aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/030-geometrie
diff options
context:
space:
mode:
authorJODBaer <55744603+JODBaer@users.noreply.github.com>2022-07-18 13:54:57 +0200
committerGitHub <noreply@github.com>2022-07-18 13:54:57 +0200
commiteb8cc4b5029fd6fedfd5aaa133fd966a48b643db (patch)
tree313c7fce3526f271f07180839a5d8dfcf2d1b3a3 /buch/chapters/030-geometrie
parentMerge branch 'AndreasFMueller:master' into master (diff)
parentMerge pull request #21 from enezerdem/master (diff)
downloadSeminarSpezielleFunktionen-eb8cc4b5029fd6fedfd5aaa133fd966a48b643db.tar.gz
SeminarSpezielleFunktionen-eb8cc4b5029fd6fedfd5aaa133fd966a48b643db.zip
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to 'buch/chapters/030-geometrie')
-rw-r--r--buch/chapters/030-geometrie/chapter.tex1
-rw-r--r--buch/chapters/030-geometrie/hyperbolisch.tex1
-rw-r--r--buch/chapters/030-geometrie/trigonometrisch.tex13
3 files changed, 9 insertions, 6 deletions
diff --git a/buch/chapters/030-geometrie/chapter.tex b/buch/chapters/030-geometrie/chapter.tex
index 0b2842b..24fc089 100644
--- a/buch/chapters/030-geometrie/chapter.tex
+++ b/buch/chapters/030-geometrie/chapter.tex
@@ -32,6 +32,7 @@ der Strahlensatz muss durch den Satz von Menelaos ersetzt werden.
Es ergibt sich eine Methode, beliebige Dreiecke auf einer Kugeloberfläche
ganz analog zum Vorgehen bei ebenen Dreiecken zu berechnen.
Diese sphärische Trigonometrie ist die Basis der Navigation
+(siehe Kapitel~\ref{chapter:nav})
und aller astrometrischer Berechnungen.
Die Analysis hat die Möglichkeit geschaffen, die Länge von Kurven
diff --git a/buch/chapters/030-geometrie/hyperbolisch.tex b/buch/chapters/030-geometrie/hyperbolisch.tex
index 72c2cb4..2938316 100644
--- a/buch/chapters/030-geometrie/hyperbolisch.tex
+++ b/buch/chapters/030-geometrie/hyperbolisch.tex
@@ -355,6 +355,7 @@ heissen der {\em hyperbolische Tangens} und der {\em hyperbolische Kotangens}.
\end{definition}
\begin{satz}
+\index{Satz!hyperbolische Gruppe}%
\label{buch:geometrie:hyperbolisch:Hparametrisierung}
Die orientierungserhaltenden $2\times 2$-Matrizen, die das
Minkowski-Skalarprodukt invariant lassen und die Zeitrichtung
diff --git a/buch/chapters/030-geometrie/trigonometrisch.tex b/buch/chapters/030-geometrie/trigonometrisch.tex
index dc1f46a..643c8f2 100644
--- a/buch/chapters/030-geometrie/trigonometrisch.tex
+++ b/buch/chapters/030-geometrie/trigonometrisch.tex
@@ -167,11 +167,11 @@ und umgekehrt:
\[
\sin\alpha
=
-\sqrt{1-\cos^2\alpha\mathstrut}
+\sqrt{1-{\cos\mathstrut\!}^2\,\alpha\mathstrut}
\qquad\text{und}\qquad
\cos\alpha
=
-\sqrt{1-\sin^2\alpha\mathstrut}
+\sqrt{1-{\sin\mathstrut\!}^2\,\alpha\mathstrut}
\]
Da sich alle Funktionen durch $\cos\alpha$ und $\sin\alpha$ ausdrücken
lassen, können alle auch nur durch eine ausgedrückt werden.
@@ -197,7 +197,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist.
&\displaystyle\frac{\sqrt{\csc^2\alpha-1}}{\csc\alpha}
\\
\cos\alpha
- &\sqrt{1-\sin^2\alpha\mathstrut}
+ &\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}
&\cos\alpha
&\displaystyle\frac{1}{\sqrt{1+\tan^2\alpha}}
&\displaystyle\frac{\cot\alpha}{\sqrt{1+\cot^2\alpha}}
@@ -205,7 +205,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist.
&\displaystyle\frac{1}{\csc\alpha}
\\
\tan\alpha
- &\displaystyle\frac{\sin\alpha}{\sqrt{1-\sin^2\alpha\mathstrut}}
+ &\displaystyle\frac{\sin\alpha}{\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}}
&\displaystyle\frac{\sqrt{1-\cos^2\alpha\mathstrut}}{\cos\alpha}
&\tan\alpha
&\displaystyle\frac{1}{\cot\alpha}
@@ -213,7 +213,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist.
&\displaystyle\sqrt{\csc^2\alpha-1}
\\
\cot\alpha
- &\displaystyle\frac{\sqrt{1-\sin^2\alpha\mathstrut}}{\sin\alpha}
+ &\displaystyle\frac{\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}}{\sin\alpha}
&\displaystyle\frac{\cos\alpha}{\sqrt{1-\cos^2\alpha\mathstrut}}
&\displaystyle\frac{1}{\tan\alpha}
&\cot\alpha
@@ -229,7 +229,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist.
&\displaystyle\frac{\csc\alpha}{\sqrt{\csc^2\alpha-1}}
\\
\csc\alpha
- &\displaystyle\frac{1}{\sqrt{1-\sin^2\alpha\mathstrut}}
+ &\displaystyle\frac{1}{\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}}
&\displaystyle\frac{1}{\cos\alpha}
&\displaystyle\sqrt{1+\tan^2\alpha}
&\displaystyle\frac{\sqrt{1+\cot^2\alpha}}{\cot\alpha}
@@ -394,6 +394,7 @@ D_{\alpha}D_{\beta}
Aus dem Vergleich der beiden Matrizen liest man die Additionstheoreme.
\begin{satz}
+\index{Satz!Drehmatrizen}%
Für $\alpha,\beta\in\mathbb{R}$ gilt
\begin{align*}
\sin(\alpha\pm\beta)