diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2022-06-25 14:36:04 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2022-06-25 14:36:04 +0200 |
commit | 7cc8f34f003ecb25ade7f1ff2287fe12b5a22c40 (patch) | |
tree | 4a234cf09ee14df548f9937fd1f08baa5e564900 | |
parent | more improvements (diff) | |
download | SeminarSpezielleFunktionen-7cc8f34f003ecb25ade7f1ff2287fe12b5a22c40.tar.gz SeminarSpezielleFunktionen-7cc8f34f003ecb25ade7f1ff2287fe12b5a22c40.zip |
arithmetic-geometric-mean
-rw-r--r-- | buch/chapters/110-elliptisch/agm.m | 20 | ||||
-rw-r--r-- | buch/chapters/110-elliptisch/ellintegral.tex | 320 | ||||
-rw-r--r-- | buch/chapters/110-elliptisch/experiments/agm.maxima | 26 |
3 files changed, 357 insertions, 9 deletions
diff --git a/buch/chapters/110-elliptisch/agm.m b/buch/chapters/110-elliptisch/agm.m new file mode 100644 index 0000000..2f0a1ea --- /dev/null +++ b/buch/chapters/110-elliptisch/agm.m @@ -0,0 +1,20 @@ +# +# agm.m +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +format long + +n = 10; +a = 1; +b = sqrt(0.5); + +for i = (1:n) + printf("%20.16f %20.16f\n", a, b); + A = (a+b)/2; + b = sqrt(a*b); + a = A; +end + +E = 2 / (pi * a) + diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index bc597d6..970d8fa 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -451,14 +451,310 @@ Hilfe einer Entwicklung der Wurzel mit der Binomialreihe gefunden werden. \end{proof} +Die Darstellung von $E(k)$ als hypergeometrische Reihe ermöglicht +jetzt zum Beispiel auch die Berechnung der Ableitung nach dem +Parameter $k$ mit der Ableitungsformel für die Funktion $\mathstrut_2F_1$. + + % +% Berechnung mit dem arithmetisch-geometrischen Mittel +% +\subsection{Berechnung mit dem arithmetisch-geometrischen Mittel} +Die numerische Berechnung von elliptischer Integrale mit gewöhnlichen +numerischen Integrationsroutinen ist nicht sehr effizient. +Das in diesem Abschnitt vorgestellte arithmetisch-geometrische Mittel +\index{arithmetisch-geometrisches Mittel}% +liefert einen Algorithmus mit sehr viel besserer Konvergenz. +Die Methode lässt sich auch auf die unvollständigen elliptischen +Integrale von Abschnitt~\eqref{buch:elliptisch:subsection:unvollstintegral} +verallgemeinern. +Sie ist ein Speziallfall der sogenannten Landen-Transformation, +\index{Landen-Transformation}% +welche ausser für die elliptischen Integrale auch für die +Jacobischen elliptischen Funktionen formuliert werden kann und +für letztere ebenfalls sehr schnelle numerische Algorithmen liefert. + % +% Das arithmetisch-geometrische Mittel % -\subsubsection{Komplementäre Integrale} +\subsubsection{Das arithmetisch-geometrische Mittel} +Seien $a$ und $b$ zwei nichtnegative reelle Zahlen. +Aus $a$ und $b$ werden jetzt zwei Folgen konstruiert, deren Glieder +durch +\begin{align*} +a_0&=a &&\text{und}& a_{n+1} &= \frac{a_n+b_n}2 &&\text{arithmetisches Mittel} +\\ +b_0&=b &&\text{und}& b_{n+1} &= \sqrt{a_nb_n} &&\text{geometrisches Mittel} +\end{align*} +definiert sind. + +\begin{satz} +Falls $a>b>0$ ist, nimmt die Folge $(a_k)_{k\ge 0}$ monoton ab und +$(b_k)_{k\ge 0}$ nimmt monoton zu. +Beide konvergieren quadratisch gegen einen gemeinsamen Grenzwert. +\end{satz} + +\begin{definition} +Der gemeinsame Grenzwert von $a_n$ und $b_n$ heisst das +{\em arithmetisch-geometrische Mittel} und wird mit +\[ +M(a,b) += +\lim_{n\to\infty} a_n += +\lim_{n\to\infty} b_n +\] +bezeichnet. +\index{arithmetisch-geometrisches Mittel}% +\end{definition} -\subsubsection{Ableitung} -XXX Ableitung \\ -XXX Stammfunktion \\ +\begin{proof}[Beweis] +Zunächst ist zu zeigen, dass die Folgen monoton sind. +Dies folgt sofort aus der Definition der Folgen: +\begin{align*} +a_{n+1} &= \frac{a_n+b_n}{2} \ge \frac{a_n+a_n}{2} = a_n +\\ +b_{n+1} &= \sqrt{a_nb_n} \ge \sqrt{b_nb_n} = b_n. +\end{align*} +Die Konvergenz folgt aus +\[ +a_{n+1}-b_{n+1} +\le +a_{n+1}-b_n += +\frac{a_n+b_n}{2}-b_n += +\frac{a_n-b_n}2 +\le +\frac{a-b}{2^{n+1}}. +\] +Dies zeigt jedoch nur, dass die Konvergenz mindestens ein +Bit in jeder Iteration ist. +Aus +\[ +a_{n+1}^2 - b_{n+1}^2 += +\frac{(a_n+b_n)^2}{4} - a_nb_n += +\frac{a_n^2 -2a_nb_n+b_n^2}{4} += +\frac{(a_n-b_n)^2}{4} +\] +folgt +\[ +a_{n+1}-b_{n+1} += +\frac{(a_n-b_n)^2}{2(a_{n+1}+b_{n+1})}. +\] +Da der Nenner gegen $2M(a,b)$ konvergiert, wird der Fehler für in +jeder Iteration quadriert, es liegt also quadratische Konvergenz vor. +\end{proof} + +% +% Transformation des elliptischen Integrals +% +\subsubsection{Transformation des elliptischen Integrals} +In diesem Abschnitt soll das Integral +\[ +I(a,b) += +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{a^2\cos^2 t + b^2\sin^2t}} +\] +berechnet werden. +Es ist klar, dass +\[ +I(sa,sb) += +\frac{1}{s} I(a,b). +\] + +Gauss hat gefunden, dass die Substitution +\begin{equation} +\sin t += +\frac{2a\sin t_1}{a+b+(a-b)\sin t_1} +\label{buch:elliptisch:agm:subst} +\end{equation} +zu +\begin{equation} +\frac{dt}{a^2\cos^2 t + b^2 \sin^2 t} += +\frac{dt_1}{a_1^2\cos^2 t_1 + b_1^2 \sin^2 t_1} +\label{buch:elliptisch:agm:dtdt1} +\end{equation} +führt. +Um dies nachzuprüfen, muss man zunächst +\eqref{buch:elliptisch:agm:subst} +nach $t_1$ ableiten, was +\[ +\frac{d}{dt_1}\sin t += +\cos t +\frac{dt}{dt_1} +\qquad\Rightarrow\qquad +\biggl( +\frac{d}{dt_1}\sin t +\biggr)^2 += +(1-\sin^2t)\biggl(\frac{dt}{dt_1}\biggr)^2 +\] +ergibt. +Die Ableitung von $t$ nach $t_1$ kann auch aus +\eqref{buch:elliptisch:agm:dtdt1} +ableiten, es ist +\[ +\biggl( +\frac{dt}{dt_1} +\biggr)^2 += +\frac{a^2 \cos^2 t + b^2 \sin^2 t}{a_1^2 \cos^2 t_1 + b_1^2 \sin^2 t_1}. +\] +Man muss also nachprüfen, dass +\begin{equation} +\frac{1}{1-\sin^2 t} +\frac{d}{dt_1}\sin t += +\frac{a^2 \cos^2 t + b^2 \sin^2 t}{a_1^2 \cos^2 t_1 + b_1^2 \sin^2 t_1}. +\label{buch:elliptisch:agm:deq} +\end{equation} +Dazu muss man zunächst $a_1=(a+b)/2$, $b_1=\sqrt{ab}$ setzen. +Ausserdem muss man $\cos^2 t$ durch $1-\sin^2t$ ersetzen und +$\sin t$ durch \eqref{buch:elliptisch:agm:subst}. +Auch $\cos^2 t_1$ muss man durch $1-\sin^2t_1$ ersetzt werden. +Dann kann man nach einer langwierigen Rechnung, die sich am leichtesten +mit einem Computer-Algebra-System ausführen lässt finden, dass +\eqref{buch:elliptisch:agm:deq} +tatsächlich korrekt ist. + +\begin{satz} +\label{buch:elliptisch:agm:integrale} +Für $a_1=(a+b)/2$ und $b_1=\sqrt{ab}$ gilt +\[ +\int_0^{\frac{\pi}2} +\frac{dt}{a^2\cos^2 t + b^2 \sin^2 t} += +\int_0^{\frac{\pi}2} +\frac{dt_1}{a_1^2\cos^2 t_1 + b_1^2 \sin^2 t_1}. +\] +\end{satz} + +Der Satz~\ref{buch:elliptisch:agm:integrale} zeigt, dass die Ersetzung +von $a$ und $b$ durch $a_1$ und $b_1$ das Integral $I(a,b)$ nicht ändert. +Dies gilt natürlich für alle Glieder der Folge zur Bestimmung des +arithmetisch-geometrischen Mittels. + +\begin{satz} +Für $a\ge b>0$ gilt +\begin{equation} +I(a,b) += +\int_0^{\frac{\pi}2} +\frac{dt}{a^2\cos^2 t + b^2\sin^2t} += +\frac{\pi}{2M(a,b)} +\end{equation} +\end{satz} + +\begin{proof}[Beweis] +Zunächst folgt aus Satz~\ref{buch:elliptisch:agm:integrale}, dass +\[ +I(a,b) += +I(a_1,b_1) += +\dots += +I(a_n,b_n). +\] +Ausserdem ist $a_n\to M(a,b)$ und $b_n\to M(a,b)$, +damit wird +\[ +I(a,b) += +\frac{1}{M(a,b)} +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{\cos^2 t + \sin^2 t}} += +\frac{\pi}{2M(a,b)}. +\qedhere +\] +\end{proof} + +% +% Berechnung des elliptischen Integrals +% +\subsubsection{Berechnung des elliptischen Integrals} +Das elliptische Integral erster Art hat eine Form, die dem Integral +$I(a,b)$ bereits sehr ähnlich ist. +Im die Verbindung herzustellen, berechnen wir +\begin{align*} +I(a,b) +&= +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{a^2\cos^2 t + b^2 \sin^2 t}} +\\ +&= +\frac{1}{a} +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{1-\sin^2 t + \frac{b^2}{a^2} \sin^2 t}} +\\ +&= +\frac{1}{a} +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{1-(1-\frac{b^2}{a^2})\sin^2 t}} += +K(k) +\qquad\text{mit}\qquad +k'=\frac{b^2}{a^2},\; +k=\sqrt{1-k^{\prime 2}} +\end{align*} + +\begin{satz} +\label{buch:elliptisch:agm:satz:Ek} +Für $0<k\le 1$ ist +\[ +K(k) = I(1,\sqrt{1-k^2}) = \frac{\pi}{2M(1,\sqrt{1-k^2})} +\] +\end{satz} + +% +% Numerisches Beispiel +% +\subsubsection{Numerisches Beispiel} +\begin{table} +\centering +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline +n& a_n & b_n \\ +\hline +0 & 1.0000000000000000 & 0.7071067811865476\\ +1 & 0.\underline{8}535533905932737 & 0.\underline{84}08964152537146\\ +2 & 0.\underline{8472}249029234942 & 0.\underline{8472}012667468916\\ +3 & 0.\underline{847213084}8351929 & 0.\underline{8472130847}527654\\ +4 & 0.\underline{847213084793979}2 & 0.\underline{847213084793979}1\\ +\hline +\end{tabular} +\caption{Die Berechnung des arithmetisch-geometrischen Mittels für +$a=1$ und $b=\sqrt{2}/2$ zeigt die sehr rasche Konvergenz. +\label{buch:elliptisch:agm:numerisch}} +\end{table} +In diesem Abschnitt soll als Zahlenbeispiel $E(k)$ für $k=\sqrt{2}/2$ +berechnet werden. +In diesem speziellen Fall ist $k'=k$. +Tabelle~\ref{buch:elliptisch:agm:numerisch} zeigt die sehr rasche +Konvergenz der Berechnung des arithmetisch-geometrischen Mittels +von $1$ und $\sqrt{2}/2$. +Mit Satz~\ref{buch:elliptisch:agm:satz:Ek} folgt jetzt +\[ +K(\sqrt{2}/2) += +\frac{\pi}{2M(1,\sqrt{2}/2)} += +0.751428163461842. +\] +Die Berechnung hat nur 4 Mittelwerte, 4 Produkte, 4 Quadratwurzeln und +eine Division erfordert. % % Unvollständige elliptische Integrale @@ -551,7 +847,7 @@ Die Faktoren, die in den Integranden der unvollständigen elliptischen Integrale vorkommen, haben Nullstellen bei $\pm1$, $\pm1/k$ und $\pm 1/\sqrt{n}$ -XXX Additionstheoreme \\ +% XXX Additionstheoreme \\ XXX Parameterkonventionen \\ % @@ -648,6 +944,9 @@ l({\textstyle\frac{1}{k}})=\int_1^{\frac1{k}} \end{equation} ausgewertet werden. +% +% Komplementärmodul +% \subsubsection{Komplementärmodul} Im vorangegangen Abschnitt wurde gezeigt, dass der Wertebereicht des unvollständigen elliptischen Integrals der ersten Art als komplexe @@ -751,6 +1050,9 @@ in das blaue. \label{buch:elliptisch:fig:rechteck}} \end{figure} +% +% Reelle Argument > 1/k +% \subsubsection{Reelle Argument $> 1/k$} Für Argument $x> 1/k$ sind beide Faktoren im Integranden des unvollständigen elliptischen Integrals negativ, das Integral kann @@ -797,7 +1099,7 @@ F(x,k) = iK(k') - F\biggl(\frac1{kx},k\biggr) für die Werte des elliptischen Integrals erster Art für grosse Argumentwerte fest. -\subsection{Potenzreihe} -XXX Potenzreihen \\ -XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\ -XXX Berechnung mit der Landen-Transformation https://en.wikipedia.org/wiki/Landen%27s_transformation +%\subsection{Potenzreihe} +%XXX Potenzreihen \\ +%XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\ +%XXX Berechnung mit der Landen-Transformation https://en.wikipedia.org/wiki/Landen%27s_transformation diff --git a/buch/chapters/110-elliptisch/experiments/agm.maxima b/buch/chapters/110-elliptisch/experiments/agm.maxima new file mode 100644 index 0000000..c7facd4 --- /dev/null +++ b/buch/chapters/110-elliptisch/experiments/agm.maxima @@ -0,0 +1,26 @@ +/* + * agm.maxima + * + * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + */ + +S: 2*a*sin(theta1) / (a+b+(a-b)*sin(theta1)^2); + +C2: ratsimp(diff(S, theta1)^2 / (1 - S^2)); +C2: ratsimp(subst(sqrt(1-sin(theta1)^2), cos(theta1), C2)); +C2: ratsimp(subst(S, sin(theta), C2)); +C2: ratsimp(subst(sqrt(1-S^2), cos(theta), C2)); + +D2: (a^2 * cos(theta)^2 + b^2 * sin(theta)^2) + / + (a1^2 * cos(theta1)^2 + b1^2 * sin(theta1)^2); +D2: subst((a+b)/2, a1, D2); +D2: subst(sqrt(a*b), b1, D2); +D2: ratsimp(subst(1-S^2, cos(theta)^2, D2)); +D2: ratsimp(subst(S, sin(theta), D2)); +D2: ratsimp(subst(1-sin(theta1)^2, cos(theta1)^2, D2)); + +Q: D2/C2; +Q: ratsimp(subst(x, sin(theta1), Q)); + +Q: ratsimp(expand(ratsimp(Q))); |