diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2022-03-28 13:26:54 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2022-03-28 13:26:54 +0200 |
commit | 4a49ccec57384ba582c1c132a33942c938bc1b43 (patch) | |
tree | ba473903c4c729ec7dbdba1c1102cd6ebd505d7a | |
parent | add new lecture notes (diff) | |
download | SeminarSpezielleFunktionen-4a49ccec57384ba582c1c132a33942c938bc1b43.tar.gz SeminarSpezielleFunktionen-4a49ccec57384ba582c1c132a33942c938bc1b43.zip |
new stuff about bessel
-rw-r--r-- | buch/chapters/075-fourier/2d.tex | 19 | ||||
-rw-r--r-- | buch/chapters/075-fourier/Makefile.inc | 2 | ||||
-rw-r--r-- | buch/chapters/075-fourier/bessel.tex | 620 | ||||
-rw-r--r-- | buch/chapters/075-fourier/chapter.tex | 3 |
4 files changed, 643 insertions, 1 deletions
diff --git a/buch/chapters/075-fourier/2d.tex b/buch/chapters/075-fourier/2d.tex new file mode 100644 index 0000000..cc019c7 --- /dev/null +++ b/buch/chapters/075-fourier/2d.tex @@ -0,0 +1,19 @@ +% +% 2d.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\section{Zweidimensionale Fourier-Transformation +\label{buch:fourier:section:2d}} +\rhead{Zweidimensionale Fourier-Transformation} + +\subsection{Fourier-Transformation und partielle Differentialgleichungen} + +\subsection{Fourier-Transformation in kartesischen Koordinaten} + +\subsection{Basisfunktionen in Polarkoordinaten} + + + + + diff --git a/buch/chapters/075-fourier/Makefile.inc b/buch/chapters/075-fourier/Makefile.inc index ee9641c..c153dc4 100644 --- a/buch/chapters/075-fourier/Makefile.inc +++ b/buch/chapters/075-fourier/Makefile.inc @@ -5,4 +5,6 @@ # CHAPTERFILES = $(CHAPTERFILES) \ + chapters/075-fourier/bessel.tex \ + chapters/075-fourier/2d.tex \ chapters/075-fourier/chapter.tex diff --git a/buch/chapters/075-fourier/bessel.tex b/buch/chapters/075-fourier/bessel.tex new file mode 100644 index 0000000..7e978f7 --- /dev/null +++ b/buch/chapters/075-fourier/bessel.tex @@ -0,0 +1,620 @@ +% +% bessel.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\section{Fourier-Transformation und Bessel-Funktionen +\label{buch:fourier:section:fourier-und-bessel}} +\rhead{Fourier-Transformation und Bessel-Funktionen} + +Sei $f\colon \mathbb{R}^2\to\mathbb{C}$ eine auf $\mathbb{R}$ definierte +Funktion. +Die Fourier-Transformation von $f$ ist das Integral +\begin{equation} +(\mathscr{F}f)(u,v) += +F(u,v) += +\frac{1}{2\pi} +\int_{-\infty}^\infty +\int_{-\infty}^\infty +f(x,y) e^{i(xu+yv)} +\,dx\,dy. +\label{buch:fourier:eqn:2dfourier} +\end{equation} +Die Funktionen $e_{u,v}\colon (x,y)\mapsto e^{i(xu+yv)}$ +sind die Eigenfunktionen des Laplace-Operators in kartesischen Koordinaten, +sie erfüllen +\[ +\Delta e_{u,v} = (u^2+v^2) \Delta e_{u,v}. +\] +Die Fourier-Integrale sind die Skalarprodukte +\[ +(\mathscr{F}f)(u,v) += +\langle +e_{u,v}, +f +\rangle, +\] +wobei das Skalarprodukt durch +\[ +\langle f,g\rangle += +\int_{-\infty}^\infty +\int_{-\infty}^\infty +\overline{f(x)} g(x) +\,dx\,dy +\] +definiert ist. + +Jede Funktion in der Ebene kann auch in Polarkoordinaten ausgedrückt werden. +Die kartesischen Koordinaten können mittels +\begin{align*} +x&=r\cos\varphi +y&=r\sin\varphi +\end{align*} +durch die Polarkoordinaten $(r,\varphi)$ ausgedrückt werden. +Wir schreiben +\[ +\tilde{f}(r,\varphi) += +f(r\cos\varphi,r\sin\varphi) +\] +für die Funktion $f$ ausgedrückt in Polarkoordinaten. + +In Polarkoordinaten wird das Skalarprodukt +\[ +\langle f,g\rangle += +\int_0^\infty \int_{0}^{2\pi} e^{in\varphi} +\overline{ +\tilde{f}(r,\varphi) +} +\tilde{g}(r,\varphi) +r\,dr\,d\varphi. +\] +Auch die Fouriertransformation kann jetzt durch Berechnung eines +doppelten Integrals in Polarkoordinaten ermittelt werden. +Ziel dieses Abschnitts ist zu zeigen, dass auch diese Berechnung auf +Bessel-Funktionen führt. +Im Gegenzug werden sich neue Eigenschaften und Darstellungen derselben +ergeben. + + +\subsection{Berechnung der Fourier-Transformation in Polarkoordinaten} +Die Fourier-Transformation $(\mathscr{F}f)(u,v)$ ist eine Funktion +$\mathbb{R}^2\to\mathbb{C}$, die vom Wellenvektor $(u,v)$ abhängt. +Auch dieser Vektor kann in Polarkoordinaten ausgedrückt werden. +Für die Polarkoordinaten in der Wellenvektor-Ebene soll die Bezeichnung +$(R,\vartheta)$ verwendet werden, was auf die Transformationsgleichungen +\begin{align*} +u&=R\cos\vartheta\\ +v&=R\sin\vartheta +\end{align*} +führt. +Im Exponenten der Exponentialfunktion +des Fourier-Integrals~\eqref{buch:fourier:eqn:2dfourier} +steht der Ausdruck +\[ +xu+yv += +r\cos\varphi\cdot R\cos\vartheta ++ +r\sin\varphi\cdot R\sin\vartheta += +rR\cos(\varphi-\vartheta). +\] +Mit diesen Bezeichnungen wird das +Fourier-Integral~\eqref{buch:fourier:eqn:2dfourier} +zu +\begin{align} +\tilde{F}(R,\vartheta) +&= +\frac{1}{2\pi} +\int_{0}^{\infty} +\int_{0}^{2\pi} +f(r\cos\varphi,r\sin\varphi) +e^{irR\cos(\varphi-\vartheta)} +\,d\varphi\,r\, dr +\notag +\\ +&= +\frac{1}{2\pi} +\int_{0}^{\infty} +\int_{0}^{2\pi} +\tilde{f}(r,\varphi) +e^{irR\cos(\varphi-\vartheta)} +\,d\varphi\,r\, dr. +\label{buch:fourier:eqn:fouriertrafopolar} +\end{align} +Die partielle Funktion $\varphi\mapsto \tilde{f}(r,\varphi)$ +ist eine $2\pi$-periodische Funktion, sie lässt sich also als +komplexe Fourier-Reihe +\begin{equation} +\tilde{f}(r,\varphi) += +\sum_{n\in\mathbb{Z}} \hat{f}_n(r) e^{in\varphi} +\label{buch:fourier:eqn:fourierkoef} +\end{equation} +schreiben, die Funktionen $\hat{f}_n(r)$ sind die komplexen +Fourier-Koeffizienten. +Setzt man \eqref{buch:fourier:eqn:fourierkoef} in die Fourier-Transformation +\eqref{buch:fourier:eqn:fouriertrafopolar} ein, erhält man +\begin{align*} +\tilde{F}(R,\vartheta) +&= +\sum_{n\in\mathbb{Z}} +\int_0^\infty +\hat{f}_n(r) +\frac{1}{2\pi} +\int_0^{2\pi} +e^{in\varphi+irR\cos(\varphi-\vartheta)} +\,d\varphi +\, +r\,dr. +\end{align*} +Der Exponent im inneren Integral kann als +\[ +in\varphi+irR\cos(\varphi-\vartheta) += +i(n(\varphi-\vartheta)+rR\cos(\varphi-\vartheta)) ++ +in\vartheta, +\] +oder im Integral als +\[ +\tilde{F}(R,\vartheta) += +\sum_{n\in\mathbb{Z}} +\int_0^\infty +\hat{f}_n(r) +\frac{1}{2\pi} +\int_0^{2\pi} +e^{in(\varphi-\vartheta)+irR\cos(\varphi-\vartheta)} +e^{in\vartheta} +\,d\varphi +\, +r\,dr +\] +geschrieben werden. +Der zweite Exonentialfaktor hängt nicht von $\varphi$ ab und kann daher +aus dem Integral herausgezogen werden. +Der erste Exponentialfaktor hängt nur von $\varphi-\vartheta$ ab. +Da die Exponentialfunktion $2\pi$-periodisch ist, hat die Verschiebung +um $\vartheta$ keinen Einfluss auf den Wert des Integrals. +Die Fourier-Transformation ist daher auch +\[ +\tilde{F}(R,\vartheta) += +\sum_{n\in\mathbb{Z}} +\int_0^\infty +\hat{f}_n(r) +e^{in\vartheta} +\underbrace{ +\frac{1}{2\pi} +\int_0^{2\pi} +e^{in\varphi+irR\cos\varphi} +\,d\varphi +}_{\displaystyle =:F_n(rR)} +\, +r\,dr. +\] +Die Beziehung zu den Besselfunktionen können wir daraus herstellen, +indem wir zunächst $\xi = rR$ abkürzen und dann das innere Integral +\begin{equation} +F_n(\xi) += +\frac{1}{2\pi} +\int_{0}^{2\pi} +e^{in\varphi+i\xi\cos\varphi} +\,d\varphi += +\frac{1}{2\pi} +\int_{0}^{2\pi} +e^{in\varphi}e^{i\xi\cos\varphi} +\,d\varphi +\label{buch:fourier:eqn:Fncosphi} +\end{equation} +auswerten. +Exponentialfunktion als Potenzreihe entwickeln: +\[ +F_n(\xi) += +\frac{1}{2\pi} +\int_0^{2\pi} +e^{in\varphi} +\sum_{k=0}^\infty +\frac{ +i^k\xi^k \cos^k\varphi +}{k!} +\,d\varphi += +\sum_{k=0}^\infty +\frac{i^k\xi^k}{k!} +\underbrace{ +\frac{1}{2\pi} +\int_0^{2\pi} +e^{in\varphi} +\cos^k\varphi +\,d\varphi}_{\displaystyle =c_{n,k}}. +\] +Das Integral auf der rechten Seite ist im Wesentlichen ein +Fourier-Koeffizient der Funktion $\varphi\mapsto \cos^k\varphi$. + +\subsubsection{Berechnung der Fourier-Koeffizienten von $\cos^k\varphi$} +Indem man die Kosinus-Funktion als die Linearkombination +\[ +\cos\varphi += +\frac{e^{i\varphi}+e^{-i\varphi}}2 +\] +von Exponentialfunktionen ausdrückt, kann man auch die $k$-te Potenz +mit Hilfe des binomischen Satzes als +\[ +\cos^k\varphi += +\sum_{m=0}^k +\frac{1}{2^k} +\binom{k}{m} +e^{im\varphi}e^{i(m-k)\varphi} += +\sum_{m=0}^k +\frac{1}{2^k} +\binom{k}{m} +e^{i(2m-k)\varphi} +\] +ausdrücken. +Der Fourier-Koeffizient von $\cos^k\varphi$ ist daher das Integral +\begin{align*} +c_{n,k} +&= +\frac{1}{2\pi} +\int_0^{2\pi} +e^{in\varphi}\cos^k\varphi\,d\varphi +\\ +&= +\frac{1}{2^k} +\sum_{m=0}^k +\binom{k}{m} +\frac{1}{2\pi} +\int_0^{2\pi} +e^{in\varphi}e^{i(2m-k)\varphi} +\,d\varphi +\\ +&= +\frac{1}{2^k} +\sum_{m=0}^k +\binom{k}{m} +\frac{1}{2\pi} +\int_0^{2\pi} +e^{i(2m-k+n)\varphi} +\,d\varphi. +\end{align*} +Für $2m-k+n=0$ ist das Integral ein Integral der Funktion $1$ über +ein Intervall der Länge $2\pi$, zusammen mit dem Faktor $1/2\pi$ hat +es daher den Wert $1$. +Für $2m-k+n\ne 0$ ist das Integral +\[ +\frac{1}{2\pi} +\int_0^{2\pi} +e^{i(2m-k+n)\varphi} +\,d\varphi += +\frac{1}{i} +\biggl[ +\frac{e^{i(2m-k+n)\varphi}}{2m-k+n} +\biggr]_0^{2\pi} += +0 +\] +weil die Exponentialfunktion $2\pi$-periodisch ist. +Nur für $k=2m+n$ ergibt sich ein nicht verschwindender +Fourier-Koeffizient. +Eine Summe über $k\in\mathbb{N}$ kann daher auch als Summe über +$m\in\mathbb{N}$ interpretiert werden, in der $k$ durch die Formel +$k=2m+n$ gegeben wird. +Mit dieser Konvention wird +\[ +c_{n,k} += +c_{n,2m+n} +%= +%\frac{1}{2\pi} +%\int_0^{2\pi} +%e^{-i(2m+n)\varphi} +%\cos^{2m+n}\varphi +%\,d\varphi += +\frac{1}{2^{2m+n}} +\binom{2m+n}{m} +\] +schreiben lässt. + +\subsubsection{Berechnung von $F_n(\xi)$} +Die Reihe für $F_n(\xi)$ lässt sich weiter vereinfachen. +Wir verwenden wieder die Tatsache, dass sich nur für $n=-2m-k$ +ein Beitrag ergibt. +Dies bedeutet, dass $k=2m+n$ sein muss, die Summe kann damit als +Summe über $m$ statt über $k$ geschrieben werden. +Somit ist +\begin{align*} +F_n(\xi) +&= +\sum_{k=0}^\infty +\frac{i^k\xi^k}{k!} +c_{n,k} += +\sum_{m=0}^\infty +\frac{i^{2m+n}\xi^{2m+n}}{(2m+n)!} +c_{n,2m+n} +\\ +&= +\sum_{m=0}^\infty +\frac{1}{2^{2m+n}} +\binom{2m+n}{m} +\frac{i^{2m+n}\xi^{2m+n}}{(2m+n)!} +\\ +&= +i^n +\sum_{m=0}^\infty +\frac{(-1)^m}{(2m+n)!} +\frac{(2m+n)!}{m!\,(2m+n-m)!} +\biggl(\frac{\xi}{2}\biggr)^{2m+n} +\\ +&= +i^n +\sum_{m=0}^\infty +\frac{(-1)^m} +{m!\,\Gamma(m+n+1)} +\biggl(\frac{\xi}{2}\biggr)^{2m+n} += +i^n J_n(\xi). +\end{align*} +Die Funktionen $F_n(\xi)$ sind daher bis auf einen Phasenfaktor der +Wert $J_n(\xi)$ einer Bessel-Funktion. + +\subsubsection{Berechnung der Fourier-Transformation mit Bessel-Funktionen} +Mit allen oben zusammengestellten Notationen kann die Fourier-Transformation +jetzt in Polarkoordinaten als +\[ +\tilde{F}(R,\vartheta) += +\sum_{n\in\mathbb{Z}} +e^{in\vartheta} +\int_0^\infty +\hat{f}_n(r) +i^n +J_n(rR) +r\,dr +\] +geschrieben werden. +Dies hat tatsächlich die Form eines Skalarproduktes der Funktion +$\tilde{f}(r,\varphi)$ mit einer Funktion der Form +\[ +\tilde{e}_{n,R}(r,\varphi) += +e^{in\varphi} +J_n(rR). +\] +Letzeres sind die in Abschnitt~\ref{buch:fourier:section:2d} +versprochenen Basisfunktionen. + +\subsubsection{Fourier-Reihe von $e^{i\xi\cos\varphi}$} +Die Funktionen $F_n(\xi)$ sind wegen +\[ +F_n(\xi) += +\frac{1}{2\pi} +\int_0^{2\pi} +e^{in\varphi} +e^{i\xi\cos\varphi} +\,d\varphi, +\] +daraus kann man die Fourier-Reihe von $e^{i\xi\cos\varphi}$ +berechnen, dies wird im folgenden Satz durchgeführt. + + +\begin{satz} +\label{buch:fourier:satz:expinphi} +Die komplexe Fourier-Reihe der Funktion +$\varphi\mapsto \exp(i\xi\cos\varphi)$ +ist +\begin{align} +e^{i\xi\cos\varphi} +&= +J_0(\xi) ++ +2\sum_{n=1}^\infty i^n J_n(\xi) \cos n\varphi. +\label{buch:fourier:eqn:expinphicomplex}. +\intertext{Real- und Imaginärteil davon sind die Fourier-Reihen} +\cos(\xi\cos\varphi) +&= +J_0(\xi) + 2\sum_{m=1}^\infty (-1)^m J_{2m}(\xi) \cos2m\varphi +\label{buch:fourier:eqn:expinphireal} +\\ +\sin(\xi\cos\varphi) +&= +2\sum_{m=0}^\infty (-1)^m J_{2m+1}(\xi) \cos(2m+1)\varphi. +\label{buch:fourier:eqn:expinphiimaginary} +\end{align} +\end{satz} + +\begin{proof}[Beweis] +Die Fourier-Koeffizienten $F_n(\xi)$ der Funktion $e^{i\xi\cos\varphi}$ +führen auf die Fourier-Reihe +\begin{align*} +e^{i\xi\cos\varphi} +&= +\sum_{n\in\mathbb{Z}} F_n(\xi) e^{in\varphi} += +\sum_{n\in\mathbb{Z}} i^n J_n(\xi) e^{in\varphi}. +\end{align*} +Terme mit $\pm n$ können wegen +\[ +\left. +\begin{aligned} +J_{-n}(\xi) &= (-1)^n J_n(\xi) +\\ +i^{-n}&=(-1)^n i^n +\end{aligned} +\quad +\right\} +\qquad\Rightarrow\qquad +i^{-n}J_{-n}(\xi) = i^n J_n(\xi) +\] +zusammengefasst werden, auf diese Weise erhält man +\begin{align*} +e^{i\xi\cos\varphi} +&= +J_0(\xi) ++ +\sum_{n=1}^\infty i^n J_n(\xi) (e^{in\varphi}+e^{-in\varphi}) += +2\sum_{n=1}^\infty i^n J_n(\xi) \cos n\varphi. +\end{align*} +Dies beweist +\eqref{buch:fourier:eqn:expinphicomplex}. + +Indem man Real- und Imaginärteil trennt, kann man daraus auch +die Fourier-Reihen von $\cos(\xi\cos\varphi)$ und +$\sin(\xi\cos\varphi)$ gewinnen, sie sind +\begin{align*} +\exp(\xi\cos\varphi) +&= +J_0(\xi) + 2\sum_{n=1}^\infty i^{n} J_{n}(\xi) \cos n\varphi +\\ +&= +J_0(\xi) ++ +2\sum_{m=1}^\infty i^{2m}J_{2m}(\xi)\cos 2m\varphi ++ +2\sum_{m=0}^\infty i^{2m+1}J_{2m+1}(\xi)\cos(2m+1)\varphi +\\ +&= +J_0(\xi) ++ +2\sum_{m=1}^\infty (-1)^{m}J_{2m}(\xi)\cos 2m\varphi ++ +2i\sum_{m=0}^\infty (-1)^{m}J_{2m+1}(\xi)\cos(2m+1)\varphi +\\ +\cos(\xi\cos\varphi) +&= +J_0(\xi) ++ +2\sum_{m=1}^\infty (-1)^{m}J_{2m}(\xi)\cos 2m\varphi +\\ +\sin(\xi\cos\varphi) +&= +2\sum_{m=0}^\infty (-1)^m J_{2m+1}(\xi) \cos(2m+1)\varphi. +\end{align*} +Damit sind auch die Formeln +\eqref{buch:fourier:eqn:expinphireal} +und +\eqref{buch:fourier:eqn:expinphiimaginary} +für die reellen Fourier-Reihen bewiesen. +\end{proof} + +% +% Integraldarstellung der Bessel-Funktion +% +\subsection{Integraldarstellung der Bessel-Funktion} +Aus \eqref{buch:fourier:eqn:Fncosphi} kann jetzt die Integraldarstelltung +der Bessel-Funktionen gewonnen werden. +Dazu substituiert man $\varphi$ durch $\tau$ mit +$\varphi = \frac{\pi}2-\tau$ +oder +$\tau=\frac{\pi}2-\varphi$ +und $d\tau = -d\varphi$ +im Integral und berechnet +\begin{align*} +J_n(\xi) +&= +(-i)^n +\frac{1}{2\pi} +\int_0^{2\pi} +e^{in\varphi+i\xi \cos\varphi} +\,d\varphi +\\ +&= +- +(-i)^n +\frac{1}{2\pi} +\int_{\frac{\pi}2}^{-\frac{3\pi}2} +e^{in(\frac{\pi}2-\tau) + i\xi\cos(\frac{\pi}2-\tau)} +\,d\tau +\\ +&= +(-i)^n +\frac{1}{2\pi} +\int^{\frac{\pi}2}_{-\frac{3\pi}2} +i^n +e^{-in\tau + i\xi\sin\tau)} +\,d\tau. +\intertext{Da der Integrand $2\pi$-periodisch ist, kann das +Integrationsintervall auf $[-\pi,\pi]$ verschoben werden, was} +&= +\frac{1}{2\pi} +\int_{-\pi}^{\pi} +e^{-in\tau + i\xi\sin\tau)} +\,d\tau. +\intertext{ergibt. +Das Integral kann in zwei Integrale} +&= +\frac{1}{2\pi} +\int_0^\pi +e^{-in\tau + i\xi\sin\tau} +\,d\tau ++ +\frac{1}{2\pi} +\int_0^\pi +e^{in\tau - i\xi\sin\tau} +\,d\tau +\intertext{aufgeteilt werden, +} +&= +\frac{1}{\pi} +\int_0^\pi +\frac{ +e^{-in\tau + i\xi\sin\tau} ++ +e^{in\tau - i\xi\sin\tau} +}{2} +\,d\tau +\\ +&= +\frac{1}{\pi} +\int_0^\pi +\frac{ +e^{i(-n\tau + \xi\sin\tau)} ++ +e^{-i(-n\tau + \xi\sin\tau)} +}{2} +\,d\tau +\\ +&= +\frac{1}{\pi} +\int_0^\pi +\cos(n\tau - \xi\sin\tau) +\,d\tau. +\end{align*} +Damit haben wir den folgenden Satz bewiesen: + +\begin{satz}[Integraldarstelltung der Bessel-Funktionen] +\label{buch:fourier:satz:bessel-integraldarstellung} +Die Bessel-Funktionen $J_n$ mit ganzzahliger Ordnung $n$ haben +die Integraldarstellung +\begin{equation} +J_n(\xi) += +\frac{1}{\pi} +\int_0^\pi +\cos(n\tau - \xi\sin\tau) +\,d\tau. +\label{buch:fourier:eqn:bessel-integraldarstellung} +\end{equation} +\end{satz} + + + + diff --git a/buch/chapters/075-fourier/chapter.tex b/buch/chapters/075-fourier/chapter.tex index 341d8df..681a1c0 100644 --- a/buch/chapters/075-fourier/chapter.tex +++ b/buch/chapters/075-fourier/chapter.tex @@ -13,7 +13,8 @@ führen zu neuen speziellen Funktionen. In diesem Kapitel soll als Beispiel die Fourier-Transformation der Bessel-Funktionen untersucht werden. -%\input{chapters/075-fourier/bessel.tex} +\input{chapters/075-fourier/2d.tex} +\input{chapters/075-fourier/bessel.tex} %\section{TODO} %\begin{itemize} |