*} A_t = I \cosh t + \begin{pmatrix}1&a\\0&-1\end{pmatrix}\sinh t \\ diff --git a/vorlesungen/slides/7/integration.tex b/vorlesungen/slides/7/integration.tex new file mode 100644 index 0000000..525e6de --- /dev/null +++ b/vorlesungen/slides/7/integration.tex @@ -0,0 +1,66 @@ +% +% integration.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Invariante Integration} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Koordinatenwechsel} +Die Koordinatentransformation +$f\colon\mathbb{R}^n\to\mathbb{R}^n:x\to y$ +hat die Ableitungsmatrix +\[ +t_{ij} += +\frac{\partial y_i}{\partial x_j} +\] +\uncover<2->{% +$n$-faches Integral +\begin{gather*} +\int\dots\int +h(f(x)) +\det +\biggl( +\frac{\partial y_i}{\partial x_j} +\biggr) +\,dx_1\,\dots dx_n +\\ += +\int\dots\int +h(y) +\,dy_1\,\dots dy_n +\end{gather*}} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<3->{% +\begin{block}{auf einer Lie-Gruppe} +Koordinatenwechsel sind Multiplikationen mit einer +Matrix $g\in G$ +\end{block}} +\uncover<4->{% +\begin{block}{Volumenelement in $I$} +Man muss nur das Volumenelement in $I$ in einem beliebigen +Koordinatensystem definieren: +\[ +dV = dy_1\,\dots\,dy_n +\] +\end{block}} +\uncover<5->{% +\begin{block}{Volumenelement in $g$} +\[ +\text{``\strut}g\cdot dV\text{\strut''} += +\det(g) \, dy_1\,\dots\,dy_n +\] +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/liealgbeispiel.tex b/vorlesungen/slides/7/liealgbeispiel.tex new file mode 100644 index 0000000..a17de40 --- /dev/null +++ b/vorlesungen/slides/7/liealgbeispiel.tex @@ -0,0 +1,78 @@ +% +% liealgbeispiel.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Lie-Algebra Beispiele} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{$\operatorname{sl}_2(\mathbb{R})$} +Spurlose Matrizen: +\[ +\operatorname{sl}_2(\mathbb{R}) += +\{A\in M_n(\mathbb{R})\;|\; \operatorname{Spur}A=0\} +\] +\end{block} +\begin{block}{Lie-Algebra?} +Nachrechnen: $[A,B]\in \operatorname{sl}_2(\mathbb{R})$: +\begin{align*} +\operatorname{Spur}([A,B]) +&= +\operatorname{Spur}(AB-BA) +\\ +&= +\operatorname{Spur}(AB)-\operatorname{Spur}(BA) +\\ +&= +\operatorname{Spur}(AB)-\operatorname{Spur}(AB) +\\ +&=0 +\end{align*} +$\Rightarrow$ $\operatorname{sl}_2(\mathbb{R})$ ist eine Lie-Algebra +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{$\operatorname{so}(n)$} +Antisymmetrische Matrizen: +\[ +\operatorname{so}(n) += +\{A\in M_n(\mathbb{R}) +\;|\; +A=-A^t +\} +\] +\end{block} +\begin{block}{Lie-Algebra?} +Nachrechnen: $A,B\in \operatorname{so}(n)$ +\begin{align*} +[A,B]^t +&= +(AB-BA)^t +\\ +&= +B^tA^t - A^tB^t +\\ +&= +(-B)(-A)-(-A)(-B) +\\ +&= +BA-AB += +-(AB-BA) +\\ +&= +-[A,B] +\end{align*} +$\Rightarrow$ $\operatorname{so}(n)$ ist eine Lie-Algebra +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/vektorlie.tex b/vorlesungen/slides/7/vektorlie.tex new file mode 100644 index 0000000..621a832 --- /dev/null +++ b/vorlesungen/slides/7/vektorlie.tex @@ -0,0 +1,206 @@ +% +% viktorlie.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Vektorprodukt als Lie-Algebra} +%\vspace{-10pt} +\centering +\begin{tikzpicture}[>=latex,thick] +\arraycolsep=2.4pt +\def\Ax{0} +\def\Ux{4.1} +\def\Kx{7.2} +\def\Rx{13.1} + +\def\Lx{2.2} +\def\Ly{0} +\def\Lz{-2.2} + +\fill[color=red!20] (\Ax,{\Lx-1.55}) rectangle ({\Ux-0.1},{\Lx+0.55}); +\fill[color=red!20] (\Ux,{\Lx-1.55}) rectangle ({\Kx-0.1},{\Lx+0.55}); +\fill[color=red!20] (\Kx,{\Lx-1.55}) rectangle ({\Rx},{\Lx+0.55}); + +\fill[color=darkgreen!20] (\Ax,{\Ly-1.55}) rectangle ({\Ux-0.1},{\Ly+0.55}); +\fill[color=darkgreen!20] (\Ux,{\Ly-1.55}) rectangle ({\Kx-0.1},{\Ly+0.55}); +\fill[color=darkgreen!20] (\Kx,{\Ly-1.55}) rectangle ({\Rx},{\Ly+0.55}); + +\fill[color=blue!20] (\Ax,{\Lz-1.55}) rectangle ({\Ux-0.1},{\Lz+0.55}); +\fill[color=blue!20] (\Ux,{\Lz-1.55}) rectangle ({\Kx-0.1},{\Lz+0.55}); +\fill[color=blue!20] (\Kx,{\Lz-1.55}) rectangle ({\Rx},{\Lz+0.55}); + +\coordinate (A) at (\Ax,3.2); +\coordinate (Ax) at (\Ax,\Lx); +\coordinate (Ay) at (\Ax,\Ly); +\coordinate (Az) at (\Ax,\Lz); + +\node at (A) [right] + {\usebeamercolor[fg]{title}Drehmatrix, $\operatorname{SO}(n)$\strut}; + +\node at (Ax) [right] {$\displaystyle\tiny +D_{x,\alpha}=\begin{pmatrix} +1&0&0\\ +0&\cos\alpha&-\sin\alpha\\ +0&\sin\alpha&\cos\alpha +\end{pmatrix}$}; + +\node at (Ay) [right] {$\displaystyle\tiny +D_{y,\alpha}=\begin{pmatrix} +\cos\alpha&0&\sin\alpha\\ +0&1&0\\ +-\sin\alpha&0&\cos\alpha +\end{pmatrix}$}; + +\node at (Az) [right] {$\displaystyle\tiny +D_{z,\alpha}=\begin{pmatrix} +\cos\alpha&-\sin\alpha&0\\ +\sin\alpha&\cos\alpha&0\\ +0&0&1 +\end{pmatrix}$}; + +\coordinate (U) at (\Ux,3.2); +\coordinate (Ux) at (\Ux,\Lx); +\coordinate (Uy) at (\Ux,\Ly); +\coordinate (Uz) at (\Ux,\Lz); +\coordinate (Ex) at (\Ux,{\Lx-1}); +\coordinate (Ey) at (\Ux,{\Ly-1}); +\coordinate (Ez) at (\Ux,{\Lz-1}); + +\uncover<2->{ +\node at (U) [right] + {\usebeamercolor[fg]{title}Ableitung, $\operatorname{so}(n)$\strut}; + +\node at (Ux) [right] {$\displaystyle\tiny +U_x=\begin{pmatrix*}[r] +0&0&0\\ +0&0&-1\\ +0&1&0 +\end{pmatrix*} +$}; + +\node at (Uy) [right] {$\displaystyle\tiny +U_y=\begin{pmatrix*}[r] +0&0&1\\ +0&0&0\\ +-1&0&0 +\end{pmatrix*} +$}; + +\node at (Uz) [right] {$\displaystyle\tiny +U_z=\begin{pmatrix*}[r] +0&-1&0\\ +1&0&0\\ +0&0&0 +\end{pmatrix*} +$}; +} + +\uncover<9->{ +\node at (Ex) [right] {$\displaystyle +\, e_x = \tiny\begin{pmatrix}1\\0\\0\end{pmatrix} +$}; + +\node at (Ey) [right] {$\displaystyle +\, e_y = \tiny\begin{pmatrix}0\\1\\0\end{pmatrix} +$}; + +\node at (Ez) [right] {$\displaystyle +\, e_z = \tiny\begin{pmatrix}0\\0\\1\end{pmatrix} +$}; +} + +\coordinate (K) at (\Kx,3.2); +\coordinate (Kx) at (\Kx,\Lx); +\coordinate (Ky) at (\Kx,\Ly); +\coordinate (Kz) at (\Kx,\Lz); +\coordinate (Vx) at (\Kx,{\Lx-1}); +\coordinate (Vy) at (\Kx,{\Ly-1}); +\coordinate (Vz) at (\Kx,{\Lz-1}); + +\uncover<3->{ +\node at (K) [right] + {\usebeamercolor[fg]{title}Kommutator\strut}; + +\node at (Kx) [right] {$\displaystyle +\begin{aligned} +[U_y,U_z] &\uncover<4->{= +{\tiny +\begin{pmatrix} +0&0&0\\ +0&0&0\\ +0&1&0 +\end{pmatrix}} +\uncover<5->{\mathstrut- +\tiny +\begin{pmatrix} +0&0&0\\ +0&0&1\\ +0&0&0 +\end{pmatrix}}} +\uncover<6->{=U_x} +\end{aligned} +$}; +} + +\uncover<7->{ +\node at (Ky) [right] {$\displaystyle +\begin{aligned} +[U_z,U_x] &= +{\tiny +\begin{pmatrix} +0&0&1\\ +0&0&0\\ +0&0&0 +\end{pmatrix} +- +\begin{pmatrix} +0&0&0\\ +0&0&0\\ +1&0&0 +\end{pmatrix}} +=U_y +\end{aligned} +$}; +} + +\uncover<8->{ +\node at (Kz) [right] {$\displaystyle +\begin{aligned} +[U_x,U_y] &= +{\tiny +\begin{pmatrix} +0&0&0\\ +1&0&0\\ +0&0&0 +\end{pmatrix} +- +\begin{pmatrix} +0&1&0\\ +0&0&0\\ +0&0&0 +\end{pmatrix}} +=U_z +\end{aligned} +$}; +} + +\uncover<10->{ +\node at (Vx) [right] {$\displaystyle \phantom{]}e_y\times e_z = e_x$}; +} + +\uncover<11->{ +\node at (Vy) [right] {$\displaystyle \phantom{]}e_z\times e_x = e_y$}; +} + +\uncover<12->{ +\node at (Vz) [right] {$\displaystyle \phantom{]}e_x\times e_y = e_z$}; +} + +\end{tikzpicture} +\end{frame} +\egroup diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex index 17c8a28..35ebf03 100644 --- a/vorlesungen/slides/test.tex +++ b/vorlesungen/slides/test.tex @@ -3,9 +3,5 @@ % % (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil % -\folie{7/mannigfaltigkeit.tex} -\folie{7/haar.tex} -\folie{7/quaternionen.tex} -\folie{7/qdreh.tex} -\folie{7/ueberlagerung.tex} -\folie{7/hopf.tex} +\folie{7/integration.tex} + |