diff options
author | Andreas Müller <andreas.mueller@othello.ch> | 2022-06-22 16:02:19 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@othello.ch> | 2022-06-22 16:02:19 +0200 |
commit | 43a21e525fe5f9f2e81113ed84742c42178c7114 (patch) | |
tree | ce4cea3a4512f2bf9b9686016afde2e2cb234f78 /buch/chapters | |
parent | add graph for all functions (diff) | |
download | SeminarSpezielleFunktionen-43a21e525fe5f9f2e81113ed84742c42178c7114.tar.gz SeminarSpezielleFunktionen-43a21e525fe5f9f2e81113ed84742c42178c7114.zip |
new images
Diffstat (limited to 'buch/chapters')
-rw-r--r-- | buch/chapters/110-elliptisch/dglsol.tex | 28 | ||||
-rw-r--r-- | buch/chapters/110-elliptisch/images/ellall.pdf | bin | 22616 -> 24694 bytes | |||
-rw-r--r-- | buch/chapters/110-elliptisch/images/ellall.tex | 28 |
3 files changed, 55 insertions, 1 deletions
diff --git a/buch/chapters/110-elliptisch/dglsol.tex b/buch/chapters/110-elliptisch/dglsol.tex index 3ef1eef..c4b990e 100644 --- a/buch/chapters/110-elliptisch/dglsol.tex +++ b/buch/chapters/110-elliptisch/dglsol.tex @@ -343,6 +343,28 @@ der unvollständigen elliptischen Integrale. % % \subsubsection{Pole und Nullstellen der Jacobischen elliptischen Funktionen} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/ellpolnul.pdf} +\caption{Werte der grundlegenden Jacobischen elliptischen Funktionen +$\operatorname{sn}(u,k)$, +$\operatorname{cn}(u,k)$ +und +$\operatorname{dn}(u,k)$ +in den Ecken des Rechtecks mit Ecken $(0,0)$ und $(K,K+iK')$. +Links der Definitionsbereich, rechts die Werte der drei Funktionen. +Pole sind mit einem Kreuz ($\times$) bezeichnet, Nullstellen mit einem +Kreis ($\ocircle$). +\label{buch:elliptisch:fig:ellpolnul}} +\end{figure} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/ellall.pdf} +\caption{Pole und Nullstellen aller Jacobischen elliptischen Funktionen +mit den gleichen Darstellungskonventionen wie in +Abbildung~\ref{buch:elliptisch:fig:ellpolnul} +\label{buch:elliptisch:fig:ellall}} +\end{figure} Für die Funktion $y=\operatorname{sn}(u,k)$ erfüllt die Differentialgleichung \[ \frac{dy}{du} @@ -392,8 +414,12 @@ abgelesen werden: \end{aligned} \label{buch:elliptische:eqn:eckwerte} \end{equation} +Abbildung~\ref{buch:elliptisch:fig:ellpolnul} zeigt diese Werte +an einer schematischen Darstellung des Definitionsbereiches auf. Daraus lassen sich jetzt auch die Werte der abgeleiteten Jacobischen -elliptischen Funktionen ablesen. +elliptischen Funktionen ablesen, Pole und Nullstellen sind in +Abbildung~\ref{buch:elliptisch:fig:ellall} +zusammengestellt. diff --git a/buch/chapters/110-elliptisch/images/ellall.pdf b/buch/chapters/110-elliptisch/images/ellall.pdf Binary files differindex 0047a52..a57be97 100644 --- a/buch/chapters/110-elliptisch/images/ellall.pdf +++ b/buch/chapters/110-elliptisch/images/ellall.pdf diff --git a/buch/chapters/110-elliptisch/images/ellall.tex b/buch/chapters/110-elliptisch/images/ellall.tex index 5d63322..b694441 100644 --- a/buch/chapters/110-elliptisch/images/ellall.tex +++ b/buch/chapters/110-elliptisch/images/ellall.tex @@ -22,6 +22,34 @@ %\node at (-1,1) [above left] {$iK'$}; %\node at (0,0) {$u$}; +\fill[color=rot!10,opacity=0.5] (-5.5,-4.3) rectangle (7.3,-1.7); +\fill[color=blau!10,opacity=0.5] (-5.5,-7.3) rectangle (7.3,-4.7); +\fill[color=gruen!10,opacity=0.5] (-5.5,-10.3) rectangle (7.3,-7.7); + +\fill[color=rot!10,opacity=0.5] (-1.3,-10.5) rectangle (1.3,2.5); +\fill[color=blau!10,opacity=0.5] (1.7,-10.5) rectangle (4.3,2.5); +\fill[color=gruen!10,opacity=0.5] (4.7,-10.5) rectangle (7.3,2.5); + +\begin{scope}[xshift=1.5cm,yshift=2cm] +\node at (0,0) {Zähler}; +\draw[<-] (-4.5,0) -- (-1,0); +\draw[->] (1,0) -- (4.5,0); +\node[color=black] at (-4.5,-0.4) {\Large n}; +\node[color=rot] at (-1.5,-0.4) {\Large s}; +\node[color=blau] at (1.5,-0.4) {\Large c}; +\node[color=gruen] at (4.5,-0.4) {\Large d}; +\end{scope} + +\begin{scope}[xshift=-5.1cm,yshift=-4.5cm] +\node at (0,0) [rotate=90] {Nenner}; +\draw[<-] (0,-4.5) -- (0,-1); +\draw[->] (0,1) -- (0,4.5); +\node[color=gruen] at (0.4,-4.5) [rotate=90] {\Large d}; +\node[color=blau] at (0.4,-1.5) [rotate=90] {\Large c}; +\node[color=rot] at (0.4,1.5) [rotate=90] {\Large s}; +\node[color=black] at (0.4,4.5) [rotate=90] {\Large n}; +\end{scope} + \begin{scope}[xshift=-3cm,yshift=0cm] \rechteck{gray}{1} \end{scope} |