aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters
diff options
context:
space:
mode:
authorhaddoucher <reda.haddouche@ost.ch>2022-08-22 14:43:20 +0200
committerhaddoucher <reda.haddouche@ost.ch>2022-08-22 14:43:20 +0200
commitd80e30b37d3b51fc4d47229fb3e88610fbc7a476 (patch)
tree8c8808681616d4ed3cb9ac5e088c28df4139a761 /buch/chapters
parentEinleitung (diff)
downloadSeminarSpezielleFunktionen-d80e30b37d3b51fc4d47229fb3e88610fbc7a476.tar.gz
SeminarSpezielleFunktionen-d80e30b37d3b51fc4d47229fb3e88610fbc7a476.zip
neuste Version
Diffstat (limited to 'buch/chapters')
-rw-r--r--buch/chapters/070-orthogonalitaet/gaussquadratur.tex2
-rw-r--r--buch/chapters/070-orthogonalitaet/orthogonal.tex1
2 files changed, 2 insertions, 1 deletions
diff --git a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
index a5af7d2..c7dfb31 100644
--- a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
+++ b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
@@ -20,7 +20,7 @@ Ein solches Polynom $p(x)$ hat $n+1$ Koeffizienten, die aus dem
linearen Gleichungssystem der $n+1$ Gleichungen $p(x_i)=f(x_i)$
ermittelt werden können.
-Das Interpolationspolynom $p(x)$ lässt sich abera uch direkt
+Das Interpolationspolynom $p(x)$ lässt sich aber auch direkt
angeben.
Dazu konstruiert man zuerst die Polynome
\[
diff --git a/buch/chapters/070-orthogonalitaet/orthogonal.tex b/buch/chapters/070-orthogonalitaet/orthogonal.tex
index df04514..793b78d 100644
--- a/buch/chapters/070-orthogonalitaet/orthogonal.tex
+++ b/buch/chapters/070-orthogonalitaet/orthogonal.tex
@@ -641,6 +641,7 @@ H_w
f\colon(a,b) \to \mathbb{R}
\;\bigg|\;
\int_a^b |f(x)|^2 w(x)\,dx
+<\infty
\biggr\}.
\]
Die Funktionen $f\in H_w$ haben folgende Eigenschaften