diff options
author | runterer <r.unterer@gmx.ch> | 2022-05-27 20:10:13 +0200 |
---|---|---|
committer | runterer <r.unterer@gmx.ch> | 2022-05-27 20:10:13 +0200 |
commit | 7459c95431d89576126a6a0007238592a4f5f033 (patch) | |
tree | bcc0743a8c797d120a683f235db97895c8f21ccf | |
parent | tikz und eulerprodukt hinzugefügt (diff) | |
download | SeminarSpezielleFunktionen-7459c95431d89576126a6a0007238592a4f5f033.tar.gz SeminarSpezielleFunktionen-7459c95431d89576126a6a0007238592a4f5f033.zip |
Minor improvements
-rw-r--r-- | buch/papers/zeta/analytic_continuation.tex | 26 |
1 files changed, 14 insertions, 12 deletions
diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index 408a1f7..40424e0 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -14,7 +14,7 @@ Eine grafische Darstellung dieses Plans ist in Abbildung \ref{zeta:fig:continuat \centering \input{papers/zeta/continuation_overview.tikz.tex} \caption{ - Die verschiedenen Abschnitte der Riemannschen Zetafunktion. + Die verschiedenen Abschnitte der Riemannschen Zetafunktion. Die originale Definition von \eqref{zeta:equation1} ist im grünen Bereich gültig. Für den blauen Bereich gilt \eqref{zeta:equation:fortsetzung1}. Um den roten Bereich zu bekommen verwendet die Funktionalgleichung \eqref{zeta:equation:functional} eine Spiegelung an $\Re(s) = 0.5$. @@ -76,33 +76,35 @@ Wir beginnen damit, die Gammafunktion für den halben Funktionswert zu berechnen \int_0^{\infty} t^{\frac{s}{2}-1} e^{-t} dt. \end{equation} Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten -\begin{align} +\begin{equation} \Gamma \left( \frac{s}{2} \right) - &= + = \int_0^{\infty} (\pi n^2)^{\frac{s}{2}} x^{\frac{s}{2}-1} e^{-\pi n^2 x} - \,dx - && \text{Division durch } (\pi n^2)^{\frac{s}{2}} - \\ + \,dx. +\end{equation} +Analog zum Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion} teilen wir durch $(\pi n^2)^{\frac{s}{2}}$ +\begin{equation} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}} n^s} - &= + = \int_0^{\infty} x^{\frac{s}{2}-1} e^{-\pi n^2 x} - \,dx - && \text{Zeta durch Summenbildung } \sum_{n=1}^{\infty} - \\ + \,dx, +\end{equation} +und finden Zeta durch die Summenbildung $\sum_{n=1}^{\infty}$ +\begin{equation} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) - &= + = \int_0^{\infty} x^{\frac{s}{2}-1} \sum_{n=1}^{\infty} e^{-\pi n^2 x} \,dx. \label{zeta:equation:integral1} -\end{align} +\end{equation} Die Summe kürzen wir ab als $\psi(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$. %TODO Wieso folgendes -> aus Fourier Signal Es gilt |