1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
%
% irreduzibel.tex
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
\begin{frame}[t]
\frametitle{Irreduzible Markovkette}
\vspace{-20pt}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
\begin{center}
\begin{tikzpicture}[>=latex,thick]
\def\r{2}
\coordinate (A) at ({\r*cos(0*60)},{\r*sin(0*60)});
\coordinate (B) at ({\r*cos(1*60)},{\r*sin(1*60)});
\coordinate (C) at ({\r*cos(2*60)},{\r*sin(2*60)});
\coordinate (D) at ({\r*cos(3*60)},{\r*sin(3*60)});
\coordinate (E) at ({\r*cos(4*60)},{\r*sin(4*60)});
\coordinate (F) at ({\r*cos(5*60)},{\r*sin(5*60)});
\uncover<-2>{
\draw (A) -- (B);
\draw (A) -- (C);
\draw (A) -- (D);
\draw (A) -- (E);
\draw (A) -- (F);
\draw (B) -- (A);
\draw (B) -- (C);
\draw (B) -- (D);
\draw (B) -- (E);
\draw (B) -- (F);
\draw (C) -- (A);
\draw (C) -- (B);
\draw (C) -- (D);
\draw (C) -- (E);
\draw (C) -- (F);
\draw (D) -- (A);
\draw (D) -- (B);
\draw (D) -- (C);
\draw (D) -- (E);
\draw (D) -- (F);
\draw (E) -- (A);
\draw (E) -- (B);
\draw (E) -- (C);
\draw (E) -- (D);
\draw (E) -- (F);
\draw (F) -- (A);
\draw (F) -- (B);
\draw (F) -- (C);
\draw (F) -- (D);
\draw (F) -- (E);
}
\uncover<3->{
\draw[->,color=black!30,shorten >= 0.15cm,line width=3pt] (A) to[out=90,in=-30] (B);
\draw[->,color=black!70,shorten >= 0.15cm,line width=3pt] (A) -- (C);
\draw[->,color=black!20,shorten >= 0.15cm,line width=3pt] (B) -- (A);
\draw[->,color=black!60,shorten >= 0.15cm,line width=3pt] (B) to[out=150,in=30] (C);
\draw[->,color=black!20,shorten >= 0.15cm,line width=3pt] (B) to[out=-90,in=-150,distance=1cm] (B);
\draw[->,color=black!50,shorten >= 0.15cm,line width=3pt] (C) to[out=-60,in=180] (A);
\draw[->,color=black!50,shorten >= 0.15cm,line width=3pt] (C) -- (B);
\draw[->,color=black!40,shorten >= 0.15cm,line width=3pt]
(D) to[out=-90,in=150] (E);
\draw[->,color=black!30,shorten >= 0.15cm,line width=3pt]
(E) -- (D);
\draw[->,color=black!70,shorten >= 0.15cm,line width=3pt]
(E) to[out=-30,in=-150] (F);
\draw[->,color=black!40,shorten >= 0.15cm,line width=3pt]
(F) -- (E);
\draw[->,color=black!60,shorten >= 0.15cm,line width=3pt]
(F) to[out=120,in=0] (D);
\draw[->,color=black!60,shorten >= 0.15cm,line width=3pt]
(D) -- (F);
}
\fill[color=white] (A) circle[radius=0.2];
\fill[color=white] (B) circle[radius=0.2];
\fill[color=white] (C) circle[radius=0.2];
\fill[color=white] (D) circle[radius=0.2];
\fill[color=white] (E) circle[radius=0.2];
\fill[color=white] (F) circle[radius=0.2];
\draw (A) circle[radius=0.2];
\draw (B) circle[radius=0.2];
\draw (C) circle[radius=0.2];
\draw (D) circle[radius=0.2];
\draw (E) circle[radius=0.2];
\draw (F) circle[radius=0.2];
\node at (A) {$1$};
\node at (B) {$2$};
\node at (C) {$3$};
\node at (D) {$4$};
\node at (E) {$5$};
\node at (F) {$6$};
\end{tikzpicture}
\end{center}
\uncover<2->{%
\begin{block}{Irreduzibel}
Graph zusammenhängend $\Rightarrow$
Keine Zerlegung in Teilgraphen möglich
\end{block}}
\end{column}
\begin{column}{0.48\textwidth}
\uncover<3->{%
\begin{block}{Reduzibel}
Die Zustandsmenge zerfällt in zwei disjunkte Teilmengen $V=V_1\cup V_2$
und es gibt keine Übergängen zwischen den Mengen:
\uncover<4->{%
\begin{align*}
P
&=
\begin{pmatrix*}[l]
0 &0.2&0.5& & & \\
0.3&0.2&0.5& & & \\
0.7&0.6&0 & & & \\
& & &0 &0.3&0.4\\
& & &0.4&0 &0.6\\
& & &0.6&0.7&0
\end{pmatrix*}
\end{align*}}%
\uncover<5->{%
$P$ zerfällt in zwei Blöcke die unabhängig voneinander analysiert werden können
}
\end{block}}
\end{column}
\end{columns}
\end{frame}
|