diff options
author | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-08-14 15:40:49 +0200 |
---|---|---|
committer | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-08-14 15:40:49 +0200 |
commit | 14af017af260d31f8e254e158aaa8dc285890006 (patch) | |
tree | 183cbb155f014a433cef63127e9923068cf68063 /buch/chapters | |
parent | corrections (diff) | |
parent | Merge pull request #47 from f1bi1n/master (diff) | |
download | SeminarSpezielleFunktionen-14af017af260d31f8e254e158aaa8dc285890006.tar.gz SeminarSpezielleFunktionen-14af017af260d31f8e254e158aaa8dc285890006.zip |
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to 'buch/chapters')
-rw-r--r-- | buch/chapters/030-geometrie/hyperbolisch.tex | 12 | ||||
-rw-r--r-- | buch/chapters/075-fourier/bessel.tex | 3 | ||||
-rw-r--r-- | buch/chapters/110-elliptisch/uebungsaufgaben/1.tex | 2 |
3 files changed, 9 insertions, 8 deletions
diff --git a/buch/chapters/030-geometrie/hyperbolisch.tex b/buch/chapters/030-geometrie/hyperbolisch.tex index 2938316..d2d0da2 100644 --- a/buch/chapters/030-geometrie/hyperbolisch.tex +++ b/buch/chapters/030-geometrie/hyperbolisch.tex @@ -163,9 +163,9 @@ In der speziellen Relativitätstheorie spielt das Minkowski-Skalarprodukt eine besondere Rolle. Die Koordinaten $x_0$ hat darin die Bedeutung der Zeit, man weiss aus Experimenten wie dem Michelson-Morley-Experiment, -dass die Grösse $\langle x,x\rangle$ ist eine Invariante ist. +dass die Grösse $\langle x,x\rangle$ eine Invariante ist. Die Transformationen mit der Matrix $A$ beschreiben also zulässige -Koordinatentransformationenn, die Invariante erhalten. +Koordinatentransformationen, die Invariante erhalten. Für Transformationen, die zusätzlich die Zeitrichtung erhalten sollen, muss $a_{00}=a_{11}=c>0$ verlangt werden. @@ -174,7 +174,7 @@ muss $a_{00}=a_{11}=c>0$ verlangt werden. Unter der Annahme $c>0$ lässt sich die Matrix vollständig durch den Parameter $t=s/c$ beschreiben. Dividiert man \eqref{buch:geometrie:hyperbolish:eqn:cs} durch $c^2$, -kann $c$ durch $t$ ausdrücken: +kann man $c$ durch $t$ ausdrücken: \[ \frac{1}{c^2} = @@ -199,10 +199,10 @@ H_t t&1 \end{pmatrix}. \] -Diese Formeln erinnern natürlich and die Formeln, mit denen +Diese Formeln erinnern natürlich an die Formeln, mit denen der hyperbolische Sinus und Kosinus aus dem hyperbolischen -Tangens berechnet werden kann. -Dieser Zusammenhang und soll im nächsten Abschnitt hergestellt +Tangens berechnet werden können. +Dieser Zusammenhang soll im nächsten Abschnitt hergestellt werden. % diff --git a/buch/chapters/075-fourier/bessel.tex b/buch/chapters/075-fourier/bessel.tex index 7e978f7..db7880b 100644 --- a/buch/chapters/075-fourier/bessel.tex +++ b/buch/chapters/075-fourier/bessel.tex @@ -454,7 +454,8 @@ Terme mit $\pm n$ können wegen \[ \left. \begin{aligned} -J_{-n}(\xi) &= (-1)^n J_n(\xi) +J_{-n}(\xi) &= (-1)^n J_n(\xi) +\label{buch:fourier:eqn:symetrie} \\ i^{-n}&=(-1)^n i^n \end{aligned} diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex index af094c6..2d08e56 100644 --- a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex @@ -25,7 +25,7 @@ Auslenkung. Formulieren Sie den Energieerhaltungssatz für die Gesamtenergie $E$ dieses Oszillators. Leiten Sie daraus eine nichtlineare Differentialgleichung erster Ordnung -for den anharmonischen Oszillator ab, die sie in der Form +für den anharmonischen Oszillator ab, die sie in der Form $\frac12m\dot{x}^2 = f(x)$ schreiben. \item Die Amplitude der Schwingung ist derjenige $x$-Wert, für den die |