blob: ef3ec6526db0d0cfe98a0e94c6952bf6fb27d257 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
%
% komposition.tex -- Komposition zweier Permutationen
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
\documentclass[tikz]{standalone}
\usepackage{amsmath}
\usepackage{times}
\usepackage{txfonts}
\usepackage{pgfplots}
\usepackage{csvsimple}
\usetikzlibrary{arrows,intersections,math}
\begin{document}
\def\skala{1}
\begin{tikzpicture}[>=latex,thick,scale=\skala]
\begin{scope}[xshift=-4.5cm]
\node at (0,0) {$\displaystyle
\sigma_1=\begin{pmatrix}
1&2&3&4&5&6\\
2&1&3&5&6&4
\end{pmatrix}$};
\node at (0,-1) {$\displaystyle
\sigma_2=\begin{pmatrix}
1&2&3&4&5&6\\
3&4&5&6&1&2
\end{pmatrix}
$};
\end{scope}
\begin{scope}
\node at (0,0) {$\displaystyle
\begin{pmatrix}
1&2&3&4&5&6\\
2&1&3&5&6&4
\end{pmatrix}$};
\node at (0,-1) {$\displaystyle
\begin{pmatrix}
2&1&3&5&6&4\\
4&3&5&1&2&6
\end{pmatrix}
$};
\end{scope}
\begin{scope}[xshift=4.5cm]
\node at (0,-0.5) {$\displaystyle
\sigma_2\sigma_1=\begin{pmatrix}
1&2&3&4&5&6\\
4&3&5&1&2&6
\end{pmatrix}
$};
\end{scope}
\end{tikzpicture}
\end{document}
|