diff options
author | Erik Löffler <erik.loeffler@ost.ch> | 2022-08-17 15:47:34 +0200 |
---|---|---|
committer | Erik Löffler <erik.loeffler@ost.ch> | 2022-08-17 15:47:34 +0200 |
commit | 030aa1f0d5bb3020c909ff7cedd102ea5ff69927 (patch) | |
tree | 6d12c3188fc5e50cfa7d5bf5f90996852a10462b | |
parent | Corrected formatting errors in fourier example. (diff) | |
download | SeminarSpezielleFunktionen-030aa1f0d5bb3020c909ff7cedd102ea5ff69927.tar.gz SeminarSpezielleFunktionen-030aa1f0d5bb3020c909ff7cedd102ea5ff69927.zip |
Revised solution properties section.
-rw-r--r-- | buch/papers/sturmliouville/eigenschaften.tex | 32 |
1 files changed, 18 insertions, 14 deletions
diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 85f0bf3..bef8a39 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -37,31 +37,35 @@ für die Lösungen des Sturm-Liouville-Problems zur Folge hat. \subsubsection{Exkurs zum Spektralsatz} -Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $L_0$ in +Um zu verstehen welche Eigenschaften der selbstadjungierte Operator $L_0$ in den Lösungen hervorbringt, wird der Spektralsatz benötigt. Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert. -Dazu wird zunächst gezeigt, dass eine gegebene $n\times n$-Matrix $A$ aus einem -endlichdimensionalem $\mathbb{K}$-Vektorraum selbstadjungiert ist, also dass + +Im Fall einer gegebenen $n\times n$-Matrix $A$ mit reellen Einträgen wird dazu +zunächst gezeigt, dass $A$ selbstadjungiert ist, also dass \[ \langle Av, w \rangle = \langle v, Aw \rangle \] -für $ v, w \in \mathbb{K}^n$ gilt. -Ist dies der Fall, folgt direkt, dass $A$ auch normal ist. -Dann wird die Aussage des Spektralsatzes -\cite{sturmliouville:spektralsatz-wiki} verwended, welche besagt, dass für -Endomorphismen genau dann eine Orthonormalbasis aus Eigenvektoren existiert, -wenn sie normal sind und nur Eigenwerte aus $\mathbb{K}$ besitzten. +für $ v, w \in \mathbb{R}^n$ gilt. +Ist dies der Fall, kann die Aussage des Spektralsatzes +\cite{sturmliouville:spektralsatz-wiki} verwended werden. +Daraus folgt dann, dass eine Orthonormalbasis aus Eigenvektoren existiert, +wenn $A$ nur Eigenwerte aus $\mathbb{R}$ besitzt. Dies ist allerdings nicht die Einzige Version des Spektralsatzes. -Unter anderen gibt es den Spektralsatz für kompakte Operatoren -\cite{sturmliouville:spektralsatz-wiki}. -Dieser besagt, dass wenn ein linearer kompakter Operator in -$\mathbb{R}$ selbstadjungiert ist, ein (eventuell endliches) -Orthonormalsystem existiert. +Unter anderen gibt es den Spektralsatz für kompakte Operatoren +\cite{sturmliouville:spektralsatz-wiki}, welcher für das +Sturm-Liouville-Problem von Bedeutung ist. +Welche Voraussetzungen erfüllt sein müssen, um diese Version des +Satzes verwenden zu können, wird hier aber nicht diskutiert und kann bei den +Beispielen in diesem Kapitel als gegeben betrachtet werden. +Grundsätzlich ist die Aussage in dieser Version dieselbe, wie bei den Matrizen, +also dass für ein Operator eine Orthonormalbasis aus Eigenvektoren existiert, +falls er selbstadjungiert ist. \subsubsection{Anwendung des Spektralsatzes auf $L_0$} |