aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/080-funktionentheorie/holomorph.tex
diff options
context:
space:
mode:
authorHeadAndToes <55713950+HeadAndToes@users.noreply.github.com>2022-07-19 16:42:27 +0200
committerGitHub <noreply@github.com>2022-07-19 16:42:27 +0200
commitc4fd6a857d14abdcc91ce84237f542561520d15a (patch)
tree8465f77faf415379e84bd112e67cc4d27113201d /buch/chapters/080-funktionentheorie/holomorph.tex
parentKorrektur Feedback (diff)
parentmakefile fix (diff)
downloadSeminarSpezielleFunktionen-c4fd6a857d14abdcc91ce84237f542561520d15a.tar.gz
SeminarSpezielleFunktionen-c4fd6a857d14abdcc91ce84237f542561520d15a.zip
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to 'buch/chapters/080-funktionentheorie/holomorph.tex')
-rw-r--r--buch/chapters/080-funktionentheorie/holomorph.tex9
1 files changed, 6 insertions, 3 deletions
diff --git a/buch/chapters/080-funktionentheorie/holomorph.tex b/buch/chapters/080-funktionentheorie/holomorph.tex
index c87b083..b2bacae 100644
--- a/buch/chapters/080-funktionentheorie/holomorph.tex
+++ b/buch/chapters/080-funktionentheorie/holomorph.tex
@@ -83,6 +83,7 @@ Der Term $x-x_0$ und die Gleichung \eqref{komplex:abldef} sind aber auch
für komplexe Argument sinnvoll, wir definieren daher
\begin{definition}
+\label{buch:funktionentheorie:definition:differenzierbar}
Die komplexe Funktion $f(z)$ heisst im Punkt $z_0$ komplex differenzierbar
und hat die komplexe Ableitung $f'(z_0)\in\mathbb C$, wenn
\index{komplex differenzierbar}%
@@ -107,10 +108,10 @@ Differenzenquotienten finden:
&=
\frac{z^n-z_0^n}{z-z_0}
=
-\frac{(z-z_0)(z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z^{n-1})}{z-z_0}
+\frac{(z-z_0)(z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z_0^{n-1})}{z-z_0}
\\
&=
-\underbrace{z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z^{n-1}
+\underbrace{z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z_0^{n-1}
}_{\displaystyle \text{$n$ Summanden}}.
\end{align*}
Lassen wir jetzt $z$ gegen $z_0$ gehen, wird die rechte Seite
@@ -191,6 +192,7 @@ Dies ist nur möglich, wenn Real- und Imaginärteile übereinstimmen.
Es folgt also
\begin{satz}
+\index{Satz!Cauchy-Riemann Differentialgleichungen}%
\label{komplex:satz:cauchy-riemann}
Real- und Imaginärteil $u(x,y)$ und $v(x,y)$ einer
komplex differenzierbaren Funktion $f(z)$ mit $f(x+iy)=u(x,y)+iv(x,y)$
@@ -258,11 +260,12 @@ Der Operator
\frac{\partial^2}{\partial y^2}
\]
heisst der {\em Laplace-Operator} in zwei Dimensionen.
-
\index{Laplace-Operator}%
+\index{Operator!Laplace-}%
\end{definition}
\begin{definition}
+\label{buch:funktionentheorie:definition:harmonisch}
Eine Funktion $h(x,y)$ von zwei Variablen heisst {\em harmonisch}, wenn sie
die Gleichung
\[