diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2022-08-19 22:01:52 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-08-19 22:01:52 +0200 |
commit | 38de80f160481b87b80432c958175400b2e341c4 (patch) | |
tree | d9ad323fbe5b459900513c92f426e4138e058baa | |
parent | typos (diff) | |
parent | 1 satz (diff) | |
download | SeminarSpezielleFunktionen-38de80f160481b87b80432c958175400b2e341c4.tar.gz SeminarSpezielleFunktionen-38de80f160481b87b80432c958175400b2e341c4.zip |
Merge pull request #65 from LordMcFungus/master
parzyl
-rw-r--r-- | buch/papers/parzyl/img/Plane_2D.png | bin | 0 -> 209118 bytes | |||
-rw-r--r-- | buch/papers/parzyl/references.bib | 9 | ||||
-rw-r--r-- | buch/papers/parzyl/teil0.tex | 9 | ||||
-rw-r--r-- | buch/papers/parzyl/teil1.tex | 14 | ||||
-rw-r--r-- | buch/papers/parzyl/teil2.tex | 44 | ||||
-rw-r--r-- | buch/papers/parzyl/teil3.tex | 14 |
6 files changed, 62 insertions, 28 deletions
diff --git a/buch/papers/parzyl/img/Plane_2D.png b/buch/papers/parzyl/img/Plane_2D.png Binary files differnew file mode 100644 index 0000000..f55e3cf --- /dev/null +++ b/buch/papers/parzyl/img/Plane_2D.png diff --git a/buch/papers/parzyl/references.bib b/buch/papers/parzyl/references.bib index 390d5ed..9639d0b 100644 --- a/buch/papers/parzyl/references.bib +++ b/buch/papers/parzyl/references.bib @@ -65,4 +65,13 @@ year = {2022}, month = {8}, day = {17} +} + +@online{parzyl:scalefac, + title = {An introduction to curvlinear orthogonal coordinates}, + url = {http://dslavsk.sites.luc.edu/courses/phys301/classnotes/scalefactorscomplete.pdf}, + date = {2022-08-18}, + year = {2022}, + month = {08}, + day = {18} }
\ No newline at end of file diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 8be936d..f9e34d5 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -19,8 +19,8 @@ Die partielle Differentialgleichung \begin{equation} \Delta f = \lambda f \end{equation} -ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwert Problem für den Laplace-Operator. -Sie ist eine der Gleichungen welche auftritt wenn die Wellengleichung +ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwertproblem für den Laplace-Operator. +Sie ist eine der Gleichungen, welche auftritt, wenn die Wellengleichung \begin{equation} \left ( \nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right ) u(\textbf{r},t) = @@ -95,12 +95,13 @@ und konstantes $\sigma$ und die grünen ein konstantes $\tau$.} \label{parzyl:fig:cordinates} \end{figure} -Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem. +Abbildung \ref{parzyl:fig:cordinates} zeigt das parabolische Koordinatensystem. Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der Ebene gezogen werden. +Die Flächen mit $\tau = 0$ oder $\sigma = 0$ stellen somit Halbebenen entlang der $z$-Achse dar. Um in diesem Koordinatensystem integrieren und differenzieren zu -können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$. +können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$ \cite{parzyl:scalefac}. Eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten kann im kartesischen Koordinatensystem mit diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 13d8109..0e1ad1b 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -13,13 +13,13 @@ Die Lösung ist somit i(z) = A\cos{ - \left ( - \sqrt{\lambda + \mu}z + \left ( z + \sqrt{\lambda + \mu} \right )} + B\sin{ - \left ( - \sqrt{\lambda + \mu}z + \left ( z + \sqrt{\lambda + \mu} \right )}. \end{equation} Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} werden in \cite{parzyl:whittaker} @@ -51,7 +51,7 @@ mit Hilfe der Whittaker Gleichung gelöst. M_{k, -m} \left(x\right) \end{equation*} gehören zu den Whittaker Funktionen und sind Lösungen - von der Whittaker Differentialgleichung + der Whittaker Differentialgleichung \begin{equation} \frac{d^2W}{d x^2} + \biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0. @@ -94,8 +94,8 @@ $w$ als Lösung haben. % ({\textstyle \frac{3}{4}} % - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2). %\end{align} - -In der Literatur gibt es verschiedene Standartlösungen für +\subsection{Standardlösungen} +In der Literatur gibt es verschiedene Standardlösungen für \eqref{parzyl:eq:weberDiffEq}, wobei die Differentialgleichung jeweils unterschiedlich geschrieben wird. Whittaker und Watson zeigen in \cite{parzyl:whittaker} die Lösung diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index 573432a..5ba9de8 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -9,15 +9,27 @@ Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte, wie in Abbildung \ref{parzyl:fig:leiterplatte} gezeigt, finden will. \begin{figure} - \centering - \includegraphics[width=0.9\textwidth]{papers/parzyl/img/plane.pdf} - \caption{Semi-infinite Leiterplatte} - \label{parzyl:fig:leiterplatte} + \centering + \begin{minipage}{.7\textwidth} + \centering + \includegraphics[width=\textwidth]{papers/parzyl/images/halfplane.pdf} + \caption{Semi-infinite Leiterplatte} + \label{parzyl:fig:leiterplatte} + \end{minipage}% + \begin{minipage}{.25\textwidth} + \centering + \includegraphics[width=\textwidth]{papers/parzyl/img/Plane_2D.png} + \caption{Semi-infinite Leiterplatte dargestellt in 2D} + \label{parzyl:fig:leiterplatte_2d} + \end{minipage} \end{figure} -Das dies so ist kann im zwei Dimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Linie, was man in Abbildung TODO sieht. +Die Äquipotentiallinien sind dabei in rot ,die des elektrischen Feldes in grün und semi-infinite Platte ist in blau dargestellt. +Das dies so ist kann im Zweidimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Halbgerade, was man in Abbildung \ref{parzyl:fig:leiterplatte_2d} sieht. + + Jede komplexe Funktion $F(z)$ kann geschrieben werden als \begin{equation} - F(s) = U(x,y) + iV(x,y) \qquad s \in \mathbb{C}; x,y \in \mathbb{R}. + F(s) = U(x,y) + iV(x,y) \quad s = x + iy \qquad s \in \mathbb{C}; x,y \in \mathbb{R}. \end{equation} Dabei müssen, falls die Funktion differenzierbar ist, die Cauchy-Riemann Differentialgleichungen \begin{equation} @@ -49,23 +61,31 @@ Aus dieser Bedingung folgt 0 }_{\displaystyle{\nabla^2V(x,y) = 0}}. \end{equation} -Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist. +Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist. + + Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt gegeben ist als \begin{equation} \nabla^2\phi(x,y) = 0. \end{equation} -Dies ist eine Bedingung welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. +Dies ist eine Bedingung, welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. + + Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden \begin{equation} \phi(x,y) = U(x,y). \end{equation} -Orthogonal zum Potential ist das elektrische Feld +Orthogonal zu den Äquipotenzialfläche sind die Feldlinien des elektrische Feld \begin{equation} E(x,y) = V(x,y). \end{equation} + + Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete komplexe Funktion $F(s)$ gefunden werden, welche eine semi-infinite Platte beschreiben kann. + + Die gesuchte Funktion in diesem Fall ist \begin{equation} F(s) @@ -83,6 +103,8 @@ Dies kann umgeformt werden zu i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)} . \end{equation} + + Die Äquipotentialflächen können nun betrachtet werden, indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt, \begin{equation} @@ -93,7 +115,9 @@ Die Flächen mit der gleichen elektrischen Feldstärke können als \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}} \end{equation} beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom -kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. +kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. + + Werden diese Formeln nun nach $x$ und $y$ aufgelöst \begin{equation} x = \sigma \tau, diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 166eebf..1b59ed9 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -12,9 +12,9 @@ %Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, %können auch als Potenzreihen geschrieben werden Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. -Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. -Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, x)$ -und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihe +Parabolische Zylinderfunktionen sind Linearkombinationen +$A(\alpha)w_1(\alpha, x) + B(\alpha)w_2(\alpha, x)$ aus einem geraden Teil $w_1(\alpha, x)$ +und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihen \begin{align} w_1(\alpha,x) &= @@ -51,7 +51,7 @@ und = xe^{-\frac{x^2}{4}} \sum^{\infty}_{n=0} - \frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} + \frac{\left ( \frac{1}{2} + \alpha \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ &= e^{-\frac{x^2}{4}} @@ -67,9 +67,9 @@ und \end{align} sind. Die Potenzreihen sind in der regel unendliche Reihen. -Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden +Es gibt allerdings die Möglichkeit, dass für bestimmte $\alpha$ die Terme in der Klammer gleich null werden und die Reihe somit eine endliche Anzahl $n$ Summanden hat. -Dies geschieht bei $w_1(\alpha,x)$ falls +Dies geschieht bei $w_1(\alpha,x)$, falls \begin{equation} \alpha = -n \qquad n \in \mathbb{N}_0 \end{equation} @@ -77,7 +77,7 @@ und bei $w_2(\alpha,x)$ falls \begin{equation} \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. \end{equation} -Der Wert des von $\alpha$ ist abhängig, ob man $D_n(x)$ oder $U(a,x)$ / $V(a,x)$ verwendet. +Der Wert von $\alpha$ ist abhängig, ob man $D_n(x)$, $U(a,x)$ oder $V(a,x)$ verwendet. Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt $\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$. \subsection{Ableitung} |