aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJoshua Baer <joshua.baer@ost.ch>2022-07-27 17:45:10 +0200
committerJoshua Baer <joshua.baer@ost.ch>2022-07-27 17:45:10 +0200
commite7f4d8d568bf62c76f4bf0ffdc0fe009134c184d (patch)
tree1098ddfb2c08c63c9bdc39dcb5f1a6d3870a0096
parentMerge pull request #31 from JODBaer/master (diff)
downloadSeminarSpezielleFunktionen-e7f4d8d568bf62c76f4bf0ffdc0fe009134c184d.tar.gz
SeminarSpezielleFunktionen-e7f4d8d568bf62c76f4bf0ffdc0fe009134c184d.zip
Herleitung Kapitel Bessel
-rw-r--r--buch/papers/fm/03_bessel.tex123
-rw-r--r--buch/papers/fm/Makefile8
-rw-r--r--buch/papers/fm/packages.tex2
3 files changed, 126 insertions, 7 deletions
diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex
index aed084e..7a0e20e 100644
--- a/buch/papers/fm/03_bessel.tex
+++ b/buch/papers/fm/03_bessel.tex
@@ -4,9 +4,126 @@
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
\section{FM und Besselfunktion
-\label{fm:section:teil2}}
-\rhead{Teil 2}
-
+\label{fm:section:proof}}
+\rhead{Herleitung}
+Die momentane Trägerkreisfrequenz \(\omega_i\) wie schon in (ref) beschrieben ist, bringt die Vorigen Kapittel beschreiben. (Ableitung \(\frac{d \varphi(t)}{dt}\) mit sich).
+Diese wiederum kann durch \(\beta\sin(\omega_mt)\) ausgedrückt werden, wobei es das Modulierende Signal \(m(t)\) ist.
+Somit haben wir unser \(x_c\) welches
+\[
+\cos(\omega_c t+\beta\sin(\omega_mt))
+\]
+ist.
+\subsection{Herleitung}
+Das Ziel ist es Unser moduliertes Signal mit der Besselfunktion so auszudrücken:
+\begin{align}
+ \cos(\omega_ct+\beta\sin(\omega_mt))
+ &=
+ \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t)
+ \label{fm:eq:proof}
+\end{align}
+Doch dazu brauchen wir die Hilfe der Additionsthoerme
+\begin{align}
+ \cos(A + B)
+ &=
+ \cos(A)\cos(B)-\sin(A)\sin(B)
+ \label{fm:eq:addth1}
+ \\
+ 2\cos (A)\cos (B)
+ &=
+ \cos(A-B)+\cos(A+B)
+ \label{fm:eq:addth2}
+ \\
+ 2\sin(A)\sin(B)
+ &=
+ \cos(A-B)-\cos(A+B)
+ \label{fm:eq:addth3}
+\end{align}
+und die drei Besselfunktions indentitäten,
+\begin{align}
+ \cos(\beta\sin\phi)
+ &=
+ J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos(2k\phi)
+ \label{fm:eq:besselid1}
+ \\
+ \sin(\beta\sin\phi)
+ &=
+ J_0(\beta) + 2\sum_{k=1}^\infty J_{2k+1}(\beta) \cos((2k+1)\phi)
+ \label{fm:eq:besselid2}
+ \\
+ J_{-n}(\beta) &= (-1)^n J_n(\beta)
+ \label{fm:eq:besselid3}
+\end{align}
+welche man im Kapitel (ref), ref, ref findet.
+\newline
+Mit dem \refname{fm:eq:addth1} wird aus dem modulierten Signal
+\[
+\cos(\omega_c t + \beta\sin(\omega_mt))
+\]
+das Signal
+\[
+ \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_c)\sin(\beta\sin(\omega_m t)).
+ \label{fm:eq:start}
+\]
+Zu beginn wird der erste Teil
+\[
+ \cos(\omega_c)\cos(\beta\sin(\omega_mt))
+\]
+mit hilfe der Bessel indentität \ref{fm:eq:besselid1} zum
+\[
+ J_0(\beta)\cos(\omega_c) + \sum_{k=1}^\infty J_{2k}(\beta) 2\cos(\omega_c t)\cos(2k\omega_m t)
+\]
+\newline
+TODO 2 und \(\cos( )\) in lime.
+wobei mit dem \colorbox{lime}{Additionstheorem} \ref{fm:eq:addth2} zum
+\[
+ J_0(\beta)\dot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \cos((\omega_c - 2k\omega_m) t)+\cos((\omega_c + 2k\omega_m) t) \}
+\]
+wird.
+Wenn dabei \(2k\) durch alle geraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert erhält man den vereinfachten Term
+\[
+ \sum_{n\, gerade} J_{n}(\beta) \cos((\omega_c + n\omega_m) t)
+ \label{fm:eq:gerade}
+\]
+\newline
+nun zum zweiten Teil des Term \ref{fm:eq:start}
+\[
+ \sin(\omega_c)\sin(\beta\sin(\omega_m t)).
+\]
+Dieser wird mit der \ref{fm:eq:besselid2} Bessel indentität zu
+\[
+ J_0(\beta) \dot \sin(\omega_c t) + \sum_{k=1}^\infty J_{2k+1}(\beta) 2\sin(\omega_c t)\cos((2k+1)\omega_m t).
+\]
+Auch hier wird ein Additionstheorem \ref{fm:eq:addth3} gebraucht um aus dem Sumanden diesen Term
+\[
+ J_0(\beta) \dot \sin(\omega_c) + \sum_{k=1}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c-(2k+1)\omega_m) t)}_{Teil1} - \cos((\omega_c+(2k+1)\omega_m) t) \}
+\]zu gewinnen.
+Wenn dabei \(2k +1\) durch alle ungeraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert.
+Zusätzlich dabei noch die letzte Bessel indentität \ref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1 J_n(\beta)\).
+Somit wird Teil1 zum negativen Term und die Summe vereinfacht sich zu
+\[
+ \sum_{n\, ungerade} -1 J_{n}(\beta) \cos((\omega_c + n\omega_m) t).
+ \label{fm:eq:ungerade}
+\]
+Substituiert man nun noch \(n \text{mit} -n \) so fällt das \(-1\) weg.
+Beide Teile \ref{fm:eq:gerade} Gerade und \ref{fm:eq:ungerade} Ungerade ergeben zusammen
+\[
+ \cos(\omega_ct+\beta\sin(\omega_mt))
+ =
+ \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t).
+\]
+Somit ist \ref{fm:eq:proof} bewiesen.
+\newpage
+\subsection{Bessel und Frequenzspektrum}
+Um sich das ganze noch einwenig Bildlicher vorzustellenhier einmal die Besselfunktion \(J_{k}(\beta)\) in geplottet.
+\begin{figure}
+ \centering
+ \includegraphics[width=0.5\textwidth]{/home/joshua/Documents/SeminarSpezielleFunktionen/buch/papers/fm/FM presentation/images/bessel.png}
+ \caption{Bessle Funktion \(J_{k}(\beta)\)}
+ \label{fig:bessel}
+\end{figure}
+TODO Grafik einfügen,
+\newline
+Nun einmal das Modulierte FM signal im Frequenzspektrum mit den einzelen Summen dargestellt
TODO
Hier wird beschrieben wie die Bessel Funktion der FM im Frequenzspektrum hilft, wieso diese gebrauch wird und ihre Vorteile.
diff --git a/buch/papers/fm/Makefile b/buch/papers/fm/Makefile
index c84963f..aee954f 100644
--- a/buch/papers/fm/Makefile
+++ b/buch/papers/fm/Makefile
@@ -16,15 +16,17 @@ SOURCES := \
#FIGURES := $(patsubst tikz/%.tex, figures/%.pdf, $(TIKZFIGURES))
-#.PHONY: images
-#images: $(FIGURES)
+all: images standalone
+
+.PHONY: images
+images: $(FIGURES)
#figures/%.pdf: tikz/%.tex
# mkdir -p figures
# pdflatex --output-directory=figures $<
.PHONY: standalone
-standalone: standalone.tex $(SOURCES) #$(FIGURES)
+standalone: standalone.tex $(SOURCES) $(FIGURES)
mkdir -p standalone
cd ../..; \
pdflatex \
diff --git a/buch/papers/fm/packages.tex b/buch/papers/fm/packages.tex
index 4cba2b6..f0ca8cc 100644
--- a/buch/papers/fm/packages.tex
+++ b/buch/papers/fm/packages.tex
@@ -7,4 +7,4 @@
% if your paper needs special packages, add package commands as in the
% following example
%\usepackage{packagename}
-
+\usepackage{xcolor}