aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/040-rekursion/hypergeometrisch.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-12-08 20:15:41 +0100
committerAndreas Müller <andreas.mueller@ost.ch>2021-12-08 20:15:41 +0100
commit531c564ecc1d73e1ddf25890720212d89f18edc1 (patch)
tree814df17dd23b969d56f3ae93920166613c3b2b79 /buch/chapters/040-rekursion/hypergeometrisch.tex
parentadd new section on hypergeometric differential equation (diff)
downloadSeminarSpezielleFunktionen-531c564ecc1d73e1ddf25890720212d89f18edc1.tar.gz
SeminarSpezielleFunktionen-531c564ecc1d73e1ddf25890720212d89f18edc1.zip
add new stuff about airy and hypergeometric functions
Diffstat (limited to 'buch/chapters/040-rekursion/hypergeometrisch.tex')
-rw-r--r--buch/chapters/040-rekursion/hypergeometrisch.tex85
1 files changed, 85 insertions, 0 deletions
diff --git a/buch/chapters/040-rekursion/hypergeometrisch.tex b/buch/chapters/040-rekursion/hypergeometrisch.tex
index 2bbb1f4..d836277 100644
--- a/buch/chapters/040-rekursion/hypergeometrisch.tex
+++ b/buch/chapters/040-rekursion/hypergeometrisch.tex
@@ -825,4 +825,89 @@ Term, der in der hypergeometrischen Funktion $\mathstrut_nF_m$
vorkommt, aber nicht in der
Summe~\eqref{buch:rekursion:hypergeometrisch:eqn:stammfunktion:summe}.
+\subsection{Integraldarstellung der hypergeometrischen Funktion
+$\mathstrut_2F_1$}
+Das Integral
+\[
+f(x)
+=
+\int_0^1 t^{b-1} (1-t)^{c-b-1} (1-xt)^{-a}\,dt
+\]
+kann im allgemeinen nicht in geschlossener Form evaluiert werden.
+Die Newtonsche binomische Reihe ermöglicht, den $x$ enthaltenden
+Faktor als
+\[
+(1-xt)^{-a}
+=
+\sum_{k=0}^\infty
+\frac{(a)_k}{k!} x^k t^k
+\]
+zu schreiben.
+Setzt man dies ins Integral ein, erhält man
+\[
+f(x)
+=
+\sum_{k=0}^\infty \frac{(a)_k}{k!} x^k
+\int_0^1 t^{b-1} (1-t)^{c-b-1} t^k\,dt
+=
+\sum_{k=0}^\infty \frac{(a)_k}{k!} x^k
+\int_0^1 t^{k+b-1} (1-t)^{c-b-1} t^k\,dt.
+\]
+Das Integral ist die Beta-Funktion $B(k+b,c-b)$ und kann daher mit Hilfe
+der Gamma-Funktion geschrieben werden.
+Es gilt
+\[
+B(k+b,c-b)
+=
+\frac{\Gamma(k+b)\Gamma(c-b)}{\Gamma(c+k)}.
+\]
+Mit Hilfe der Funktionalgleichung der Gamma-Funktion kann man
+\begin{align*}
+\Gamma(u+k)
+&=
+\Gamma(u+k-1) (u+k-1)
+=
+\Gamma(u+k-2) (u+k-2)(u+k-1)
+\\
+&=
+\ldots
+\\
+&=
+\Gamma(u) u(u+1)\cdots(u+k-2)(u+k-1)
+\end{align*}
+schreiben, womit das Integral zu
+\begin{align*}
+f(x)
+&=
+\sum_{k=0}^\infty \frac{(a)_k}{k!} x^k
+\frac{\Gamma(k+b)\Gamma(c-b)}{\Gamma(c+k)}
+=
+\sum_{k=0}^\infty \frac{(a)_k}{k!} x^k
+\frac{\Gamma(b)(b)_k\Gamma(c-b)}{\Gamma(c)(c)_k}
+\\
+&=
+\frac{\Gamma(b)\Gamma(c-b)}{\Gamma(c)}
+\sum_{k=0}^\infty\frac{(a)_k(b)_k}{(c)_k} x^k
+=
+\frac{\Gamma(b)\Gamma(c-b)}{\Gamma(c)}\,\mathstrut_2F_1(a,b;c;x)
+\end{align*}
+vereinfacht werden kann.
+Damit ist das Integral bestimmt.
+Durch Auflösung nach der hypergeometrischen Funktion bekommt man
+die folgende Integraldarstellung.
+
+\begin{satz}
+Die hypergeometrische Funktion $\mathstrut_2F_1$ hat die
+Integraldarstellung
+\[
+\mathstrut_2F_1\biggl(
+\begin{matrix}a,b\\c\end{matrix};x
+\biggr)
+=
+\frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)}
+\int_0^1 t^{b-1}(1-t)^{c-b-1}(1-xt)^{-a}\,dt.
+\]
+\end{satz}
+
+