diff options
author | LordMcFungus <mceagle117@gmail.com> | 2022-07-22 21:28:45 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-07-22 21:28:45 +0200 |
commit | 23f17598c1742c70f442b94044a20aa821022c5a (patch) | |
tree | a945540ee6a4e86b37df2f01e3a91584b4797c4f /buch/chapters/090-pde | |
parent | Merge pull request #2 from AndreasFMueller/master (diff) | |
parent | Merge pull request #25 from JODBaer/master (diff) | |
download | SeminarSpezielleFunktionen-23f17598c1742c70f442b94044a20aa821022c5a.tar.gz SeminarSpezielleFunktionen-23f17598c1742c70f442b94044a20aa821022c5a.zip |
Merge pull request #3 from AndreasFMueller/master
update
Diffstat (limited to 'buch/chapters/090-pde')
-rw-r--r-- | buch/chapters/090-pde/Makefile.inc | 2 | ||||
-rw-r--r-- | buch/chapters/090-pde/gleichung.tex | 151 | ||||
-rw-r--r-- | buch/chapters/090-pde/kreis.tex | 3 | ||||
-rw-r--r-- | buch/chapters/090-pde/kugel.tex | 382 | ||||
-rw-r--r-- | buch/chapters/090-pde/rechteck.tex | 1 | ||||
-rw-r--r-- | buch/chapters/090-pde/separation.tex | 1 |
6 files changed, 516 insertions, 24 deletions
diff --git a/buch/chapters/090-pde/Makefile.inc b/buch/chapters/090-pde/Makefile.inc index c64af06..5b52d27 100644 --- a/buch/chapters/090-pde/Makefile.inc +++ b/buch/chapters/090-pde/Makefile.inc @@ -4,7 +4,7 @@ # (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -CHAPTERFILES = $(CHAPTERFILES) \ +CHAPTERFILES += \ chapters/090-pde/gleichung.tex \ chapters/090-pde/separation.tex \ chapters/090-pde/rechteck.tex \ diff --git a/buch/chapters/090-pde/gleichung.tex b/buch/chapters/090-pde/gleichung.tex index 7f65f06..271dc44 100644 --- a/buch/chapters/090-pde/gleichung.tex +++ b/buch/chapters/090-pde/gleichung.tex @@ -5,10 +5,27 @@ % \section{Gleichungen und Randbedingungen \label{buch:pde:section:gleichungen-und-randbedingungen}} +\rhead{Gebiete, Gleichungen und Randbedingungen} +Gewöhnliche Differentialgleichungen sind immer auf einem +Intervall als Definitionsgebiet definiert. +Partielle Differentialgleichungen sind Gleichungen, die verschiedene +partielle Ableitungen einer Funktion mehrerer Variablen involvieren, +das Definitionsgebiet ist daher immer eine höherdimensionale Teilmenge +von $\mathbb{R}^n$. +Sowohl das Gebiet wie auch dessen Rand können wesentlich komplexer sein. +Eine sorgfältige Definition ist unabdingbar, um Widersprüchen vorzubeugen. +% +% Gebiete, Differentialoperatoren, Randbedingungen +% \subsection{Gebiete, Differentialoperatoren, Randbedingungen} +In diesem Abschnitt sollen die Begriffe geklärt werden, die zur +korrekten Formulierung eines partiellen Differentialgleichungsproblems +notwendig sind. - +% +% Gebiete +% \subsubsection{Gebiete} Gewöhnliche Differentialgleichungen haben nur eine unabhängige Variable, die gesuchte Lösungsfunktion ist auf eine @@ -19,6 +36,7 @@ ermöglicht wesentlich vielfältigere und kompliziertere Situationen. \begin{definition} +\label{buch:pde:definition:gebiet} Ein Gebiet $G\subset\mathbb{R}^n$ ist eine offene Teilmenge von $\mathbb{R}^n$, d.~h.~für jeden Punkt $x\in G$ gibt es eine kleine Umgebung @@ -28,8 +46,12 @@ U_{\varepsilon}(x) \{y\in\mathbb{R}^n\mid |x-y|<\varepsilon\} \), die ebenfalls in $G$ in enthalten ist, also $U_{\varepsilon}(x)\subset G$. +\index{Gebiet}% \end{definition} +% +% Differentialoperatoren +% \subsubsection{Differentialoperatoren} Eine gewöhnliche Differentialgleichung für eine Funktion ist eine Beziehung zwischen den Werten der Funktion und ihrer @@ -65,9 +87,13 @@ schreiben. Die Koeffizienten $a$, $b_i$, $c_{ij}$ können dabei durchaus auch Funktionen der unabhängigen Variablen sein. +% +% Laplace-Operator +% \subsubsection{Laplace-Operator} -Der Laplace-Operator hat in einem karteischen Koordinatensystem die +Der {\em Laplace-Operator} hat in einem karteischen Koordinatensystem die Form +\index{Laplace-Operator}% \[ \Delta = @@ -85,28 +111,109 @@ nicht ändert. Man könnte sagen, der Laplace-Operator ist symmetrisch bezüglich aller Bewegungen des Raumes. +% +% Wellengleichung +% \subsubsection{Wellengleichung} +Da die physikalischen Gesetze invariant sein müssen unter solchen +Bewegungen, ist zu erwarten, dass der Laplace-Operator in partiellen +Differentialgleichungen +Als Beispiel betrachten wir die Ausbreitung einer Welle, welche sich +in einem Medium mit der Geschwindigkeit $c$ ausbreitet. +Ist $u(x,t)$ die Auslenkung der Welle im Punkt $x\in\mathbb{R}^n$ +zur Zeit $t\in\mathbb{R}$, dann erfüllt die Funktion $u(x,t)$ +die partielle Differentialgleichung +\begin{equation} +\frac{1}{c^2} +\frac{\partial^2 u}{\partial t^2} += +\Delta u. +\label{buch:pde:eqn:waveequation} +\end{equation} +In dieser Gleichung treten nicht nur die partiellen Ableitungen +nach den Ortskoordinaten auf, die der Laplace-Operator miteinander +verknüpft. +Die Funktion $u(x,t)$ ist definiert auf einem Gebiet in +$\mathbb{R}^{n}\times\mathbb{R}=\mathbb{R}^{n+1}$ mit den Koordinaten +$(x_1,\dots,x_n,t)$. +Der Gleichung~\eqref{buch:pde:eqn:waveequation} ist daher eigentlich +die Gleichung +\[ +\square u = 0 +\qquad\text{mit}\quad +\square += +\frac{1}{c^2}\frac{^2}{\partial t^2} +- +\Delta += +\frac{1}{c^2}\frac{\partial^2}{\partial t^2} +- +\frac{\partial^2}{\partial x_1^2} +- +\frac{\partial^2}{\partial x_2^2} +-\dots- +\frac{\partial^2}{\partial x_n^2} +\] +wird. +Der Operator $\square$ heisst auch d'Alembert-Operator. +\index{dAlembertoperator@d'Alembert-Operator}% -\subsubsection{Eigenfunktionen} -Eine besonders einfache - -\subsubsection{Trigonometrische Funktionen} -Die trigonometrischen Funktionen - -\subsection{Orthogonalität} -In der linearen Algebra lernt man, dass die Eigenvektoren einer -symmetrischen Matrix zu verschiedenen Eigenwerten orthgonal sind. -Dies hat zur Folge, dass die Transformation in eine Eigenbasis -mit einer orthogonalen Matrix möglich ist, was wiederum die Basis -von Diagonalisierungsverfahren wie dem Jacobi-Verfahren ist. - -Das Separationsverfahren wird zeigen, wie sich das Finden einer -Lösung der Wellengleichung auf Lösungen des Eigenwertproblems -$\Delta u = \lambda u$ zurückführen lässt. -Damit stellt sich die Frage, welche Eigenschaften - +% +% Randbedingungen +% +\subsubsection{Randbedingungen} +Die Differentialgleichung oder der Differentialoperator legen die +Lösung nicht fest. +Wie bei gewöhnlichen Differentialgleichungen ist dazu die Spezifikation +geeigneter Randbedingungen nötig. -\subsubsection{Gewöhnliche Differentialglichung} +\begin{definition} +\label{buch:pde:definition:randbedingungen} +Eine {\em Randbedingung} für das Gebiet $\Omega$ ist eine Teilmenge +$F\subset\partial\Omega$ sowie eine auf $F$ definierte Funktion +$f\colon F\to\mathbb{R}$. +Eine Funktion $u\colon \overline{\Omega} \to\mathbb{R}$ erfüllt eine +{\em Dirichlet-Randbedingung}, wenn +\index{Dirichlet-Randbedingung}% +\index{Randbedingung!Dirichlet-}% +\( +u(x) = f(x) +\) +für $x\in F$. +Sie erfüllt eine {\em Neumann-Randbedingung}, wenn +\index{Neumann-Randbedingung}% +\index{Randbedingung!Neumann-}% +\[ +\frac{\partial u}{\partial n} += +f(x)\qquad\text{für $x\in F$}. +\] +Dabei ist +\[ +\frac{\partial u}{\partial n} += +\frac{d}{dt} +u(x+tn) +\bigg|_{t=0} += +\operatorname{grad}u\cdot n +\] +\index{Normalableitung}% +die {\em Normalableitung}, die Richtungsableitung in Richtung des +Vektors $n$, der senkrecht ist auf dem Rand $\partial\Omega$ von +$\Omega$. +\end{definition} +Die Vorgabe nur von Ableitungen kann natürlich die Lösung $u(x)$ +einer linearen partiellen Differentialgleichung nicht eindeutig +festlegen, dazu ist noch mindestens ein Funktionswert notwendig. +Die Vorgabe von anderen Ableitungen in Richtungen tangential an den +Rand liefert keine neue Information, denn ausgehend von dem einen +Funktionswert auf dem Rand kann man durch Integration entlang +einer Kurve auf dem Rand eine Neumann-Randbedingung konstruieren, +die die gleiche Information beinhaltet wie Anforderungen an die +tangentialen Ableitungen. +Dirichlet- und Neumann-Randbedingungen sind daher die einzigen +sinnvollen linearen Randbedingungen. -\subsubsection{$n$-dimensionaler Fall} diff --git a/buch/chapters/090-pde/kreis.tex b/buch/chapters/090-pde/kreis.tex index b4ce8d7..a8cab3e 100644 --- a/buch/chapters/090-pde/kreis.tex +++ b/buch/chapters/090-pde/kreis.tex @@ -5,6 +5,7 @@ % \section{Kreisförmige Membran \label{buch:pde:section:kreis}} +\rhead{Kreisförmige Membran} In diesem Abschnitt soll die Differentialgleichung einer kreisförmigen Membran mit Hilfe der Separationsmethode gelöst werden. Dabei werden die Bessel-Funktionen als Lösungsfunktionen @@ -32,7 +33,7 @@ Der Laplace-Operator hat in Polarkoordinaten die Form \frac1r \frac{\partial}{\partial r} + -\frac{1}{r 2} +\frac{1}{r^2} \frac{\partial^2}{\partial\varphi^2}. \label{buch:pde:kreis:laplace} \end{equation} diff --git a/buch/chapters/090-pde/kugel.tex b/buch/chapters/090-pde/kugel.tex index 0e3524f..ee56316 100644 --- a/buch/chapters/090-pde/kugel.tex +++ b/buch/chapters/090-pde/kugel.tex @@ -5,4 +5,386 @@ % \section{Kugelfunktionen \label{buch:pde:section:kugel}} +\rhead{Kugelfunktionen} +Kugelsymmetrische Probleme können oft vorteilhaft in Kugelkoordinaten +beschrieben werden. +Die Separationsmethode kann auf partielle Differentialgleichungen +mit dem Laplace-Operator angewendet werden. +Die daraus resultierenden gewöhnlichen Differentialgleichungen führen +einerseits auf die Laguerre-Differentialgleichung für den radialen +Anteil sowie auf Kugelfunktionen für die Koordinaten der +geographischen Länge und Breite. + +\subsection{Kugelkoordinaten} +Wir verwenden Kugelkoordinaten $(r,\vartheta,\varphi)$, wobei $r$ +der Radius ist, $\vartheta$ die geographische Breite gemessen vom +Nordpol der Kugel und $\varphi$ die geographische Breite. +Der Definitionsbereich für Kugelkoordinaten ist +\[ +\Omega += +\{(r,\vartheta,\varphi) +\;|\; +r\ge 0\wedge +0\le \vartheta\le \pi\wedge +0\le \varphi< 2\pi +\}. +\] +Die Entfernung eines Punktes von der $z$-Achse ist $r\sin\vartheta$. +Daraus lassen sich die karteischen Koordinaten eines Punktes mit Hilfe +von +\[ +\begin{pmatrix}x\\y\\z\end{pmatrix} += +\begin{pmatrix} +r\cos\vartheta\\ +r\sin\vartheta\cos\varphi\\ +r\sin\vartheta\sin\varphi +\end{pmatrix}. +\] +Man beachte, dass die Punkte auf der $z$-Achse keine eindeutigen +Kugelkoordinaten haben. +Sie sind charakterisiert durch $r\sin\vartheta=0$, was $\cos\vartheta=\pm1$ +impliziert. +Entsprechend führen alle Werte von $\varphi$ auf den gleichen Punkt +$(0,0,\pm r)$. + +\subsection{Der Laplace-Operator in Kugelkoordinaten} +Der Laplace-Operator in Kugelkoordinaten lautet +\begin{align} +\Delta +&= +\frac{1}{r^2} \frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} ++ +\frac{1}{r^2\sin\vartheta}\frac{\partial}{\partial\vartheta} +\sin\vartheta\frac{\partial}{\partial\vartheta} ++ +\frac{1}{r^2\sin^2\vartheta}\frac{\partial^2}{\partial\varphi^2}. +\label{buch:pde:kugel:laplace1} +\intertext{Dies kann auch geschrieben werden als} +&= +\frac{\partial^2}{\partial r^2} ++ +\frac{2}{r}\frac{\partial}{\partial r} ++ +\frac{1}{r^2\sin\vartheta}\frac{\partial}{\partial\vartheta} +\sin\vartheta\frac{\partial}{\partial\vartheta} ++ +\frac{1}{r^2\sin^2\vartheta}\frac{\partial^2}{\partial\varphi^2} +\label{buch:pde:kugel:laplace2} +\intertext{oder} +&= +\frac{1}{r} +\frac{\partial^2}{\partial r^2} r ++ +\frac{1}{r^2\sin\vartheta}\frac{\partial}{\partial\vartheta} +\sin\vartheta\frac{\partial}{\partial\vartheta} ++ +\frac{1}{r^2\sin^2\vartheta}\frac{\partial^2}{\partial\varphi^2}. +\label{buch:pde:kugel:laplace3} +\end{align} +Dabei ist zu berücksichtigen, dass mit der Notation gemeint ist, +dass ein Ableitungsoperator auf alles wirkt, was rechts im gleichen +Term steht. +Der Operator +\[ +\frac{1}{r} +\frac{\partial^2}{\partial r^2}r +\quad\text{wirkt daher als}\quad +\frac{1}{r} +\frac{\partial^2}{\partial r^2}rf += +\frac{1}{r} +\frac{\partial}{\partial r}\biggl(f + r\frac{\partial f}{\partial r}\biggr) += +\frac{1}{r} +\frac{\partial f}{\partial r} ++ +\frac{1}{r} +\frac{\partial f}{\partial r} ++ +\frac{\partial^2f}{\partial r^2}. += +\frac{2}{r}\frac{\partial f}{\partial r} ++ +\frac{\partial^2f}{\partial r^2}, +\] +was die Äquivalenz der beiden Formen +\eqref{buch:pde:kugel:laplace2} +und +\eqref{buch:pde:kugel:laplace3} +rechtfertigt. +Auch die Äquivalenz mit +\eqref{buch:pde:kugel:laplace1} +kann auf ähnliche Weise verstanden werden. + +Die Herleitung dieser Formel ist ziemlich aufwendig und soll hier +nicht dargestellt werden. +Es sei aber darauf hingewiesen, dass sich für $\vartheta=\frac{\pi}2$ +wegen $\sin\vartheta=\sin\frac{\pi}2=1$ +der eingeschränkte Operator +\[ +\Delta += +\frac{1}{r^2}\frac{\partial }{\partial r} r^2\frac{\partial}{\partial r} ++ +\frac{1}{r^2}\frac{\partial^2}{\partial\varphi^2} +\] +ergibt. +Wendet man wie oben die Produktregel auf den ersten Term an, entsteht die +Form +\[ +\frac{\partial^2}{\partial r^2} ++ +\frac{2}{r} +\frac{\partial}{\partial r} ++ +\frac{1}{r^2}\frac{\partial^2}{\partial\varphi^2} +\] +die {\em nicht} übereinstimmt mit dem Laplace-Operator in +Polarkoordinaten~\eqref{buch:pde:kreis:laplace}. +Der Unterschied rührt daher, dass der Laplace-Operator die Krümmung +der Koordinatenlinien berücksichtigt, in diesem Fall der Meridiane. + +\subsection{Separation} +In Abschnitt~\ref{buch:pde:subsection:eigenwertproblem} +wurde bereits gzeigt, wie die Wellengleichung +\[ +\frac{1}{c^2} +\frac{\partial^2 U}{\partial t^2} +-\Delta U += +0 +\] +durch Separation der Zeit auf ein Eigenwertproblem für eine +Funktion $u$ reduziert werden kann, die nur von den Ortskoordinaten +abhängt. +Es geht also nur noch darum, dass Eigenwertproblem +\[ +\Delta u = -\lambda^2 u +\] +mit geeigneten Randbedingungen zu lösen. +Dazu gehören einerseits eventuelle Gebietsränder, die im Moment +nicht interessieren. +Andererseits muss sichergestellt sein, dass die Lösungsfunktionen +stetig und differentierbar sind an den Orten, wo das Koordinatensystem +singulär ist. +So müssen $u(r,\vartheta,\varphi)$ $2\pi$-periodisch in $\varphi$ sein. +% XXX Ableitungen + +\subsubsection{Separation des radialen Anteils} +Für das Eigenwertproblem verwenden wir den Ansatz +\[ +u(r,\vartheta,\varphi) += +R(r) \Theta(\vartheta) \Phi(\varphi), +\] +den wir in die Differentialgleichung einsetzen. +So erhalten wir +\[ +\biggl(\frac{1}{r^2}R''(r)+\frac{2}{r}R'(r) \biggr) +\Theta(\vartheta)\Phi(\varphi) ++ +R(r) +\frac{1}{r^2\sin\vartheta} +\frac{\partial}{\partial\vartheta}(\sin\vartheta \Theta'(\vartheta)) +\Phi(\varphi) ++ +R(r)\Theta(\vartheta) +\frac{1}{r^2\sin\vartheta} \Phi''(\varphi) += +-\lambda^2 R(r)\Theta(\vartheta)\Phi(\varphi). +\] +Die Gleichung lässt sich nach Multiplikation mit $r^2$ und +Division durch $u$ separieren in +\begin{equation} +\frac{R''(r)+2rR'(r)+\lambda^2r^2}{R(r)} ++ +\frac{1}{\Theta(\vartheta) \sin\vartheta} +\frac{\partial}{\partial\vartheta}\sin\vartheta\Theta'(\vartheta) ++ +\frac{1}{\sin^2\vartheta}\frac{\Phi''(\varphi)}{\Phi(\varphi)} += +0 +\label{buch:pde:kugel:separiert2} +\end{equation} +Der erste Term hängt nur von $r$ ab, die anderen nur von $\vartheta$ und +$\varphi$, daher muss der erste Term konstant sein. +Damit ergbit sich für den Radialanteil die gewöhnliche Differentialgleichung +\[ +R''(r) + 2rR'(r) +\lambda^2 r^2 = \mu^2 R(r), +\] +die zum Beispiel mit der Potenzreihenmethode gelöst werden kann. +Sie kann aber durch eine geeignete Substition nochmals auf die +Laguerre-Differentialgleichung reduziert werden, wie in +Kapitel~\ref{chapter:laguerre} dargelegt wird. + +\subsubsection{Kugelflächenanteil} +Für die Separation der verbleibenden winkelabhängigen Teile muss die +Gleichung +\[ +\frac{1}{\Theta(\vartheta) \sin\vartheta} +\frac{\partial}{\partial\vartheta}\sin\vartheta\Theta'(\vartheta) ++ +\frac{1}{\sin^2\vartheta}\frac{\Phi''(\varphi)}{\Phi(\varphi)} += +-\mu^2 +\] +mit $\sin^2\vartheta$ multipliziert werden, was auf +\[ +\frac{\sin\vartheta}{\Theta(\vartheta)} +\frac{\partial}{\partial\vartheta}\sin\vartheta\Theta'(\vartheta) ++ +\frac{\Phi''(\varphi)}{\Phi(\varphi)} += +-\mu^2\sin^2\vartheta +\quad\Rightarrow\quad +\frac{\sin\vartheta}{\Theta(\vartheta)} +\frac{\partial}{\partial\vartheta}\sin\vartheta\Theta'(\vartheta) ++ +\mu^2\sin^2\vartheta += +- +\frac{\Phi''(\varphi)}{\Phi(\varphi)} +\] +führt. +Die linke Seite der letzten Gleichung hängt nur von $\vartheta$ +ab, die rechte nur von $\varphi$, beide Seiten müssen daher +konstant sein, wir bezeichnen diese Konstante mit $\alpha^2$. +So ergibt sich die Differentialgleichung +\[ +\alpha^2 += +-\frac{\Phi''(\varphi)}{\Phi(\varphi)} +\] +für die Abhängigkeit von $\varphi$, mit der allgemeinen Lösung +\[ +\Phi(\varphi) += +A\cos\alpha \varphi ++ +B\sin\alpha \varphi. +\] +Die Randbedingungen verlangen, dass $\Phi(\varphi)$ eine $2\pi$-periodische +Funktion ist, was genau dann möglich ist, wenn $\alpha=m$ ganzzahlig ist. +Damit ergibt sich für die $\vartheta$-Abhängigkeit die Differentialgleichung +\begin{equation} +\frac{\sin\vartheta}{\Theta(\vartheta)} +\frac{\partial}{\partial\vartheta}\sin\vartheta\Theta'(\vartheta) ++ +\mu^2\sin^2\vartheta += +m^2. +\label{buch:pde:kugel:eqn:thetaanteil} +\end{equation} + +\subsubsection{Abhängigkeit von $\vartheta$} +Die Differentialgleichung~\eqref{buch:pde:kugel:eqn:thetaanteil} +ist etwas unhandlich, daher verwenden wir die Substitution $z=\cos\vartheta$, +um die trigonometrischen Funktionen los zu werden. +Wegen +\[ +\frac{dz}{d\vartheta} = -\sin\vartheta =-\sqrt{1-z^2} +\] +können die Ableitungen nach $\vartheta$ auch durch Ableitungen nach $z$ +ausgedrückt werden. +Wir schreiben dazu $Z(z)=\Theta(\vartheta)$ und berechnen +\[ +\Theta'(\vartheta) += +\frac{d\Theta}{d\vartheta} += +\frac{dZ}{dz}\frac{dz}{d\vartheta} += +- +\sqrt{1-z^2} +Z'(z). +\] +Dies bedeutet auch, dass +\[ +\sin\vartheta\frac{d}{d\vartheta} += +- +(1-z^2)\frac{d}{dz}, +\] +damit lässt sich die Differentialgleichung für $\Theta(\vartheta)$ umschreiben +in eine Differentialgleichung für $Z(z)$, nämlich +\[ +(1-z^2)\frac{d}{dz}(1-z^2)\frac{d}{dz} Z(z) ++ +\mu^2 +(1-z^2) +Z(z) += +m^2 +Z(z). +\] +Indem man die Ableitung im ersten Term mit Hilfe der Produktregel +ausführt, kann man die Gleichung +\[ +(1-z^2)\biggl( +-2zZ'(z) + (1-z^2)Z''(z) +\biggr) ++ +\mu^2(1-z^2)Z(z) += +-m^2 Z(z) +\] +bekommen. +Division durch $1-z^2$ ergibt die +{\em Legendre-Differentialgleichung} +\begin{equation} +(1-z^2)Z''(z) +-2zZ'(z) ++ +\biggl( +\mu^2 - \frac{m^2}{1-z^2} +\biggr) +Z(z) += +0. +\label{buch:pde:kugel:eqn:legendre-dgl} +\end{equation} +Eine Diskussion der Lösungen dieser Differentialgleichung erfolgt im +Kapitel~\ref{chapter:kugel}. + +\subsection{Kugelfunktionen} +Die Legendre-Differentialgleichung~\eqref{buch:pde:kugel:eqn:legendre-dgl} +hat Lösungen für Werte von $\mu$ derart, dass $\mu^2=l(l+1)$ für natürliche +Zahlen $l$. +Die Lösungen sind sogar Polynome, die wir mit $P_l^{(m)}(z)$ +bezeichnen, dabei ist $m$ eine ganze Zahl mit $-l\le m\le l$. +Die Funktionen $P_l^{(m)}(\cos\vartheta)e^{im\varphi}$ +sind daher alle Lösungen des von $\vartheta$ und $\varphi$ +abhängigen Teils der Lösungen des Eigenwertproblems. +Mit einer geeigneten Normierung kann man zudem eine Familie von +bezüglich des Skalarproduktes +\[ +\langle f,g\rangle_{S^2} += +\int_{-\pi}^{\pi} +\int_{0}^{\pi} +\overline{f(\vartheta,\varphi)} +g(\vartheta,\varphi) +\sin\vartheta +\,d\vartheta +\,d\varphi +\] +orthonormiete Funktionen auf der Kugeloberfläche erhalten, die +man normalerweise als +\[ +Y_{lm}(\vartheta,\varphi) += +\frac{1}{\sqrt{2\pi}} +\sqrt{ +\frac{2l+1}{2}\cdot +\frac{(l-m)!}{(l+m)!} +} +P_{l}^{(m)}(\cos\vartheta)e^{im\varphi} +\] +bezeichnet. + + + + diff --git a/buch/chapters/090-pde/rechteck.tex b/buch/chapters/090-pde/rechteck.tex index 72e2806..b7dfe11 100644 --- a/buch/chapters/090-pde/rechteck.tex +++ b/buch/chapters/090-pde/rechteck.tex @@ -5,6 +5,7 @@ % \section{Rechteckige Membran \label{buch:pde:section:rechteck}} +\rhead{Rechteckige Membran} Als Beispiel für die Lösung des in Abschnitt~\ref{buch:pde:subsection:eigenwertproblem} aus der Wellengleichung abgeleiteten Eigenwertproblems diff --git a/buch/chapters/090-pde/separation.tex b/buch/chapters/090-pde/separation.tex index 6faceaa..e5e144a 100644 --- a/buch/chapters/090-pde/separation.tex +++ b/buch/chapters/090-pde/separation.tex @@ -5,6 +5,7 @@ % \section{Separationsmethode \label{buch:pde:section:separation}} +\rhead{Separationsmethode} Die Existenz der Lösung einer gewöhnlichen Differentialgleichung ist unter einigermassen milden Bedingungen in der Nähe der Anfangsbedingung garantiert. |