aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2022-06-07 11:45:38 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2022-06-07 11:45:38 +0200
commitd3c217cdb6106f2082097dd9e76f200885c853cb (patch)
tree6e4287638c479a86f5f680441bfe74f8d48d5ccf
parentfix trigo definition graph (diff)
downloadSeminarSpezielleFunktionen-d3c217cdb6106f2082097dd9e76f200885c853cb.tar.gz
SeminarSpezielleFunktionen-d3c217cdb6106f2082097dd9e76f200885c853cb.zip
add polynomials with elementary w-integrals paper
-rw-r--r--buch/chapters/010-potenzen/polynome.tex239
-rw-r--r--buch/papers/dreieck/main.tex18
-rw-r--r--buch/papers/dreieck/references.bib36
-rw-r--r--buch/papers/dreieck/teil0.tex45
-rw-r--r--buch/papers/dreieck/teil1.tex88
-rw-r--r--buch/papers/dreieck/teil2.tex109
-rw-r--r--buch/papers/dreieck/teil3.tex70
7 files changed, 542 insertions, 63 deletions
diff --git a/buch/chapters/010-potenzen/polynome.tex b/buch/chapters/010-potenzen/polynome.tex
index 5f119e5..981e444 100644
--- a/buch/chapters/010-potenzen/polynome.tex
+++ b/buch/chapters/010-potenzen/polynome.tex
@@ -13,20 +13,30 @@ Operationen konstruieren lassen, sind die Polynome.
\index{Polynom}%
Ein {\em Polynome} vom Grad $n$ ist die Funktion
\[
-p(x) = a_nx^2n + a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x + a_0,
+p(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x + a_0,
\]
wobei $a_n\ne 0$ sein muss.
Das Polynom heisst {\em normiert}, wenn $a_n=1$ ist.
\index{normiert}%
+\index{Grad eines Polynoms}%
Die Menge aller Polynome mit Koeffizienten in der Menge $K$ wird mit
$K[x]$ bezeichnet.
\end{definition}
Die Menge $K[x]$ ist heisst auch der {\em Polynomring}, weil $K[x]$
-mit der Addition, Subtraktion und Multiplikation von Polynomen ein
-Ring mit $1$ ist.
-Im Folgenden werden wir uns auf die Fälle $K=\mathbb{R}$ und $K=\mathbb{C}$
-beschränken.
+mit der Addition, Subtraktion und Multiplikation von Polynomen eine
+algebraische Struktur bildet, die man einen Ring mit $1$ nennt.
+\index{Ring}%
+Im Folgenden werden wir uns auf die Fälle $K=\mathbb{Q}$, $K=\mathbb{R}$
+und $K=\mathbb{C}$ beschränken.
+
+Für den Grad eines Polynoms gelten die bekannten Rechenregeln
+\begin{align*}
+\deg (a(x) + b(x)) &\le \operatorname{max}(\deg a(x), \deg b(x))
+\\
+\deg (a(x)\cdot b(x)) &=\deg a(x) + \deg b(x)
+\end{align*}
+für beliebige Polynome $a(x),b(x)\in K[x]$.
In Abschnitt~\ref{buch:orthogonalitaet:section:orthogonale-funktionen} werden
Familien von Polynomen konstruiert werden, die sich durch eine
@@ -35,12 +45,14 @@ Diese Polynome lassen sich typischerweise auch als Lösungen von
Differentialgleichungen finden.
Ausserdem werden hypergeometrische Funktionen
\[
-\mathstrut_pF_q\biggl(\begin{matrix}a_1,\dots,a_p\\b_1,\dots,b_q\end{matrix};z\biggr),
+\mathstrut_pF_q\biggl(
+\begin{matrix}a_1,\dots,a_p\\b_1,\dots,b_q\end{matrix};z
+\biggr),
\] die in
Abschnitt~\ref{buch:rekursion:section:hypergeometrische-funktion}
definiert werden, zu Polynomen, wenn mindestens einer der
Parameter $a_k$ negativ ganzzahlig ist.
-Polynome sind also bereits eine Vielfältige Quelle von speziellen
+Polynome sind also bereits eine vielfältige Quelle von speziellen
Funktionen.
Viele spezielle Funktionen werden aber komplizierter sein und
@@ -53,6 +65,7 @@ Dank des folgenden Satzes kann dies immer mit Polynomen geschehen.
\begin{satz}[Weierstrass]
\label{buch:potenzen:satz:weierstrass}
+\index{Weierstrass, Satz von}%
Eine auf einem kompakten Intervall $[a,b]$ stetige Funktion $f(x)$
lässt sich durch eine Folge $p_n(x)$ von Polynomen gleichmässig
approximieren.
@@ -69,6 +82,189 @@ ebenfalls als Approximationen dienen können.
Weitere Möglichkeiten liefern Interpolationsmethoden der
numerischen Mathematik.
+\subsection{Polynomdivision, Teilbarkeit und grösster gemeinsamer Teiler}
+Der schriftliche Divisionsalgorithmus für Zahlen funktioniert
+auch für die Division von Polynomen.
+Zu zwei beliebigen Polynomen $p(x)$ und $q(x)$ lassen sich also
+immer zwei Polynome $a(x)$ und $r(x)$ finden derart, dass
+$p(x) = a(x) q(x) + r(x)$.
+Das Polynom $a(x)$ heisst der {\em Quotient}, $r(x)$ der {\em Rest}
+der Division.
+Das Polynom $p(x)$ heisst {\em teilbar} durch $q(x)$, geschrieben
+$q(x)\mid p(x)$, wenn $r(x)=0$ ist.
+
+\subsubsection{Grösster gemeinsamer Teiler}
+Mit dem Begriff der Teilbarkeit geht auch die Idee des grössten
+gemeinsamen Teilers einher.
+Ein gemeinsamer Teiler zweier Polynome $a(x)$ und $b(x)$
+ist ein Polynom $g(x)$, welches beide Polynome teilt, also
+$g(x)\mid a(x)$ und $g(x)\mid b(x)$.
+\index{grösster gemeinsamer Teiler}%
+Ein Polynome $g(x)$ heisst grösster gemeinsamer Teiler von $a(x)$
+und $b(x)$, wenn jeder andere gemeinsame Teiler $f(x)$ von $a(x)$
+und $b(x)$ auch ein Teiler von $g(x)$ ist.
+Man beachte, dass die skalaren Vielfachen eines grössten gemeinsamen
+Teilers ebenfalls grösste gemeinsame Teiler sind, der grösste gemeinsame
+Teiler ist also nicht eindeutig bestimmt.
+
+\subsubsection{Der euklidische Algorithmus}
+Zur Berechnung eines grössten gemeinsamen Teilers steht wie bei den
+ganzen Zahlen der euklidische Algorithmus zur Verfügung.
+Dazu bildet man die Folgen von Polynomen
+\[
+\begin{aligned}
+a_0(x)&=a(x) & b_0(x) &= b(x)
+&
+&\Rightarrow&
+a_0(x)&=b_0(x) q_0(x) + r_0(x) &&
+\\
+a_1(x)&=b_0(x) & b_1(x) &= r_0(x)
+&
+&\Rightarrow&
+a_1(x)&=b_1(x) q_1(x) + r_1(x) &&
+\\
+a_2(x)&=b_1(x) & b_2(x) &= r_1(x)
+&
+&\Rightarrow&
+a_2(x)&=b_2(x) q_2(x) + r_2(x) &&
+\\
+&&&&&\hspace*{2mm}\vdots&&
+\\
+a_{m-1}(x)&=b_{m-2}(x) & b_{m-1}(x) &= r_{m-2}(x)
+&
+&\Rightarrow&
+a_{m-1}(x)&=b_{m-1}(x)q_{m-1}(x) + r_{m-1}(x) &\text{mit }r_{m-1}(x)&\ne 0
+\\
+a_m(x)&=b_{m-1}(x) & b_m(x)&=r_{m-1}(x)
+&
+&\Rightarrow&
+a_m(x)&=b_m(x)q_m(x).&&
+\end{aligned}
+\]
+Der Index $m$ ist der Index, bei dem zum ersten Mal $r_m(x)=0$ ist.
+Dann ist $g(x)=r_{m-1}(x)$ ein grösster gemeinsamer Teiler.
+
+\subsubsection{Der erweiterte euklidische Algorithmus}
+Die Konstruktion der Folgen $a_n(x)$ und $b_n(x)$ kann in Matrixform
+kompakter geschrieben werden als
+\[
+\begin{pmatrix}
+a_k(x)\\
+b_k(x)
+\end{pmatrix}
+=
+\begin{pmatrix}
+b_{k-1}(x)\\
+r_{k-1}(x)
+\end{pmatrix}
+=
+\begin{pmatrix}
+0 & 1\\
+1 & -q_{k-1}(x)
+\end{pmatrix}
+\begin{pmatrix}
+a_{k-1}(x)\\
+b_{k-1}(x)
+\end{pmatrix}.
+\]
+Kürzen wir die $2\times 2$-Matrix als
+\[
+Q_k(x) = \begin{pmatrix} 0&1\\1&-q_k(x)\end{pmatrix}
+\]
+ab, dann ergibt das Produkt der Matrizen $Q_0(x)$ bis $Q_{m}(x)$
+\[
+\begin{pmatrix}
+g(x)\\
+0
+\end{pmatrix}
+=
+\begin{pmatrix}
+r_{m-1}(x)\\
+r_{m}(x)
+\end{pmatrix}
+=
+Q_{m}(x)
+Q_{m-1}(x)
+\cdots
+Q_1(x)
+Q_0(x)
+\begin{pmatrix}
+a(x)\\
+b(x)
+\end{pmatrix}.
+\]
+Zur Berechnung des Produktes der Matrizen $Q_k(x)$ kann man rekursiv
+vorgehen mit der Rekursionsformel
+\[
+S_{k}(x) = Q_{k}(x) S_{k-1}(x)
+\qquad\text{mit}\qquad
+S_{-1}(x)
+=
+\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
+\]
+Ausgeschrieben bedeutet dies Matrixrekursionsformel
+\[
+S_{k-1}(x)
+=
+\begin{pmatrix}
+c_{k-1} & d_{k-1} \\
+c_k & d_k
+\end{pmatrix}
+\qquad\Rightarrow\qquad
+Q_{k}(x) S_{k-1}(x)
+=
+\begin{pmatrix}
+0&1\\1&-q_k(x)
+\end{pmatrix}
+\begin{pmatrix}
+c_{k-1} & d_{k-1} \\
+c_k & d_k
+\end{pmatrix}
+=
+\begin{pmatrix}
+c_k&d_k\\
+c_{k+1}&d_{k+1}
+\end{pmatrix}.
+\]
+Daraus lässt sich für die Matrixelemente die Rekursionsformel
+\[
+\begin{aligned}
+c_{k+1} &= c_{k-1} - q_k(x) c_k(x) \\
+d_{k+1} &= d_{k-1} - q_k(x) d_k(x)
+\end{aligned}
+\quad
+\bigg\}
+\qquad
+\text{mit Startwerten}
+\qquad
+\bigg\{
+\begin{aligned}
+\quad
+c_{-1} &= 1, & c_0 &= 0 \\
+d_{-1} &= 0, & d_0 &= 1.
+\end{aligned}
+\]
+Wendet man die Matrix $S_m(x)$ auf den Vektor mit den Komponenten
+$a(x)$ und $b(x)$, erhält man die Beziehungen
+\[
+g(x) = c_{k-1}(x) a(x) + d_{k-1}(x) b(x)
+\qquad\text{und}\qquad
+0 = c_k(x) a(x) + d_k(x) b(x).
+\]
+Dieser Algorithmus heisst der erweiterte euklidische Algorithmus.
+Wir fassen die Resultate zusammen im folgenden Satz.
+
+\begin{satz}
+Zu zwei Polynomen $a(x),b(x) \in K[x]$ gibt es Polynome
+$g(x),c(x),d(x)\in K[x]$
+derart, dass $g(x)$ ein grösster gemeinsamer Teiler von $a(x)$ und $b(x)$
+ist, und ausserdem
+\[
+g(x) = c(x)a(x)+d(x)b(x)
+\]
+gilt.
+\end{satz}
+
\subsection{Faktorisierung und Nullstellen}
% wird später gebraucht um bei der Definition der hypergeometrischen Reihe
% die Zaehler- und Nenner-Polynome als Pochhammer-Symbole zu entwickeln
@@ -77,11 +273,24 @@ numerischen Mathematik.
% Wird gebraucht für die Potenzreihen-Methode
% Muss später ausgedehnt werden auf Potenzreihen
-\subsection{Polynom-Berechnung}
-Die naive Berechnung der Werte eines Polynoms beginnt mit der Berechnung
-der Potenzen.
-Die Anzahl nötiger Multiplikationen kann minimiert werden, indem man
-das Polynom als
+\subsection{Berechnung von Polynom-Werten}
+Die naive Berechnung der Werte eines Polynoms $p(x)$ vom Grad $n$
+beginnt mit der Berechnung der Potenzen von $x$.
+Da alle Potenzen benötigt werden, wird man dazu $n-1$ Multiplikationen
+benötigen.
+Die Potenzen müssen anschliessend mit den Koeffizienten multipliziert
+werden, dazu sind weitere $n$ Multiplikationen nötig.
+Der Wert des Polynoms kann also erhalten werden mit $2n-1$ Multiplikationen
+und $n$ Additionen.
+
+Die Anzahl nötiger Multiplikationen kann mit dem folgenden Vorgehen
+reduziert werden, welches auch als das {\em Horner-Schema} bekannt ist.
+\index{Horner-Schema}%
+Statt erst am Schluss alle Terme zu addieren, addiert man so früh
+wie möglich.
+Zum Beispiel multipliziert man $(a_nx+a_{n-1})$ mit $x$, was auf
+die Multiplikationen beider Terme mit $x$ hinausläuft.
+Mit dieser Idee kann man das Polynom als
\[
a_nx^n
+
@@ -95,10 +304,10 @@ a_0
=
((\dots((a_nx+a_{n-1})x+a_{n-2})x+\dots )x+a_1)x+a_0
\]
-schreibt.
+schreiben.
Beginnend bei der innersten Klammer sind genau $n$ Multiplikationen
-und $n+1$ Additionen nötig, im Gegensatz zu $2n$ Multiplikationen
-und $n$ Additionen bei der naiven Vorgehensweise.
+und $n$ Additionen nötig, man spart mit diesem Vorgehen also
+$n-1$ Multiplikationen.
diff --git a/buch/papers/dreieck/main.tex b/buch/papers/dreieck/main.tex
index 75ba410..b9f8c3b 100644
--- a/buch/papers/dreieck/main.tex
+++ b/buch/papers/dreieck/main.tex
@@ -3,19 +3,19 @@
%
% (c) 2020 Hochschule Rapperswil
%
-\chapter{Dreieckstest und Beta-Funktion\label{chapter:dreieck}}
-\lhead{Dreieckstest und Beta-Funktion}
+\chapter{$\int P(t) e^{-t^2} \,dt$ in geschlossener Form?
+\label{chapter:dreieck}}
+\lhead{Integrierbarkeit in geschlossener Form}
\begin{refsection}
\chapterauthor{Andreas Müller}
\noindent
-Mit dem Dreieckstest kann man feststellen, wie gut ein Geruchs-
-oder Geschmackstester verschiedene Gerüche oder Geschmäcker
-unterscheiden kann.
-Seine wahrscheinlichkeitstheoretische Erklärung benötigt die Beta-Funktion,
-man kann die Beta-Funktion als durchaus als die mathematische Grundlage
-der Weindegustation
-bezeichnen.
+Der Risch-Algorithmus erlaubt, eine definitive Antwort darauf zu geben,
+ob eine elementare Funktion eine Stammfunktion in geschlossener Form hat.
+Der Algorithmus ist jedoch ziemlich kompliziert.
+In diesem Kapitel soll ein spezieller Fall mit Hilfe der Theorie der
+orthogonale Polynome, speziell der Hermite-Polynome, behandelt werden,
+wie er in der Arbeit \cite{dreieck:polint} behandelt wurde.
\input{papers/dreieck/teil0.tex}
\input{papers/dreieck/teil1.tex}
diff --git a/buch/papers/dreieck/references.bib b/buch/papers/dreieck/references.bib
index d2bbe08..47bd865 100644
--- a/buch/papers/dreieck/references.bib
+++ b/buch/papers/dreieck/references.bib
@@ -4,32 +4,12 @@
% (c) 2020 Autor, Hochschule Rapperswil
%
-@online{dreieck:bibtex,
- title = {BibTeX},
- url = {https://de.wikipedia.org/wiki/BibTeX},
- date = {2020-02-06},
- year = {2020},
- month = {2},
- day = {6}
+@article{dreieck:polint,
+ author = { George Stoica },
+ title = { Polynomials and Integration in Finite Terms },
+ journal = { Amer. Math. Monthly },
+ volume = 129,
+ year = 2022,
+ number = 1,
+ pages = {80--81}
}
-
-@book{dreieck:numerical-analysis,
- title = {Numerical Analysis},
- author = {David Kincaid and Ward Cheney},
- publisher = {American Mathematical Society},
- year = {2002},
- isbn = {978-8-8218-4788-6},
- inseries = {Pure and applied undegraduate texts},
- volume = {2}
-}
-
-@article{dreieck:mendezmueller,
- author = { Tabea Méndez and Andreas Müller },
- title = { Noncommutative harmonic analysis and image registration },
- journal = { Appl. Comput. Harmon. Anal.},
- year = 2019,
- volume = 47,
- pages = {607--627},
- url = {https://doi.org/10.1016/j.acha.2017.11.004}
-}
-
diff --git a/buch/papers/dreieck/teil0.tex b/buch/papers/dreieck/teil0.tex
index bcf2cf8..584f12b 100644
--- a/buch/papers/dreieck/teil0.tex
+++ b/buch/papers/dreieck/teil0.tex
@@ -3,7 +3,48 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Testprinzip\label{dreieck:section:testprinzip}}
-\rhead{Testprinzip}
+\section{Problemstellung\label{dreieck:section:problemstellung}}
+\rhead{Problemstellung}
+Es ist bekannt, dass das Fehlerintegral
+\[
+\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^x e^{-\frac{t^2}{2\sigma}}\,dt
+\]
+nicht in geschlossener Form dargestellt werden kann.
+Mit der in Kapitel~\ref{buch:chapter:integral} skizzierten Theorie von
+Liouville und dem Risch-Algorithmus kann dies strengt gezeigt werden.
+Andererseits gibt es durchaus Integranden, die $e^{-t^2}$ enthalten,
+für die eine Stammfunktion in geschlossener Form gefunden werden kann.
+Zum Beispiel folgt aus der Ableitung
+\[
+\frac{d}{dt} e^{-t^2}
+=
+-2te^{-t^2}
+\]
+die Stammfunktion
+\[
+\int te^{-t^2}\,dt
+=
+-\frac12 e^{-t^2}.
+\]
+Leitet man $e^{-t^2}$ zweimal ab, erhält man
+\[
+\frac{d^2}{dt^2} e^{-t^2}
+=
+(4t^2-2) e^{-t^2}
+\qquad\Rightarrow\qquad
+\int (t^2-\frac12) e^{-t^2}\,dt
+=
+\frac14
+e^{-t^2}.
+\]
+Es gibt also eine viele weitere Polynome $P(t)$, für die der Integrand
+$P(t)e^{-t^2}$ eine Stammfunktion in geschlossener Form hat.
+Damit stellt sich jetzt das folgende allgemeine Problem.
+
+\begin{problem}
+\label{dreieck:problem}
+Für welche Polynome $P(t)$ hat der Integrand $P(t)e^{-t^2}$
+eine elementare Stammfunktion?
+\end{problem}
diff --git a/buch/papers/dreieck/teil1.tex b/buch/papers/dreieck/teil1.tex
index 4abe2e1..f03c425 100644
--- a/buch/papers/dreieck/teil1.tex
+++ b/buch/papers/dreieck/teil1.tex
@@ -3,9 +3,91 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Ordnungsstatistik und Beta-Funktion
-\label{dreieck:section:ordnungsstatistik}}
-\rhead{}
+\section{Hermite-Polynome
+\label{dreieck:section:hermite-polynome}}
+\rhead{Hermite-Polyome}
+In Abschnitt~\ref{dreieck:section:problemstellung} hat sich schon angedeutet,
+dass die Polynome, die man durch Ableiten von $e^{-t^2}$ erhalten
+kann, bezüglich des gestellten Problems besondere Eigenschaften
+haben.
+Zunächst halten wir fest, dass die Ableitung einer Funktion der Form
+$P(t)e^{-t^2}$ mit einem Polynom $P(t)$
+\begin{equation}
+\frac{d}{dt} P(t)e^{-t^2}
+=
+P'(t)e^{-t^2} -2tP(t)e^{-t^2}
+=
+(P'(t)-2tP(t)) e^{-t^2}
+\label{dreieck:eqn:ableitung}
+\end{equation}
+ist.
+Insbesondere hat die Ableitung wieder die Form $Q(t)e^{-t^2}$
+mit einem Polynome $Q(t)$, welches man auch als
+\[
+Q(t)
+=
+e^{t^2}\frac{d}{dt}P(t)e^{-t^2}
+\]
+erhalten kann.
+Die Polynome, die man aus der Funktion $H_0(t)=e^{-t^2}$ durch
+Ableiten erhalten kann, wurden bereits in
+Abschnitt~\ref{buch:orthogonalitaet:section:rodrigues}
+bis auf ein Vorzeichen hergeleitet, sie heissen die Hermite-Polynome
+und es gilt
+\[
+H_n(t)
+=
+(-1)^n
+e^{t^2} \frac{d^n}{dt^n} e^{-t^2}.
+\]
+Das Vorzeichen dient dazu sicherzustellen, dass der Leitkoeffizient
+immer $1$ ist.
+Das Polynom $H_n(t)$ hat den Grad $n$.
+
+In Abschnitt wurde auch gezeigt, dass die Polynome $H_n(t)$
+bezüglich des Skalarproduktes
+\[
+\langle f,g\rangle_{w}
+=
+\int_{-\infty}^\infty f(t)g(t)e^{-t^2}\,dt,
+\qquad
+w(t)=e^{-t^2},
+\]
+orthogonal sind.
+Ausserdem folgt aus \eqref{dreieck:eqn:ableitung}
+die Rekursionsbeziehung
+\begin{equation}
+H_{n}(t)
+=
+2tH_{n-1}(t)
+-
+H_{n-1}'(t)
+\label{dreieck:eqn:rekursion}
+\end{equation}
+für $n>0$.
+
+Im Hinblick auf die Problemstellung ist jetzt die Frage interessant,
+ob die Integranden $H_n(t)e^{-t^2}$ eine Stammfunktion in geschlossener
+Form haben.
+Mit Hilfe der Rekursionsbeziehung~\eqref{dreieck:eqn:rekursion}
+kann man für $n>0$ unmittelbar verifizieren, dass
+\begin{align*}
+\int H_n(t)e^{-t^2}\,dt
+&=
+\int \bigl( 2tH_{n-1}(t) - H'_{n-1}(t)\bigr)e^{-t^2}\,dt
+\\
+&=
+-\int \bigl( \exp'(-t^2) H_{n-1}(t) + H'_{n-1}(t)\bigr)e^{-t^2}\,dt
+\\
+&=
+-\int \bigl( e^{-t^2}H_{n-1}(t)\bigr)' \,dt
+=
+-e^{-t^2}H_{n-1}(t)
+\end{align*}
+ist.
+Für $n>0$ hat also $H_n(t)e^{-t^2}$ eine elementare Stammfunktion.
+Die Hermite-Polynome sind also Lösungen für das
+Problem~\ref{dreieck:problem}.
diff --git a/buch/papers/dreieck/teil2.tex b/buch/papers/dreieck/teil2.tex
index 83ea3cb..c5a2826 100644
--- a/buch/papers/dreieck/teil2.tex
+++ b/buch/papers/dreieck/teil2.tex
@@ -3,7 +3,110 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Wahrscheinlichkeiten im Dreieckstest
-\label{dreieck:section:wahrscheinlichkeiten}}
-\rhead{Wahrscheinlichkeiten}
+\section{Beliebige Polynome
+\label{dreieck:section:beliebig}}
+\rhead{Beliebige Polynome}
+Im Abschnitt~\ref{dreieck:section:hermite-polynome} wurden die
+Hermite-Polynome $H_n(t)$ mit $n>0$ als Lösungen des gestellten
+Problems erkannt.
+Eine Linearkombination von solchen Polynomen hat natürlich
+ebenfalls eine elementare Stammfunktion.
+Das Problem kann daher neu formuliert werden:
+
+\begin{problem}
+\label{dreieck:problem2}
+Welche Polynome $P(t)$ lassen sich aus den Hermite-Polynomen
+$H_n(t)$ mit $n>0$ linear kombinieren.
+\end{problem}
+
+Sei jetzt
+\[
+P(t) = p_0 + p_1t + \ldots + p_{n-1}t^{n-1} + p_nt^n
+\]
+ein beliebiges Polynom vom Grad $n$.
+Eine elementare Stammfunktion von $P(t)e^{-t^2}$ existiert sicher,
+wenn sich $P(t)$ aus den Funktionen $H_n(t)$ mit $n>0$ linear
+kombinieren lässt.
+Gesucht ist also zunächst eine Darstellung von $P(t)$ als Linearkombination
+von Hermite-Polynomen.
+
+\begin{lemma}
+Jedes Polynome $P(t)$ vom Grad $n$ lässt sich auf eindeutige Art und
+Weise als Linearkombination
+\begin{equation}
+P(t) = a_0H_0(t) + a_1H_1(t) + \ldots + a_nH_n(t)
+=
+\sum_{k=0}^n a_nH_n(t)
+\label{dreieck:lemma}
+\end{equation}
+von Hermite-Polynomen schreiben.
+\end{lemma}
+
+\begin{proof}[Beweis]
+Zunächst halten wir fest, dass aus der
+Rekursionsformel~\eqref{dreieck:rekursion}
+folgt, dass der Leitkoeffizient bei jedem Rekursionsschnitt
+mit $2$ multipliziert wird.
+Der Leitkoeffizient von $H_n(t)$ ist also $2^n$.
+
+Wir führen den Beweis mit vollständiger Induktion.
+Für $n=0$ ist $P(t)=p_0 = p_0 H_0(t)$ als Linearkombination von
+Hermite-Polynomen darstellbar, dies ist die Induktionsverankerung.
+
+Nehmen wir jetzt an, dass sich ein Polynom vom Grad $n-1$ als
+Linearkombination der Polynome $H_0(t),\dots,H_{n-1}(t)$ schreiben
+lässt und untersuchen wir $P(t)$ vom Grad $n$.
+Da der Leitkoeffizient des Polynoms $H_n(t)$ ist $2^n$, ist
+\[
+P(t)
+=
+\underbrace{\biggl(P(t) - \frac{p_n}{2^n} H_n(t)\biggr)}_{\displaystyle = Q(t)}
++
+\frac{p_n}{2^n} H_n(t).
+\]
+Das Polynom $Q(t)$ hat Grad $n-1$, besitzt also nach Induktionsannahme
+eine Darstellung
+\[
+Q(t) = a_0H_0(t)+a_1H_1(t)+\ldots+a_{n-1}H_{n-1}(t)
+\]
+als Linearkombination der Polynome $H_0(t),\dots,H_{n-1}(t)$.
+Somit ist
+\[
+P(t)
+= a_0H_0(t)+a_1H_1(t)+\ldots+a_{n-1}H_{n-1}(t) +
+\frac{p_n}{2^n} H_n(t)
+\]
+eine Darstellung von $P(t)$ als Linearkombination der Polynome
+$H_0(t),\dots,H_n(t)$.
+Damit ist der Induktionsschritt vollzogen und das Lemma für alle
+$n$ bewiesen.
+\end{proof}
+
+\begin{satz}
+\label{dreieck:satz1}
+Die Funktion $P(t)e^{-t^2}$ hat genau dann eine elementare Stammfunktion,
+wenn in der Darstellung~\eqref{dreieck:lemma}
+von $P(t)$ als Linearkombination von Hermite-Polynome $a_0=0$ gilt.
+\end{satz}
+
+\begin{proof}[Beweis]
+Es ist
+\begin{align*}
+\int P(t)e^{-t^2}\,dt
+&=
+a_0\int e^{-t^2}\,dt
++
+\int
+\sum_{k=1} a_kH_k(t)\,dt
+\\
+&=
+\frac{\sqrt{\pi}}2
+\operatorname{erf}(t)
++
+\sum_{k=1} a_k\int H_k(t)\,dt.
+\end{align*}
+Da die Integrale in der Summe alle elementar darstellbar sind,
+ist das Integral genau dann elementar, wenn $a_0=0$ ist.
+\end{proof}
+
diff --git a/buch/papers/dreieck/teil3.tex b/buch/papers/dreieck/teil3.tex
index e2dfd6b..888ceb6 100644
--- a/buch/papers/dreieck/teil3.tex
+++ b/buch/papers/dreieck/teil3.tex
@@ -3,8 +3,72 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Erweiterungen
-\label{dreieck:section:erweiterungen}}
-\rhead{Erweiterungen}
+\section{Integralbedingung
+\label{dreieck:section:integralbedingung}}
+\rhead{Lösung}
+Die Tatsache, dass die Hermite-Polynome orthogonal sind, erlaubt, das
+Kriterium von Satz~\ref{dreieck:satz1} etwas anders zu formulieren.
+
+Aus den Polynomen $H_n(t)$ lassen sich durch Normierung die
+orthonormierten Polynome
+\[
+\tilde{H}_n(t)
+=
+\frac{1}{\| H_n\|_w} H_n(t)
+\qquad\text{mit}\quad
+\|H_n\|_w^2
+=
+\int_{-\infty}^\infty H_n(t)e^{-t^2}\,dt
+\]
+bilden.
+Da diese Polynome eine orthonormierte Basis des Vektorraums der Polynome
+bilden, kann die gesuchte Zerlegung eines Polynoms $P(t)$ auch mit
+Hilfe des Skalarproduktes gefunden werden:
+\begin{align*}
+P(t)
+&=
+\sum_{k=1}^n
+\langle \tilde{H}_k, P\rangle_w
+\tilde{H}_k(t)
+=
+\sum_{k=1}^n
+\biggl\langle \frac{H_k}{\|H_k\|_w}, P\biggr\rangle_w
+\frac{H_k(t)}{\|H_k\|_w}
+=
+\sum_{k=1}^n
+\underbrace{
+\frac{ \langle H_k, P\rangle_w }{\|H_k\|_w^2}
+}_{\displaystyle =a_k}
+H_k(t).
+\end{align*}
+Die Darstellung von $P(t)$ als Linearkombination von Hermite-Polynomen
+hat die Koeffizienten
+\[
+a_k = \frac{\langle H_k,P\rangle_w}{\|H_k\|_w^2}.
+\]
+Aus dem Kriterium $a_0=0$ dafür, dass eine elementare Stammfunktion
+von $P(t)e^{-t^2}$ existiert, wird daher die Bedingung, dass
+$\langle H_0,P\rangle_w=0$ ist.
+Da $H_0(t)=1$ ist, folgt als Bedingung
+\[
+a_0
+=
+\langle H_0,P\rangle_w
+=
+\int_{-\infty}^\infty P(t) e^{-t^2}\,dt
+=
+0.
+\]
+
+\begin{satz}
+Ein Integrand der Form $P(t)e^{-t^2}$ mit einem Polynom $P(t)$
+hat genau dann eine elementare Stammfunktion, wenn
+\[
+\int_{-\infty}^\infty P(t)e^{-t^2}\,dt = 0
+\]
+ist.
+\end{satz}
+
+