diff options
author | Erik Löffler <erik.loeffler@ost.ch> | 2022-08-08 13:04:13 +0200 |
---|---|---|
committer | Erik Löffler <erik.loeffler@ost.ch> | 2022-08-08 13:04:13 +0200 |
commit | 2b1eb4b5979f4e0e7f2eee7414a8e0b3d9eae402 (patch) | |
tree | 2b3b9857520f0f514a383d200d996c9bd1b4a79c | |
parent | Corrected sign error in coefficient comparison. (diff) | |
download | SeminarSpezielleFunktionen-2b1eb4b5979f4e0e7f2eee7414a8e0b3d9eae402.tar.gz SeminarSpezielleFunktionen-2b1eb4b5979f4e0e7f2eee7414a8e0b3d9eae402.zip |
Changed equation syntax to match rest of the
Sturm-Liouville chapter.
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 106 |
1 files changed, 50 insertions, 56 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 7310186..0c9dd8e 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -1,6 +1,5 @@ % % waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab. -%%%%%%%%%%%%%%%%%%%%%%%%%%% Erster Entwurf %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % @@ -14,10 +13,10 @@ physikalischen Phänomenes auftritt. Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und Wärmeleitkoeffizient $\kappa$. Somit ergibt sich für das Wärmeleitungsproblem die partielle Differentialgleichung -\[ +\begin{equation} \frac{\partial u}{\partial t} = \kappa \frac{\partial^{2}u}{{\partial x}^{2}} -\] +\end{equation} wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt. Da diese Differentialgleichung das Problem allgemein für einen homogenen @@ -32,13 +31,13 @@ Tempreatur gehalten werden. Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene Temperatur zurückgeben darf. Es folgen nun -\[ +\begin{equation} u(t,0) = u(t,l) = 0 -\] +\end{equation} als Randbedingungen. %%%%%%%%%%%%% Randbedingungen für Stab mit isolierten Enden %%%%%%%%%%%%%%%%%%% @@ -54,13 +53,13 @@ Temperatur fliesst. Um Wärmefluss zu unterdrücken, muss also dafür gesorgt werden, dass am Rand des Stabes keine Temperaturdifferenz existiert oder dass die partiellen Ableitungen von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$ verschwinden. Somit folgen -\[ +\begin{equation} \frac{\partial}{\partial x} u(t, 0) = \frac{\partial}{\partial x} u(t, l) = 0 -\] +\end{equation} als Randbedingungen. %%%%%%%%%%% Lösung der Differenzialgleichung %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -72,41 +71,40 @@ als Randbedingungen. Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz die Separationsmethode verwendet. Dazu wird -\[ +\begin{equation} u(t,x) = T(t)X(x) -\] +\end{equation} in die ursprüngliche Differenzialgleichung eingesetzt. Daraus ergibt sich -\[ +\begin{equation} T^{\prime}(t)X(x) = \kappa T(t)X^{\prime \prime}(x) -\] +\end{equation} als neue Form. Nun können alle von $t$ abhängigen Ausdrücke auf die linke Seite, sowie alle von $x$ abhängigen Ausdrücke auf die rechte Seite gebracht werden und mittels der neuen Variablen $\mu$ gekoppelt werden: -\[ +\begin{equation} \frac{T^{\prime}(t)}{\kappa T(t)} = \frac{X^{\prime \prime}(x)}{X(x)} = \mu -\] +\end{equation} Durch die Einführung von $\mu$ kann das Problem nun in zwei separate Differenzialgleichungen aufgeteilt werden: -\[ +\begin{equation} T^{\prime}(t) - \kappa \mu T(t) - = + &= 0 -\] -\[ + \\ X^{\prime \prime}(x) - \mu X(x) - = + &= 0 -\] +\end{equation} Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in Sturm-Liouville-Form ist. Erfüllen die Randbedingungen des Stab-Problems auch @@ -116,108 +114,104 @@ werden. Widmen wir uns zunächst der ersten Gleichung. Diese Lösen wir über das charakteristische Polynom -\[ +\begin{equation} \lambda - \kappa \mu = 0. -\] +\end{equation} Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur Lösung -\[ +\begin{equation} T(t) = e^{\kappa \mu t} -\] +\end{equation} führt. Etwas aufwändiger wird es, die zweite Gleichung zu lösen. Aufgrund der Struktur der Gleichung -\[ +\begin{equation} X^{\prime \prime}(x) - \mu X(x) = 0 -\] +\end{equation} wird ein trigonometrischer Ansatz gewählt. Die Lösungen für $X(x)$ sind also von der Form -\[ +\begin{equation} X(x) = A \sin \left( \alpha x\right) + B \cos \left( \beta x\right). -\] +\end{equation} Dieser Ansatz wird nun solange differenziert, bis alle in Gleichung (TODO: ref) enthaltenen Ableitungen vorhanden sind. Man erhält also -\[ +\begin{equation} X^{\prime}(x) = A \alpha \cos \left( \alpha x \right) - B \beta \sin \left( \beta x \right) -\] +\end{equation} und -\[ +\begin{equation} X^{\prime \prime}(x) = -A \alpha^{2} \sin \left( \alpha x \right) - B \beta^{2} \cos \left( \beta x \right). -\] +\end{equation} Eingesetzt in Gleichung (TDOD: ref) ergibt dies -\[ +\begin{equation} -A\alpha^{2}\sin(\alpha x) - B\beta^{2}\cos(\beta x) - \mu\left(A\sin(\alpha x) + B\cos(\beta x)\right) = 0 -\] +\end{equation} und durch umformen somit -\[ +\begin{equation} -A\alpha^{2}\sin(\alpha x) - B\beta^{2}\cos(\beta x) = \mu A\sin(\alpha x) + \mu B\cos(\beta x). -\] +\end{equation} Durch Koeffizientenvergleich von -\[ +\begin{equation} -A\alpha^{2}\sin(\alpha x) - = + &= \mu A\sin(\alpha x) -\] -\[ + \\ -B\beta^{2}\cos(\beta x) - = + &= \mu B\cos(\beta x) -\] +\end{equation} ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss für $ A \neq 0 $ und $ B \neq 0 $. Zur Berechnung von $ \mu $ bleiben also noch $ \alpha $ und $ \beta $ zu bestimmen. % TODO: Rechenweg TODO: Rechenweg... Enden auf konstanter Temperatur: -\[ +\begin{equation} u(t,x) - = + &= \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} \sin\left(\frac{n\pi}{l}x\right) -\] -\[ + \\ a_{n} - = + &= \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx -\] +\end{equation} TODO: Rechenweg... Enden isoliert: -\[ +\begin{equation} u(t,x) - = + &= a_{0} + \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} \cos\left(\frac{n\pi}{l}x\right) -\] -\[ + \\ a_{0} - = + &= \frac{1}{l}\int_{0}^{l}u(0,x) dx -\] -\[ + \\ a_{n} - = + &= \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx -\] +\end{equation} |