aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/000-einleitung/speziellefunktionen.tex
diff options
context:
space:
mode:
authorNicolas Tobler <nicolas.tobler@ost.ch>2022-08-03 20:37:12 +0200
committerNicolas Tobler <nicolas.tobler@ost.ch>2022-08-03 20:37:12 +0200
commite08392d4bacb9a54c3ab755fa6445514749b608f (patch)
tree67af5a4a6ed541b1b425de89fd05c2a74a265571 /buch/chapters/000-einleitung/speziellefunktionen.tex
parentimproved Einleitung (diff)
parentMerge pull request #39 from NaoPross/master (diff)
downloadSeminarSpezielleFunktionen-e08392d4bacb9a54c3ab755fa6445514749b608f.tar.gz
SeminarSpezielleFunktionen-e08392d4bacb9a54c3ab755fa6445514749b608f.zip
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to 'buch/chapters/000-einleitung/speziellefunktionen.tex')
-rw-r--r--buch/chapters/000-einleitung/speziellefunktionen.tex150
1 files changed, 150 insertions, 0 deletions
diff --git a/buch/chapters/000-einleitung/speziellefunktionen.tex b/buch/chapters/000-einleitung/speziellefunktionen.tex
new file mode 100644
index 0000000..8ca71bc
--- /dev/null
+++ b/buch/chapters/000-einleitung/speziellefunktionen.tex
@@ -0,0 +1,150 @@
+%
+% Spezielle Funktionen
+%
+\subsection*{Spezielle Funktionen}
+Der abstrakte Funktionsbegriff auferlegt einer Funktion nur ganz wenige
+Einschränkungen.
+Damit lässt sich zwar eine mathematische Theorie entwickeln, die
+klärt, unter welchen Umständen zusätzliche Eigenschaften wie Stetigkeit
+und Differenzierbarkeit zu erwarten sind.
+Allgemeine Berechnungen kann man mit diesem Begriff aber nicht durchführen,
+seine Anwendbarkeit ist beschränkt.
+Praktisch nützlich wird der Funktionsbegriff also erst, wenn man ihn
+einschränkt auf anwendungsrelevante Eigenschaften.
+Die Mathematik hat in ihrer Geschichte genau dies immer wieder
+getan, wie im Folgenden kurz skizziert werden soll.
+
+%
+% Polynome und Wurzeln
+%
+\subsubsection{Polynome und Wurzeln}
+Eine Polynomgleichung wie etwa
+\begin{equation}
+p(x) = ax^2+bx+c = 0
+\label{buch:einleitung:quadratisch}
+\end{equation}
+kann manchmal dadurch gelöst werden, dass man die Nullstellen errät
+und damit eine Faktorisierung $p(x)=a(x-x_1)(x-x_2)$ konstruiert.
+Doch im Allgemeinen wird man die Lösungsformel für quadratische
+Gleichungen verwenden, die auf quadratischem Ergänzen basiert.
+Es erlaubt die Gleichung~\eqref{buch:einleitung:quadratisch} umzwandeln in
+\[
+\biggl(x + \frac{b}{2a}\biggr)^2
+=
+-\frac{c}{a} + \frac{b^2}{4a^2}
+=
+\frac{b^2-4ac}{4a^2}.
+\]
+Um diese Gleichung nach $x$ aufzulösen, muss man die inverse Funktion
+der Quadratfunktion zur Verfügung haben, die Wurzelfunktion.
+Dies ist wohl das älteste Beispiel einer speziellen Funktion,
+die man zu dem Zweck eingeführt hat, spezielle algebraische Gleichungen
+lösen zu können.
+Sie liefert die bekannte Lösungsformel
+\[
+x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
+\]
+für die quadratische Gleichung.
+
+%
+% Exponential- und Logarithmusfunktion
+%
+\subsubsection{Exponential- und Logarithmusfunktion}
+Durch die Definition der Wurzelfunktion ist das Problem der numerischen
+Berechnung der Nullstelle natürlich noch nicht gelöst, aber man hat
+ein handliches mathematisches Symbol gewonnen, mit dem man die Lösungen
+übersichtlich beschreiben und algebraisch manipulieren kann.
+Diese Idee steht hinter allen weiteren in diesem Buch diskutierten
+Funktionen: wann immer ein wichtiges mathematisches Konzept sich nicht
+direkt durch die bereits entwickelten Funktionen ausdrücken lässt,
+erfindet man dafür eine neue Funktion oder Familie von Funktionen.
+Beispielsweise hat sich die Darstellung von Zahlen $x$ als Potenzen
+einer gemeinsamen Basis, zum Beispiel $x=10^y$, als sehr nützlich
+herausgestellt, um Multiplikationen auf die von Hand leichter
+ausführbaren Additionen zurückzuführen.
+Man braucht also die Fähigkeit, die Abhängigkeit des Exponenten $y$
+von $x$ auszudrücken, mit anderen Worten, man braucht die
+Logarithmusfunktion.
+
+Auch die Logarithmusfunktion erlaubt nicht, die Gleichungen $xe^x=y$
+nach $x$ aufzulösen.
+Solche Exponentialgleichungen treten in verschiedenster Form auch in
+Anwendungen auf.
+Die Lambert-$W$-Funktion, die in Abschnitt~\ref{buch:section:lambertw}
+eingeführt wird, löst genau diese Aufgabe.
+
+
+%
+% Geometrisch definierte spezielle Funktionen
+%
+\subsubsection{Geometrisch definierte spezielle Funktionen}
+Die trigonometrischen Funktionen entstanden bereits im Altertum
+um das Problem der Vermessung der Himmelskugel zu lösen.
+Man kann sie aber auch zur Parametrisierung eines Kreises oder
+zur Beschreibung von Drehungen mit Drehmatrizen verwenden.
+Sie stellen auch eine Zusammenhang zwischen der Bogenlänge
+entlang eines Kreises und der zugehörigen Sehne her.
+Diese Ideen lassen sich auf eine grössere Klasse von Kurven,
+nämlich die Kegelschnitte verallgemeinern.
+Diese werden in Kapitel~\ref{buch:chapter:geometrie} eingeführt.
+Die Parametrisierungen der Hyperbeln zum Beispiel führt auf
+hyperbolische Funktion und macht eine Verbindung zu Exponential-
+und Logarithmusfunktion sichtbar.
+
+%
+% Lösungen von Differentialgleichungen
+%
+\subsubsection{Lösungen von Differentialgleichungen}
+Alternativ kann man $\sin x$ und $\cos x$ als spezielle Lösungen der
+Differentialgleichung $y''=-y$ verstehen.
+Viele andere Funktionen wie die hyperbolischen Funktionen oder die
+Bessel-Funktionen sind ebenfalls Lösungen spezieller Differentialgleichungen.
+
+Auch die Theorie der partiellen Differentialgleichungen, auf die
+im Kapitel~\ref{buch:chapter:pde} eingegangen wird, gibt Anlass
+zu interessanten Lösungsfunktionen.
+Die Separation des Poisson-Problems in Kugelkoordinaten führt zum Beispiel
+auf die Kugelfunktionen, mit denen sich beliebige Funktionen auf einer
+Kugeloberfläche analysieren und synthetisieren lassen.
+Die Lösungen einer linearer gewöhnlicher Differentialgleichung können
+oft mit Hilfe von Potenzreihen dargestellt werden.
+So kann man zum Beispiel die Potenzreihenentwicklung der Exponentialfunktion
+und der trigonometrischen Funktionen finden.
+Die Konvergenz einer Potenzreihe wird aber durch Singularitäten
+eingeschränkt.
+Komplexe Potenzreihen ermöglichen aber, solche Stellen zu ``umgehen''.
+Die Theorie der komplex differenzierbaren Funktionen bildet einen
+allgemeinen Rahmen, mit solchen Funktionen umzugehen und ist zum
+Beispiel nötig, um die Bessel-Funktionen der zweiten Art zu konstruieren,
+die ebenfalls Lösungen ger Bessel-Gleichung sind, aber bei $x=0$
+eine Singularität aufweisen.
+
+%
+% Stammfunktionen
+%
+\subsubsection{Stammfunktionen}
+Die Stammfunktion $F(x)$ einer gegebenen Funktion $f(x)$ ist natürlich
+auch die Lösung der besonders einfachen Differentialgleichung $F'=f$.
+Ein bekanntes Beispiel ist die Stammfunktion der Wahrscheinlichkeitsdichte
+\[
+\varphi(x)
+=
+\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}},
+\]
+der Normalverteilung, für die aber keine geschlossene Darstellung
+mit bekannten Funktionen bekannt ist.
+Sie kann aber durch die Fehlerfunktion
+\[
+\operatorname{erf}(x)
+=
+\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2}\,dt
+\]
+dargestellt werden.
+Mit dem Risch-Algorithmus kann man nachweisen, dass es tatsächlich
+keine Möglichkeit gibt, die Stammfunktion in geschlossener Form durch
+die bereits bekannten Funktionen darzustellen, die Definition einer
+neuen speziellen Funktion ist also der einzige Ausweg.
+Die Fehlerfunktion ist heute in der Standardbibliothek enthalten auf
+gleicher Stufe wie Wurzeln, trigonometrische Funktionen,
+Exponentialfunktionen oder Logarithmen.
+