1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# # inverse.m -- Inverse mod 2063 berechnen # # (c) Prof Dr Andreas Müller, Hochschule Rapperswil # function retval = Q(q) retval = [ 0, 1; 1, -q ]; end P = eye(2) P = Q(1) * P P = Q(48) * P P = Q(8) * P P = Q(2) * P P = Q(2) * P