diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2022-06-14 16:59:48 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2022-06-14 16:59:48 +0200 |
commit | fbcf8833aef79694e448010520f2253e93f2cd4e (patch) | |
tree | 2b5e6a730123fbdf0919a6cdc89be216505d469c | |
parent | new image (diff) | |
download | SeminarSpezielleFunktionen-fbcf8833aef79694e448010520f2253e93f2cd4e.tar.gz SeminarSpezielleFunktionen-fbcf8833aef79694e448010520f2253e93f2cd4e.zip |
more info about the lemniskate
-rw-r--r-- | buch/chapters/110-elliptisch/images/Makefile | 12 | ||||
-rw-r--r-- | buch/chapters/110-elliptisch/images/torusschnitt.pdf | bin | 0 -> 137159 bytes | |||
-rw-r--r-- | buch/chapters/110-elliptisch/images/torusschnitt.pov | 185 | ||||
-rw-r--r-- | buch/chapters/110-elliptisch/images/torusschnitt.tex | 41 | ||||
-rw-r--r-- | buch/chapters/110-elliptisch/lemniskate.tex | 162 |
5 files changed, 399 insertions, 1 deletions
diff --git a/buch/chapters/110-elliptisch/images/Makefile b/buch/chapters/110-elliptisch/images/Makefile index 7e4fa0c..2a23d88 100644 --- a/buch/chapters/110-elliptisch/images/Makefile +++ b/buch/chapters/110-elliptisch/images/Makefile @@ -79,7 +79,6 @@ slcldata.tex: slcl slcl.pdf: slcl.tex slcldata.tex pdflatex slcl.tex -POVRAYOPTIONS = -W1920 -H1080 kegelpara.png: kegelpara.pov povray +A0.1 -W1080 -H1080 -Okegelpara.png kegelpara.pov @@ -89,3 +88,14 @@ kegelpara.jpg: kegelpara.png Makefile kegelpara.pdf: kegelpara.tex kegelpara.jpg pdflatex kegelpara.tex + +torusschnitt.png: torusschnitt.pov + povray +A0.1 -W1920 -H1080 -Otorusschnitt.png torusschnitt.pov + +torusschnitt.jpg: torusschnitt.png Makefile + convert -extract 1560x1080+180+0 torusschnitt.png \ + -density 300 -units PixelsPerInch torusschnitt.jpg + +torusschnitt.pdf: torusschnitt.tex torusschnitt.jpg + pdflatex torusschnitt.tex + diff --git a/buch/chapters/110-elliptisch/images/torusschnitt.pdf b/buch/chapters/110-elliptisch/images/torusschnitt.pdf Binary files differnew file mode 100644 index 0000000..430447c --- /dev/null +++ b/buch/chapters/110-elliptisch/images/torusschnitt.pdf diff --git a/buch/chapters/110-elliptisch/images/torusschnitt.pov b/buch/chapters/110-elliptisch/images/torusschnitt.pov new file mode 100644 index 0000000..94190be --- /dev/null +++ b/buch/chapters/110-elliptisch/images/torusschnitt.pov @@ -0,0 +1,185 @@ +// +// kegelpara.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#version 3.7; +#include "colors.inc" + +#declare O = <0,0,0>; + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.060; + +camera { + location <28, 20, -40> + look_at <0, 0.55, 0> + right (16/9) * x * imagescale + up y * imagescale +} + +light_source { + <30, 10, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + + +// +// draw an arrow from <from> to <to> with thickness <arrowthickness> with +// color <c> +// +#macro arrow(from, to, arrowthickness, c) +#declare arrowdirection = vnormalize(to - from); +#declare arrowlength = vlength(to - from); +union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } +} +#end + +arrow(<-2,0,0>,<2,0,0>,0.02,White) +arrow(<0,-1.1,0>,<0,2.2,0>,0.02,White) +arrow(<0,0,-1.6>,<0,0,2.4>,0.02,White) + +#declare epsilon = 0.001; +#declare l = 1.5; + + +#declare a = sqrt(2); +#macro G2(phi,sg) + a * sqrt(cos(2*phi)) * < sg * cos(phi), 0, sin(phi)> +#end + +#macro Lemniskate(s, farbe) +union { + #declare phi = -pi / 4; + #declare phimax = pi / 4; + #declare phisteps = 100; + #declare phistep = phimax / phisteps; + #while (phi < phimax - phistep/2) + sphere { G2(phi,1), s } + cylinder { G2(phi,1), G2(phi+phistep,1), s } + sphere { G2(phi,-1), s } + cylinder { G2(phi,-1), G2(phi+phistep,-1), s } + #declare phi = phi + phistep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#macro Projektion(s, farbe) +union { + #declare phistep = pi / 16; + #declare phi = -pi / 4 + phistep; + #declare phimax = pi / 4; + #while (phi < phimax - phistep/2) + cylinder { G(phi, 1), G2(phi, 1), s } + cylinder { G(phi, -1), G2(phi, -1), s } + #declare phi = phi + phistep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#macro Ebene(farbe) +box { + <-1.8, 0, -1.4>, <1.8, 0.001, 1.4> + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#declare b = 0.5; +#macro T(phi, theta) + b * < (2 + cos(theta)) * cos(phi), (2 + cos(theta)) * sin(phi) + 1, sin(theta) > +#end + +#macro Torus(farbe) +mesh { + #declare phi = 0; + #declare phimax = 2 * pi; + #declare phisteps = 200; + #declare phistep = phimax/phisteps; + #while (phi < phimax - phistep/2) + #declare theta = 0; + #declare thetamax = 2 * pi; + #declare thetasteps = 200; + #declare thetastep = thetamax / thetasteps; + #while (theta < thetamax - thetastep/2) + triangle { + T(phi, theta), + T(phi + phistep, theta), + T(phi + phistep, theta + thetastep) + } + triangle { + T(phi, theta), + T(phi + phistep, theta + thetastep), + T(phi, theta + thetastep) + } + #declare theta = theta + thetastep; + #end + #declare phi = phi + phistep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } +} +#end + +#declare torusfarbe = rgbt<0.2,0.6,0.2,0.2>; +#declare ebenenfarbe = rgbt<0.2,0.6,1.0,0.2>; + +Lemniskate(0.02, Red) +Ebene(ebenenfarbe) +Torus(torusfarbe) diff --git a/buch/chapters/110-elliptisch/images/torusschnitt.tex b/buch/chapters/110-elliptisch/images/torusschnitt.tex new file mode 100644 index 0000000..3053ac5 --- /dev/null +++ b/buch/chapters/110-elliptisch/images/torusschnitt.tex @@ -0,0 +1,41 @@ +% +% torusschnitt.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{6} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=11.4cm]{torusschnitt.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (4.4,-2.4) {$X$}; +\node at (3.5,0.6) {$Y$}; +\node at (0.3,3.8) {$Z$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/chapters/110-elliptisch/lemniskate.tex b/buch/chapters/110-elliptisch/lemniskate.tex index f750a82..d76a963 100644 --- a/buch/chapters/110-elliptisch/lemniskate.tex +++ b/buch/chapters/110-elliptisch/lemniskate.tex @@ -12,6 +12,9 @@ veröffentlich hat. In diesem Abschnitt soll die Verbindung zu den Jacobischen elliptischen Funktionen hergestellt werden. +% +% Lemniskate +% \subsection{Lemniskate \label{buch:gemotrie:subsection:lemniskate}} \begin{figure} @@ -71,6 +74,165 @@ Sie gilt für Winkel $\varphi\in[-\frac{\pi}4,\frac{\pi}4]$ für das rechte Blatt und $\varphi\in[\frac{3\pi}4,\frac{5\pi}4]$ für das linke Blatt der Lemniskate. +% +% Schnitt eines Kegels mit einem Paraboloid +% +\subsubsection{Schnitt eines Kegels mit einem Paraboloid} +\begin{figure} +\center +\includegraphics{chapters/110-elliptisch/images/kegelpara.pdf} +\caption{Leminiskate (rot) als Projektion (gelb) der Schnittkurve (blau) +eines geraden +Kreiskegels (grün) mit einem Rotationsparaboloid (hellblau). +\label{buch:elliptisch:lemniskate:kegelpara}} +\end{figure}% +Schreibt man in der Gleichung~\eqref{buch:elliptisch:eqn:lemniskate} +für die Klammer auf der rechten Seite $Z^2 = X^2 - Y^2$, dann wird die +Lemniskate die Projektion in die $X$-$Y$-Ebene der Schnittmenge der Flächen, +die durch die Gleichungen +\begin{equation} +X^2-Y^2 = Z^2 +\qquad\text{und}\qquad +(X^2+Y^2) = R^2 = \sqrt{2}aZ +\label{buch:elliptisch:eqn:kegelparabolschnitt} +\end{equation} +beschrieben wird. +Die linke Gleichung in +\eqref{buch:elliptisch:eqn:kegelparabolschnitt} +beschreibt einen geraden Kreiskegel, die rechte ist ein Rotationsparaboloid. +Die Schnittkurve ist in Abbildung~\ref{buch:elliptisch:lemniskate:kegelpara} +dargestellt. + +\subsubsection{Schnitt eines Torus mit einer Ebene} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/torusschnitt.pdf} +\caption{Die Schnittkurve (rot) eines Torus (grün) +mit einer zur Torusachse parallelen Ebene (blau), +die den inneren Äquator des Torus berührt, ist eine Lemniskate. +\label{buch:elliptisch:lemniskate:torusschnitt}} +\end{figure} +Schneidet man einen Torus mit einer Ebene, die zur Achse des Torus +parallel ist und den inneren Äquator des Torus berührt, entsteht +ebenfalls eine Lemniskate. +Die Situation ist in Abbildung~\ref{buch:elliptisch:lemniskate:torusschnitt} +dargestellt. + +Der Torus kann mit den Radien $2$ und $1$ mit der $y$-Achse als Torusachse +kann mit der Parametrisierung +\[ +(s,t) +\mapsto +\begin{pmatrix} +(2+\cos s) \cos t \\ +\sin s \\ +(2+\cos s) \sin t +\end{pmatrix} +\] +beschrieben werden. +Die Gleichung $z=1$ beschreibt eine +achsparallele Ebene, die den inneren Äquator berührt. +Die Schnittkurve erfüllt daher +\[ +(2+\cos s)\sin t = 1, +\] +was wir auch als $2 +\cos s = 1/\sin t$ schreiben können. +Wir müssen nachprüfen dass die Koordinaten +$X=(2+\cos s)\cos t$ und $Y=\sin s$ die Gleichung einer Lemniskate +erfüllen. + +Zunächst können wir in der $X$-Koordinate den Klammerausdruck durch +\begin{equation} +X += +(2+\cos s) \cos t += +\frac{1}{\sin t}\cos t += +\frac{\cos t}{\sin t} +\qquad\Rightarrow\qquad +X^2 += +\frac{\cos^2t}{\sin^2 t} += +\frac{1-\sin^2t}{\sin^2 t} +\label{buch:elliptisch:lemniskate:Xsin} +\end{equation} +ersetzen. +Auch die $Y$-Koordinaten können wir durch $t$ ausdrücken, +nämlich +\begin{equation} +Y^2=\sin^2 s = 1-\cos^2 s += +1- +\biggl( +\frac{1}{\sin t} +-2 +\biggr)^2 += +\frac{-3\sin^2 t+4\sin t-1}{\sin^2 t}. +\label{buch:elliptisch:lemniskate:Ysin} +\end{equation} +Die Gleichungen +\eqref{buch:elliptisch:lemniskate:Xsin} +und +\eqref{buch:elliptisch:lemniskate:Ysin} +zeigen, dass man $X^2$ und $Y^2$ sogar einzig durch $\sin t$ +parametrisieren kann. +Um die Ausdrücke etwas zu vereinfachen, schreiben wir $S=\sin t$ +und erhalten zusammenfassend +\begin{equation} +\begin{aligned} +X^2 +&= +\frac{1-S^2}{S^2} +\\ +Y^2 +&= +\frac{-3S^2+4S-1}{S^2}. +\end{aligned} +\end{equation} +Daraus kann man jetzt die Summen und Differenzen der Quadrate +berechnen, sie sind +\begin{equation} +\begin{aligned} +X^2+Y^2 +&= +\frac{-4S^2+4S}{S^2} += +\frac{4S(1-S)}{S^2} += +\frac{4(1-S)}{S} += +4\frac{1-S}{S} +\\ +X^2-Y^2 +&= +\frac{2-4S+2S^2}{S^2} += +\frac{2(1-S)^2}{S^2} += +2\biggl(\frac{1-S}{S}\biggr)^2. +\end{aligned} +\end{equation} +Durch Berechnung des Quadrates von $X^2+Y^2$ kann man jetzt +die Gleichung +\[ +(X^2+Y^2) += +16 +\biggl(\frac{1-S}{S}\biggr)^2 += +8 \cdot 2 +\biggl(\frac{1-S}{S}\biggr)^2 += +2\cdot 2^2\cdot (X-Y)^2. +\] +Dies ist eine Lemniskaten-Gleichung für $a=2$. + +% +% Bogenlänge der Lemniskate +% \subsection{Bogenlänge} Die Funktionen \begin{equation} |