aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/060-integral/irat.tex
diff options
context:
space:
mode:
authorHeadAndToes <55713950+HeadAndToes@users.noreply.github.com>2022-07-19 16:42:27 +0200
committerGitHub <noreply@github.com>2022-07-19 16:42:27 +0200
commitc4fd6a857d14abdcc91ce84237f542561520d15a (patch)
tree8465f77faf415379e84bd112e67cc4d27113201d /buch/chapters/060-integral/irat.tex
parentKorrektur Feedback (diff)
parentmakefile fix (diff)
downloadSeminarSpezielleFunktionen-c4fd6a857d14abdcc91ce84237f542561520d15a.tar.gz
SeminarSpezielleFunktionen-c4fd6a857d14abdcc91ce84237f542561520d15a.zip
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to 'buch/chapters/060-integral/irat.tex')
-rw-r--r--buch/chapters/060-integral/irat.tex140
1 files changed, 140 insertions, 0 deletions
diff --git a/buch/chapters/060-integral/irat.tex b/buch/chapters/060-integral/irat.tex
new file mode 100644
index 0000000..4c472ea
--- /dev/null
+++ b/buch/chapters/060-integral/irat.tex
@@ -0,0 +1,140 @@
+%
+% irat.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
+%
+\subsection{Integration rationaler Funktionen
+\label{buch:integral:subsection:rationalefunktionen}}
+Für die Integration der rationalen Funktionen lernt man in einem
+Analysis-Kurs üblicherweise ein Lösungsverfahren.
+Dies zeigt zunächst, dass rationale Funktionen immer eine Stammfunktion
+in einem geeigneten Erweiterungskörper haben.
+Es deutet aber auch an, dass Stammfunktionen eine ziemlich spezielle
+Form haben, die später als
+Satz von Liouville~\ref{buch:integral:satz:liouville}
+ein besondere Rolle spielen wird.
+
+%
+% Aufgabenstellung
+%
+\subsubsection{Aufgabenstellung}
+In diesem Abschnitt ist eine rationale Funktion $f(x)\in\mathbb{Q}(x)$
+gegeben, deren Stammfunktion bestimmt werden soll.
+Als rationale Funktion kann sie als Bruch
+\begin{equation}
+f(x) = \frac{p(x)}{q(x)}
+\label{buch:integral:irat:eqn:quotient}
+\end{equation}
+mit Polynomen $p(x),q(x)\in\mathbb{Q}[x]$ geschrieben werden.
+Gesucht ist ein Erweiterungskörper $\mathscr{K}\supset \mathbb{Q}(x)$
+derart und eine Stammfunktion $F\in\mathscr{K}$ von $f$, also $F'=f$.
+
+%
+% Polynomdivision
+%
+\subsubsection{Polynomdivision}
+Der Quotient~\eqref{buch:integral:irat:eqn:quotient} kann durch Polynomdivision
+mit Rest vereinfacht werden in einen polynomialen Teil und einen echten
+Bruch:
+\begin{equation}
+f(x)
+=
+g(x)
++
+\frac{a(x)}{b(x)}
+\label{buch:integral:irat:eqn:polydiv}
+\end{equation}
+mit Polynomen $g(x),a(x),b(x)\in\mathbb[Q](x)$ und $\deg a(x) < \deg b(x)$.
+Für den ersten Summanden liefert
+\eqref{buch:integral:iproblem:eqn:polyintegral} eine Stammfunktion.
+Im Folgenden bleibt also nur noch der zweite Term zu behandeln.
+
+%
+% Partialbruchzerlegung
+%
+\subsubsection{Partialbruchzerlegung}
+Zur Berechnung des Integral des Bruchs
+in~\eqref{buch:integral:irat:eqn:polydiv} wird die Partialbruchzerlegung
+benötigt.
+Der Einfachheit halber nehmen wir an, dass wir den Körper $\mathbb{Q}(x)$
+mit alle Nullstellen $\beta_i$ des Nenner-Polynoms $b(x)$ zu einem Körper
+$\mathscr{K}$ erweitert haben, in dem Nenner in Linearfaktoren zerfällt.
+Unter diesen Voraussetzungen hat die Partialbruchzerlegung die Form
+\begin{equation}
+\frac{a(x)}{b(x)}
+=
+\sum_{i=1}^m
+\sum_{k=1}^{k_i}
+\frac{A_{ik}}{(x-\beta_i)^k},
+\label{buch:integral:irat:eqn:partialbruch}
+\end{equation}
+wobei $k_i$ die Vielfachheit der Nullstelle $\beta_i$ ist.
+Die Koeffizienten $A_{ik}$ können zum Beispiel mit Hilfe eines linearen
+Gleichungssystems bestimmt werden.
+
+Um eine Stammfunktion zu finden, muss man also Stammfunktionen für
+jeden einzelnen Summanden bestimmen.
+Für Exponenten $k>1$ im Nenner eines Terms der
+Partialbruchzerlegung~\eqref{buch:integral:irat:eqn:partialbruch}
+kann dazu die Regel
+\[
+\int \frac{A_{ik}}{(x-\beta_i)^k}
+=
+\frac{A_{ik}}{(-k+1)(x-\beta_i)^{k-1}}
+\]
+verwendet werden.
+Diese Stammfunktion liegt wieder in $\mathscr{K}(x)$ liegt.
+
+%
+% Körpererweiterungen
+%
+\subsubsection{Körpererweiterung}
+Für $k=1$ ist eine logarithmische Erweiterung um die Funktion
+\begin{equation}
+\int \frac{A_{i1}}{x-\alpha_i}
+=
+A_{i1}
+\log(x-\alpha_i)
+\label{buch:integral:irat:eqn:logs}
+\end{equation}
+nötig.
+Es gibt also eine Stammfunktion in einem Erweiterungskörper, sofern
+er zusätzlich alle logarithmischen Funktionen
+in~\ref{buch:integral:irat:eqn:logs} enthält.
+Sie hat die Form
+\[
+\sum_{i=1}^m A_{i1} \log(x-\beta_i),
+\]
+wobei $A_{i1}\in\mathscr{K}$ ist.
+
+Setzt man alle vorher schon gefundenen Teile der Stammfunktion zusammen,
+kann man sehen, dass die Stammfunktion die Form
+\begin{equation}
+F(x) = v_0(x) + \sum_{i=1}^m c_i \log v_i(x)
+\label{buch:integral:irat:eqn:liouvillstammfunktion}
+\end{equation}
+haben muss.
+Dabei ist $v_0(x)\in\mathscr{K}(x)$ und besteht aus der Stammfunktion
+des polynomiellen Teils und den Stammfunktionen der Terme der Partialbruchzerlegung mit Exponenten $k>1$.
+Die logarithmischen Terme bestehen aus den Konstanten $c_i=A_{i1}$
+und den Logarithmusfunktionen $v_i(x)=x-\beta_i\in\mathscr{K}(x)$.
+Die Funktion $f(x)$ muss daher die Form
+\[
+f(x)
+=
+v_0'(x)
++
+\sum_{i=1}^m c_i\frac{v'_i(x)}{v_i(x)}
+\]
+gehabt haben.
+Die Form~\eqref{buch:integral:irat:eqn:liouvillstammfunktion}
+der Stammfunktion ist nicht eine Spezialität der rationalen Funktionen.
+Sie wird auch bei grösseren Funktionenkörpern immer wieder auftreten
+und ist als Satz von Liouville bekannt.
+
+%
+% Minimale algebraische Erweiterung
+%
+\subsubsection{Minimale algebraische Erweiterung}
+XXX Rothstein-Trager
+