aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorPatrik Müller <patrik.mueller@ost.ch>2022-07-28 07:14:37 +0200
committerPatrik Müller <patrik.mueller@ost.ch>2022-07-28 07:14:37 +0200
commit1666b63c2f4d5e8392c40ab6f6c8e9e71f20f4a3 (patch)
tree64eda239d737ccd1e6cc7f02fd54b6137809139e
parentMerge pull request #33 from f1bi1n/master (diff)
downloadSeminarSpezielleFunktionen-1666b63c2f4d5e8392c40ab6f6c8e9e71f20f4a3.tar.gz
SeminarSpezielleFunktionen-1666b63c2f4d5e8392c40ab6f6c8e9e71f20f4a3.zip
Resolve error in orthogonality proof
-rw-r--r--buch/papers/laguerre/eigenschaften.tex14
1 files changed, 7 insertions, 7 deletions
diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex
index 6ba9135..1411f7c 100644
--- a/buch/papers/laguerre/eigenschaften.tex
+++ b/buch/papers/laguerre/eigenschaften.tex
@@ -97,38 +97,38 @@ Ausserdem ist ersichtlich, dass $p(x)$ die Differentialgleichung
\begin{align*}
x \frac{dp}{dx}
=
--(\nu + 1 - x) p
+(\nu + 1 - x) p
\end{align*}
erfüllen muss.
Durch Separation erhalten wir dann
\begin{align*}
\int \frac{dp}{p}
& =
--\int \frac{\nu + 1 - x}{x} \, dx
+\int \frac{\nu + 1 - x}{x} \, dx
=
--\int \frac{\nu + 1}{x} \, dx - \int 1\, dx
+\int \frac{\nu + 1}{x} \, dx - \int 1\, dx
\\
\log p
& =
--(\nu + 1)\log x - x + c
+(\nu + 1)\log x - x + c
\\
p(x)
& =
--C x^{\nu + 1} e^{-x}
+C x^{\nu + 1} e^{-x}
.
\end{align*}
Eingefügt in Gleichung~\eqref{laguerre:sl-lag} ergibt sich
\begin{align*}
\frac{C}{w(x)}
\left(
-x^{\nu+1} e^{-x} \frac{d^2}{dx^2} +
+-x^{\nu+1} e^{-x} \frac{d^2}{dx^2} -
(\nu + 1 - x) x^{\nu} e^{-x} \frac{d}{dx}
\right)
=
x \frac{d^2}{dx^2} + (\nu + 1 - x) \frac{d}{dx}.
\end{align*}
Mittels Koeffizientenvergleich kann nun abgelesen werden,
-dass $w(x) = x^\nu e^{-x}$ und $C=1$ mit $\nu > -1$.
+dass $w(x) = x^\nu e^{-x}$ und $C=-1$ mit $\nu \geq 0$.
Die Gewichtsfunktion $w(x)$ wächst für $x\rightarrow-\infty$ sehr schnell an,
deshalb ist die Laguerre-Gewichtsfunktion nur geeignet für den
Definitionsbereich $(0, \infty)$.