aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/070-orthogonalitaet
diff options
context:
space:
mode:
authorNicolas Tobler <nicolas.tobler@ost.ch>2022-08-23 22:33:40 +0200
committerNicolas Tobler <nicolas.tobler@ost.ch>2022-08-23 22:33:40 +0200
commit6ac6dd132a11abd9ec4955cd2e35e22408c982e6 (patch)
tree902445b16ec2f2b9df3b3659b6139926469c267f /buch/chapters/070-orthogonalitaet
parentAdded Berechnung der rationalen Funktion (diff)
parentMerge pull request #63 from NaoPross/master (diff)
downloadSeminarSpezielleFunktionen-6ac6dd132a11abd9ec4955cd2e35e22408c982e6.tar.gz
SeminarSpezielleFunktionen-6ac6dd132a11abd9ec4955cd2e35e22408c982e6.zip
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to '')
-rw-r--r--buch/chapters/070-orthogonalitaet/gaussquadratur.tex2
-rw-r--r--buch/chapters/070-orthogonalitaet/orthogonal.tex1
-rw-r--r--buch/chapters/070-orthogonalitaet/sturm.tex4
3 files changed, 4 insertions, 3 deletions
diff --git a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
index a5af7d2..c7dfb31 100644
--- a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
+++ b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
@@ -20,7 +20,7 @@ Ein solches Polynom $p(x)$ hat $n+1$ Koeffizienten, die aus dem
linearen Gleichungssystem der $n+1$ Gleichungen $p(x_i)=f(x_i)$
ermittelt werden können.
-Das Interpolationspolynom $p(x)$ lässt sich abera uch direkt
+Das Interpolationspolynom $p(x)$ lässt sich aber auch direkt
angeben.
Dazu konstruiert man zuerst die Polynome
\[
diff --git a/buch/chapters/070-orthogonalitaet/orthogonal.tex b/buch/chapters/070-orthogonalitaet/orthogonal.tex
index df04514..793b78d 100644
--- a/buch/chapters/070-orthogonalitaet/orthogonal.tex
+++ b/buch/chapters/070-orthogonalitaet/orthogonal.tex
@@ -641,6 +641,7 @@ H_w
f\colon(a,b) \to \mathbb{R}
\;\bigg|\;
\int_a^b |f(x)|^2 w(x)\,dx
+<\infty
\biggr\}.
\]
Die Funktionen $f\in H_w$ haben folgende Eigenschaften
diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex
index 742ec0a..80bd5f4 100644
--- a/buch/chapters/070-orthogonalitaet/sturm.tex
+++ b/buch/chapters/070-orthogonalitaet/sturm.tex
@@ -15,7 +15,7 @@ Skalarproduktes selbstadjungierten Operators erkannt wurden.
%
% Differentialgleichungen
%
-\subsection{Differentialgleichung}
+\subsection{Differentialgleichung \label{sub:differentailgleichung}}
Das klassische Sturm-Liouville-Problem ist das folgende Eigenwertproblem.
Gesucht sind Lösungen der Differentialgleichung
\begin{equation}
@@ -405,7 +405,7 @@ L
%
% Beispiele
%
-\subsection{Beispiele}
+\subsection{Beispiele\label{sub:beispiele_sturm_liouville_problem}}
Die meisten der früher vorgestellten Funktionenfamilien stellen sich
als Lösungen eines geeigneten Sturm-Liouville-Problems heraus.
Alle Eigenschaften aus der Sturm-Liouville-Theorie gelten daher