aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorcanuel <cattaneo.manuel@hotmail.com>2022-08-26 23:01:40 +0200
committercanuel <cattaneo.manuel@hotmail.com>2022-08-26 23:01:40 +0200
commitb6cedd9a91b2a6d67693a9271f9e7a30525646e1 (patch)
treeb68ba962d71848e473fe16d92b9f1702c21168b5
parentMerge remote-tracking branch 'mueller/master' (diff)
downloadSeminarSpezielleFunktionen-b6cedd9a91b2a6d67693a9271f9e7a30525646e1.tar.gz
SeminarSpezielleFunktionen-b6cedd9a91b2a6d67693a9271f9e7a30525646e1.zip
some minor corrections
-rw-r--r--buch/papers/kugel/references.bib2
-rw-r--r--buch/papers/kugel/spherical-harmonics.tex62
2 files changed, 38 insertions, 26 deletions
diff --git a/buch/papers/kugel/references.bib b/buch/papers/kugel/references.bib
index e3c0f85..984d555 100644
--- a/buch/papers/kugel/references.bib
+++ b/buch/papers/kugel/references.bib
@@ -17,7 +17,7 @@
file = {Submitted Version:/Users/npross/Zotero/storage/SN4YUNQC/Carvalhaes and de Barros - 2015 - The surface Laplacian technique in EEG Theory and.pdf:application/pdf},
}
-@article{implementation,
+@article{usecase_recursion_paper,
title = {New Implementation of Legendre Polynomials for Solving Partial Differential Equations},
issn = {272767969},
url = {https://www.researchgate.net/publication/272767969_New_Implementation_of_Legendre_Polynomials_for_Solving_Partial_Differential_Equations},
diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex
index f51a772..9349b61 100644
--- a/buch/papers/kugel/spherical-harmonics.tex
+++ b/buch/papers/kugel/spherical-harmonics.tex
@@ -685,23 +685,26 @@ harmonics, so from now on, unless specified otherwise when we say spherical
harmonics or write $Y^m_n$, we mean the orthonormal spherical harmonics of
definition \ref{kugel:def:spherical-harmonics-orthonormal}.
-\subsection{Recurrence Relations}\kugeltodo[replace x with z]
+\subsection{Recurrence Relations}\kugeltodo{replace x with z}
The idea of this subsection is to introduce first some recursive relations regarding the Associated Legendre Functions, defined in eq.\eqref{kugel:def:ferrers-functions}. Subsequently we will extend them, in order to derive recurrence formulas for the case of Spherical Harmonic functions as well.
\subsubsection{Associated Legendre Functions}
To start this journey, we can first write the following equations, which relate the Associated Legendre functions of different indeces $m$ and $n$ recursively:
-\begin{enumerate}[(i)]
- \item $(2n+1) x P^m_n(z)= (m+n) P^m_{n-1}(z) + (n-m+1) P^m_{n+1}(z)$, \label{kugel:eq:rec_rel_1}
- \item $\dfrac{2mz}{\sqrt{1-z^2}} P^m_n(z) = P^{m+1}_n(z) + [n(n+1)-m(m-1)] P^{m-1}_n(z)$, \label{kugel:eq:rec_rel_2}
- \item $\sqrt{1-z^2} P^m_n(z) = \dfrac{1}{2n+1} \left[ P^{m+1}_{n+1}(z) - P^{m+1}_{n-1}(z) \right]$, \label{kugel:eq:rec_rel_3}
- \item $\sqrt{1-z^2} P^m_n(z) = \dfrac{1}{2n+1} \left[ (n+m)(n+m-1)P^{m-1}_{n-1}(z) - (n-m+1)(n-m+2)P^{m-1}_{n+1}(z) \right]$. \label{kugel:eq:rec_rel_4}
-\end{enumerate}
+\begin{subequations}
+ \begin{align}
+ P^m_n(z) &= \dfrac{1}{(2n+1)x} \left[ (m+n) P^m_{n-1}(z) + (n-m+1) P^m_{n+1}(z) \right] \label{kugel:eq:rec-leg-1} \\
+ P^m_n(z) &= \dfrac{\sqrt{1-z^2}}{2mz} \left[ P^{m+1}_n(z) + [n(n+1)-m(m-1)] P^{m-1}_n(z) \right] \label{kugel:eq:rec-leg-2} \\
+ P^m_n(z) &= \dfrac{1}{(2n+1)\sqrt{1-z^2}} \left[ P^{m+1}_{n+1}(z) - P^{m+1}_{n-1}(z) \right] \label{kugel:eq:rec-leg-3} \\
+ P^m_n(z) &= \dfrac{1}{(2n+1)\sqrt{1-z^2}} \left[ (n+m)(n+m-1)P^{m-1}_{n-1}(z) - (n-m+1)(n-m+2)P^{m-1}_{n+1}(z) \right] \label{kugel:eq:rec-leg-4}
+ \end{align}
+\end{subequations}
Much of the effort will be proving this bunch of equalities. Then, in the second part, where we will derive the recursion equations for $Y^m_n(\vartheta,\varphi)$, we will basically reuse the ones presented above.
-Maybe it is worth mentioning at least one use case for these relations: They are widely used in some software implementations, as they lead to better numerical accuracy and computational cost lower by a factor of six\cite{usecase_recursion_paper}.
+Maybe it is worth mentioning at least one use case for these relations: In some software implementations (that include lighting computations in computer graphics, antenna modelling softwares, 3-D modelling in medical applications, etc.)
+they are widely used, as they lead to better numerical accuracy and computational cost lower by a factor of six\cite{usecase_recursion_paper}.
\begin{enumerate}[(i)]
\item
\begin{proof}
- This is the relation that links the associated Legendre functions with the same $m$ index but different $n$. Using \ref{} \kugeltodo{ref alla recurrence dei polinomi di legendre (รจ da qualche parte nel libro)}, we have
+ This is the relation that links the associated Legendre functions with the same $m$ index but different $n$. Using \ref{} \kugeltodo{search the general equation of recursion for orthogonal polynomials (is somewhere in the book)}, we have
\begin{equation*}
(n+1)P_{n+1}(z)-(2n+1)xP_n(z)+nP_{n-1}(z)=0,
\end{equation*}
@@ -749,9 +752,9 @@ Maybe it is worth mentioning at least one use case for these relations: They are
\begin{equation*}
P^{m+2}_n(x) - \frac{2(m+1)x}{\sqrt{1-x^2}}P^{m+1}_n(x) + [n(n+1)-m(m+1)]P^m_n(x)=0.
\end{equation*}
- Furthermore, we can adjust the indeces and terms, obtaining
+ Further, we can adjust the indeces and terms, obtaining
\begin{equation*}
- \frac{2mx}{\sqrt{(1-x^2)}} P^m_n(x) = P^{m+1}_n(x) + [n(n+1)-m(m-1)] P^{m-1}_n(x)
+ \frac{2mx}{\sqrt{(1-x^2)}} P^m_n(x) = P^{m+1}_n(x) + [n(n+1)-m(m-1)] P^{m-1}_n(x).
\end{equation*}
\end{proof}
@@ -774,7 +777,7 @@ Maybe it is worth mentioning at least one use case for these relations: They are
\item
\begin{proof}
- For this proof we can rely on (\ref{kugel:eq:rec_rel_1}), and therefore rewrite (\ref{kugel:eq:rec_rel_2}) as
+ For this proof we can rely on eq.\eqref{kugel:eq:rec-leg-1}, and therefore rewrite eq.\eqref{kugel:eq:rec-leg-2} as
\begin{equation*}
\frac{2m}{(2n+1)\sqrt{1-x^2}} \left[ (m+n)P^m_{n-1}(x) + (n-m+1)P^m_{n+1}(x) \right] = P^{m+1}_n(x) + [ n(n+1)-m(m-1) ]P^{m-1}_n(x).
\end{equation*}
@@ -793,18 +796,26 @@ Maybe it is worth mentioning at least one use case for these relations: They are
\subsubsection{Spherical Harmonics}
The goal of this subsection's part is to apply the recurrence relations of the $P^m_n(z)$ functions to the Spherical Harmonics.
-
With some little adjustments we will be able to have recursion equations for them too. As previously written the most of the work is already done. Now it is only a matter of minor mathematical operations/rearrangements.
We can start by listing all of them:
+\begin{subequations}
+ \begin{align}
+ Y^m_n(\vartheta, \varphi) &= \dfrac{1}{(2n+1)\cos \vartheta} \left[ (m+n)Y^m_{n-1}(\vartheta, \varphi) + (m-n+1)Y^m_{n+1}(\vartheta, \varphi) \right] \label{kugel:eq:rec-sph_harm-1} \\
+ Y^m_n(\vartheta, \varphi) &= \dfrac{\tan \vartheta}{2m}\left[ Y^{m+1}_n(\vartheta, \varphi)e^{-i\varphi} + [n(n+1)-m(m-1)]Y^{m-1}_n(\vartheta, \varphi)e^{i\varphi} \right] \label{kugel:eq:rec-sph_harm-2} \\
+ Y^m_n(\vartheta, \varphi) &= \dfrac{e^{-i\varphi}}{ (2n+1)\sin \vartheta } \left[ Y^{m+1}_{n+1}(\vartheta, \varphi) - Y^{m+1}_{n-1}(\vartheta, \varphi) \right] \label{kugel:eq:rec-sph_harm-3} \\
+ Y^m_n(\vartheta, \varphi) &= \dfrac{e^{i\varphi}}{(2n+1)\sin \vartheta} \left[ (n+m)(n+m-1)Y^{m-1}_{n-1}(\vartheta, \varphi) - (n-m+1)(n-m+2)Y^{m-1}_{n+1}(\vartheta, \varphi) \right] \label{kugel:eq:rec-sph_harm-4}
+ \end{align}
+\end{subequations}
+
\begin{enumerate}[(i)]
- \item $Y^m_n(\vartheta, \varphi) = \dfrac{1}{(2n+1)\cos \vartheta} \left[ (m+n)Y^m_{n-1}(\vartheta, \varphi) + (m-n+1)Y^m_{n+1}(\vartheta, \varphi) \right]$
+ \item
\begin{proof}
- We can multiply both sides of equality in eq.\eqref{} by $e^{im \varphi}$ and perform the substitution $z=\cos \vartheta$. After a few simple algebraic steps, we will obtain the relation we are looking for
+ We can multiply both sides of equality in eq.\eqref{kugel:eq:rec-leg-1} by $e^{im \varphi}$ and perform the substitution $z=\cos \vartheta$. After a few simple algebraic steps, we will obtain the relation we are looking for
\end{proof}
- \item $Y^m_n(\vartheta, \varphi) = \dfrac{\tan \vartheta}{2m}\left[ Y^{m+1}_n(\vartheta, \varphi)e^{-i\varphi} + [n(n+1)-m(m-1)]Y^{m-1}_n(\vartheta, \varphi)e^{i\varphi} \right]$
+ \item
\begin{proof}
- In this proof, as before, we can perform the substitution $z=\cos \vartheta$, and notice that $\sqrt{1-z^2}=\sin \vartheta$, hence, the relation in eq.\eqref{} will be
+ In this proof, as before, we can perform the substitution $z=\cos \vartheta$, and notice that $\sqrt{1-z^2}=\sin \vartheta$, hence, the relation in eq.\eqref{kugel:eq:rec-leg-2} will be
\begin{equation*}
\frac{2m \cos \vartheta}{\sin \vartheta} P^m_n(\cos \vartheta) = P^{m+1}_n(\cos \vartheta) + [n(n+1)-m(m-1)]P^{m-1}_n P^m_n(\cos \vartheta).
\end{equation*}
@@ -812,34 +823,35 @@ We can start by listing all of them:
\begin{align*}
\frac{2m \cos \vartheta}{\sin \vartheta} P^m_n(\cos \vartheta)e^{im\varphi} &= P^{m+1}_n(\cos \vartheta)e^{im\varphi} + [n(n+1)-m(m-1)]P^{m-1}_n P^m_n(\cos \vartheta)e^{im\varphi} \\
&= P^{m+1}_n(\cos \vartheta)e^{i(m+1)\varphi}e^{-i\varphi} + [n(n+1)-m(m-1)]P^{m-1}_n (\cos \vartheta)e^{i(m-1)\varphi}e^{i\varphi} \\
- &= Y^{m+1}_n(\vartheta, \varphi)e^{-i\varphi} + [n(n+1)-m(m-1)]Y^{m-1}_n(\vartheta, \varphi)e^{i\varphi} \\
+ &= Y^{m+1}_n(\vartheta, \varphi)e^{-i\varphi} + [n(n+1)-m(m-1)]Y^{m-1}_n(\vartheta, \varphi)e^{i\varphi}.
\end{align*}
Finally, after some ``cleaning''
\begin{equation*}
Y^m_n(\vartheta, \varphi) = \frac{\tan \vartheta}{2m} \left[ Y^{m+1}_n(\vartheta, \varphi)e^{-i\varphi} + [n(n+1)-m(m-1)]Y^{m-1}_n(\vartheta, \varphi)e^{i\varphi} \right]
\end{equation*}
\end{proof}
- \item $Y^m_n(\vartheta, \varphi) = \dfrac{e^{-i\varphi}}{ (2n+1)\sin \vartheta } \left[ Y^{m+1}_{n+1}(\vartheta, \varphi) - Y^{m+1}_{n-1}(\vartheta, \varphi) \right]$
+ \item
\begin{proof}
- Now we can consider eq.\eqref{}, and multiply it by $e^{im\varphi}$. After the usual substitution $z=\cos \vartheta$, we have
+ Now we can consider eq.\eqref{kugel:eq:rec-leg-3}, and multiply it by $e^{im\varphi}$. After the usual substitution $z=\cos \vartheta$, we have
\begin{align*}
\sin \vartheta P^m_n(\cos \vartheta)e^{im\varphi} &= \dfrac{e^{im\varphi}}{2n+1}\left[ P^{m+1}_{n+1}(\cos \vartheta) - P^{m+1}_{n-1}(\cos \vartheta)\right] \\
- &= \dfrac{e^{-i\varphi}}{2n+1}\left[ P^{m+1}_{n+1}(\cos \vartheta)e^{i(m+1)\varphi} - P^{m+1}_{n-1}(\cos \vartheta)e^{i(m+1)\varphi}\right] \\
+ &= \dfrac{e^{-i\varphi}}{2n+1}\left[ P^{m+1}_{n+1}(\cos \vartheta)e^{i(m+1)\varphi} - P^{m+1}_{n-1}(\cos \vartheta)e^{i(m+1)\varphi}\right].
\end{align*}
A few manipulations later, we will obtain
\begin{equation*}
- Y^m_n(\vartheta, \varphi) = \frac{e^{-i\varphi}}{(2n+1)\sin \vartheta} \left[ Y^{m+1}_{n+1}(\vartheta, \varphi)-Y^{m+1}_{n-1}(\vartheta, \varphi) \right]
+ Y^m_n(\vartheta, \varphi) = \frac{e^{-i\varphi}}{(2n+1)\sin \vartheta} \left[ Y^{m+1}_{n+1}(\vartheta, \varphi)-Y^{m+1}_{n-1}(\vartheta, \varphi) \right].
\end{equation*}
\end{proof}
- \item $Y^m_n(\vartheta, \varphi) = \dfrac{e^{i\varphi}}{(2n+1)\sin \vartheta} \left[ (n+m)(n+m-1)Y^{m-1}_{n-1}(\vartheta, \varphi) - (n-m+1)(n-m+2)Y^{m-1}_{n+1}(\vartheta, \varphi) \right]$
+ \item
\begin{proof}
This proof is very similar to the previous one. We just have to perform the substitution $z = \cos \vartheta$, as always. Secondly we can multiply the right side by $e^{im\varphi}$ and the left one too but in a different form, namely $e^{im\varphi}=e^{i(m-1)\varphi}e^{i\varphi}$. Then it is only a question of recalling the definition of $Y^m_n(\vartheta, \varphi)$.
\end{proof}
\end{enumerate}
\section{Series Expansions in $L^2(S^2)$}
-
-We want now to recall the definition of the inner product on the spherical surface of definition \ref{kugel:def:inner-product-s2}
+We have now reach a point where we have all the tools that are necessary to build something truly amazing: a general series expansion formula for
+function on the surface of the sphere.
+Before starting we want to recall the definition of the inner product on the spherical surface of definition \ref{kugel:def:inner-product-s2}
\begin{equation*}
\langle f, g \rangle
= \int_{0}^\pi \int_0^{2\pi}