aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/020-exponential
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@othello.ch>2022-06-16 19:27:16 +0200
committerAndreas Müller <andreas.mueller@othello.ch>2022-06-16 19:27:16 +0200
commitabb439719da913ee1bf14ee088748662fef3cd76 (patch)
tree980833037e28689327ae1c4483190c97bfab0a41 /buch/chapters/020-exponential
parentMerge branch 'master' of github.com:AndreasFMueller/SeminarSpezielleFunktionen (diff)
downloadSeminarSpezielleFunktionen-abb439719da913ee1bf14ee088748662fef3cd76.tar.gz
SeminarSpezielleFunktionen-abb439719da913ee1bf14ee088748662fef3cd76.zip
new stuff
Diffstat (limited to 'buch/chapters/020-exponential')
-rw-r--r--buch/chapters/020-exponential/chapter.tex4
-rw-r--r--buch/chapters/020-exponential/lambertw.tex32
2 files changed, 28 insertions, 8 deletions
diff --git a/buch/chapters/020-exponential/chapter.tex b/buch/chapters/020-exponential/chapter.tex
index 1ab4769..eaa777d 100644
--- a/buch/chapters/020-exponential/chapter.tex
+++ b/buch/chapters/020-exponential/chapter.tex
@@ -12,8 +12,8 @@
\input{chapters/020-exponential/zins.tex}
\input{chapters/020-exponential/log.tex}
\input{chapters/020-exponential/lambertw.tex}
-\input{chapters/020-exponential/dilog.tex}
-\input{chapters/020-exponential/eili.tex}
+%\input{chapters/020-exponential/dilog.tex}
+%\input{chapters/020-exponential/eili.tex}
\section*{Übungsaufgaben}
\rhead{Übungsaufgaben}
diff --git a/buch/chapters/020-exponential/lambertw.tex b/buch/chapters/020-exponential/lambertw.tex
index 2b023cc..9077c6f 100644
--- a/buch/chapters/020-exponential/lambertw.tex
+++ b/buch/chapters/020-exponential/lambertw.tex
@@ -17,6 +17,11 @@ der Unbekannten und der Exponentialfunktion, also $xe^x$ auftreten.
Die Lambert $W$-Funktion ermöglicht, die Lösungen solcher Gleichungen
darzustellen.
+Als Anwendung der Theorie der Lambert-$W$-Funktion wird in
+Kapitel~\ref{chapter:lambertw}
+eine Parametrisierung einer Verfolgungskurve mit Hilfe von $W(x)$
+bestimmt.
+
%
% Die Funktion xe^x
%
@@ -57,8 +62,10 @@ invertierbar.
\begin{definition}
Die inverse Funktion der Funktion $[-1,\infty)\to[-1/e,\infty):x\mapsto xe^x=y$
heisst die Lambert $W$-Funktion, geschrieben $W(y)$ oder $W_0(y)$.
+\index{Lambert-W-Funktion@Lambert-$W$-Funktion!Definition}%
Die inverse Funktion der Funktion $(-\infty,-1)\to[-1/e,0)$ wird mit
$W_{-1}$ bezeichnet.
+\index{Lambert-W-Funktion@Lambert-$W$-Funktion!Graph}%
\end{definition}
\begin{figure}
@@ -78,7 +85,11 @@ erfüllen sie
W(x) e^{W(x)} = x.
\]
+%
+% Ableitung der W-Funktion
+%
\subsubsection{Ableitung der Funktionen $W(x)$ und $W_{-1}(x)$}
+\index{Lambert-W-Funktion@Lambert-$W$-Funktion!Ableitung}
Die Umkehrfunktion $f^{-1}(y)$ einer Funktion $f(x)$ erfüllt
\(
f^{-1}(f(x)) = x.
@@ -204,7 +215,11 @@ P_{n+1}(t)
\]
mit $P_1(t)=1$.
+%
+% Differentialgleichung und Stammfunktion
+%
\subsubsection{Differentialgleichung und Stammfunktion}
+\index{Lambert-W-Funktion@Lambert-$W$-Funktion!Differentialgleichung}%
Die Ableitungsformel \eqref{buch:lambert:eqn:ableitung} bedeutet auch,
dass die $W$-Funktion eine Lösung der Differentialgleichung
\[
@@ -223,6 +238,7 @@ Diese Gleichung kann separiert werden in
\]
Eine Stammfunktion
+\index{Lambert-W-Funktion@Lambert-$W$-Funktion!Stammfunktion}%
\[
F(y)
=
@@ -260,6 +276,8 @@ für die Stammfunktion von $W(y)$.
\label{buch:subsection:loesung-von-exponentialgleichungen}}
Die Lambert $W$-Funktion kann zur Lösung von Exponentialgleichungen
verwendet werden.
+\index{Lambert-W-Funktion@Lambert-$W$-Funktion!Exponentialgleichungen}%
+\index{Exponentialgleichungen}%
\begin{aufgabe}
Gesucht ist eine Lösung der Gleichung
@@ -319,7 +337,10 @@ W(-cbe^{ac})
Die Gleichung hat eine Lösung wenn $-cbe^{ac} > -1/e$ ist.
\end{proof}
-\subsection{Numerische Berechnung
+%
+% Numerische Berechnung
+%
+\subsection{Numerische Berechnung der Lambert-$W$-Funktion
\label{buch:subsection:lambertberechnung}}
Die $W$-Funktionen sind nur dann nützlich, wenn man sie effizient
berechnen kann.
@@ -327,6 +348,9 @@ Leider ist sie nicht Teil der C- oder C++-Standardbibliothek,
man muss sich also mit einer spezialisierten Bibliothek oder einer
eigenen Implementation behelfen.
+%
+% Berechnung mit dem Newton-Algorithmus
+%
\subsubsection{Berechnung mit dem Newton-Algorithmus}
Für $x>-1$ ist die Funktion $W(x)$ ist die Umkehrfunktion der
streng monoton wachsenden und konvexen Funktion $f(x)=xe^x$.
@@ -334,6 +358,7 @@ In dieser Situation konvergiert der Newton-Algorithmus zur Bestimmung
der Nullstelle $x=W_0(y)$ von $f(x)-y$ für alle Werte von $y>-1/e$.
Für $W_{-1}(y)$ ist die Situation etwas komplizierter, da für
$x<-1$ die Funktion $f(x)$ nicht konvex ist.
+\index{Lambert-W-Funktion@Lambert-$W$-Funktion!Newton-Algorithmus}
Ausgehend vom Startwert $x_0$ ist die Iterationsfolge definiert
durch
@@ -362,11 +387,6 @@ bestimmt werden.
Die Lambert $W$-Funktionen $W_0(x)$ und $W_{-1}(x)$ sind auch in der
GNU scientific library \cite{buch:library:gsl} implementiert.
-%
-% Verfolgungskurven
-%
-\subsection{Verfolgungskurven
-\label{buch:subsection:verfolgungskurven}}