aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides/10/so2.tex
blob: dcbcdc8351d5662cf1bb9af476de9f38f893be38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
%
% so2.tex -- Illustration of so(2) -> SO(2)
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
% Erstellt durch Roy Seitz
%
% !TeX spellcheck = de_CH
\bgroup

\begin{frame}[t]
  \setlength{\abovedisplayskip}{5pt}
  \setlength{\belowdisplayskip}{5pt}
  \frametitle{Von der Lie-Gruppe zur -Algebra}
  \vspace{-20pt}
  \begin{columns}[t,onlytextwidth]
    \begin{column}{0.48\textwidth}
      \uncover<1->{
        \begin{block}{Lie-Gruppe}
          Darstellung von \gSO2:
          \begin{align*}
            \mathbb R 
            &\to 
            \gSO2
            \\
            t
            &\mapsto
            \begin{pmatrix}
              \cos t &         -\sin t \\ 
              \sin t & \phantom-\cos t
            \end{pmatrix}
          \end{align*}
        \end{block}
      }
      \uncover<2->{
        \begin{block}{Ableitung am neutralen Element}
          \begin{align*}
            \frac{d}{d t}
            &
            \left.
            \begin{pmatrix}
              \cos t &         -\sin t \\ 
              \sin t & \phantom-\cos t
            \end{pmatrix}
            \right|_{ t = 0}
            \\
            =
            & 
            \begin{pmatrix} -\sin0 & -\cos0 \\ \phantom-\cos0 & -\sin0 \end{pmatrix}
            = 
            \begin{pmatrix} 0 & -1 \\ 1 &  \phantom-0 \end{pmatrix}
          \end{align*}
        \end{block}
      }
    \end{column}
    \begin{column}{0.48\textwidth}
      \uncover<3->{
        \begin{block}{Lie-Algebra}
          Darstellung von \aso2:
          \begin{align*}
            \mathbb R 
            &\to 
            \aso2
            \\
            t
            &\mapsto
            \begin{pmatrix}
              0 &         -t \\ 
              t & \phantom-0
            \end{pmatrix}
          \end{align*}
        \end{block}
      }
    \end{column}
  \end{columns}
\end{frame}


\begin{frame}[t]
  \setlength{\abovedisplayskip}{5pt}
  \setlength{\belowdisplayskip}{5pt}
  \frametitle{Von der Lie-Algebra zur -Gruppe}
  \vspace{-20pt}
  \begin{columns}[t,onlytextwidth]
    \begin{column}{0.48\textwidth}
      \uncover<1->{
      \begin{block}{Differentialgleichung}
        Gegeben:
        \[
        J
        =
        \dot\gamma(0) = \begin{pmatrix} 0 & -1 \\ 1 & \phantom-0 \end{pmatrix}
        \]
        Gesucht:
        \[ \dot \gamma (t) = J \gamma(t) \qquad \gamma \in \gSO2 \]
        \[ \Rightarrow \gamma(t) = \exp(Jt) \gamma(0) = \exp(Jt) \]
      \end{block}
    }
    \end{column}
    \begin{column}{0.48\textwidth}
      \uncover<2->{
      \begin{block}{Lie-Algebra}
        Potenzen von $J$:
        \begin{align*}
          J^2 &= -I &
          J^3 &= -J &
          J^4 &=  I &
          \ldots
        \end{align*}
      \end{block}
    }
    \end{column}
  \end{columns}
\uncover<3->{
  Folglich:
  \begin{align*}
    \exp(Jt)
    &= I + Jt 
    + J^2\frac{t^2}{2!} 
    + J^3\frac{t^3}{3!}
    + J^4\frac{t^4}{4!}
    + J^5\frac{t^5}{5!}
    + \ldots \\
    &= \begin{pmatrix}
      \vspace*{3pt}
      1 - \frac{t^2}{2} + \frac{t^4}{4!} - \ldots
      &
      -t + \frac{t^3}{3!} - \frac{t^5}{5!} + \ldots
      \\ 
      t - \frac{t^3}{3!} + \frac{t^5}{5!} - \ldots
      &
      1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \ldots
    \end{pmatrix}
    =
    \begin{pmatrix}
      \cos t &         -\sin t \\ 
      \sin t & \phantom-\cos t
    \end{pmatrix}
  \end{align*}
  }
\end{frame}
\egroup