aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/ellfilter/elliptic.tex
diff options
context:
space:
mode:
authorntobler <nitobler@gmail.com>2022-08-19 11:27:19 +0200
committerntobler <nitobler@gmail.com>2022-08-19 11:27:19 +0200
commit94352fe1f5e15535073daae3da6f62bdd166976a (patch)
treebacd2e9b7011ea9c096c723153b20d82c92552b4 /buch/papers/ellfilter/elliptic.tex
parentMerge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleF... (diff)
downloadSeminarSpezielleFunktionen-94352fe1f5e15535073daae3da6f62bdd166976a.tar.gz
SeminarSpezielleFunktionen-94352fe1f5e15535073daae3da6f62bdd166976a.zip
Corrections
Diffstat (limited to 'buch/papers/ellfilter/elliptic.tex')
-rw-r--r--buch/papers/ellfilter/elliptic.tex22
1 files changed, 14 insertions, 8 deletions
diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex
index 67bcca0..39f9b8d 100644
--- a/buch/papers/ellfilter/elliptic.tex
+++ b/buch/papers/ellfilter/elliptic.tex
@@ -7,7 +7,10 @@ Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen
&= \cd \left(N~K_1~z , k_1 \right), \quad w= \cd(z K, k)
\end{align}
Beim Betrachten dieser Definition, fällt die Ähnlichkeit zur trigonometrische Darstellung der Tsche\-byschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials} auf.
-Anstelle vom Kosinus kommt hier die $\cd$-Funktion zum Einsatz.
+Wie bei den Tschebyscheff-Polynomen ist die Formel mit speziellen Funktionen geschrieben.
+Es kann jedoch gezeigt werden, dass es sich tatsächlich um rationale Funktionen handelt, wie es für ein lineares Filter vorausgesetzt wird.
+Die elliptischen Funktionen werden also genau so eingesetzt, dass die resultierenden Nullstellen und Pole eine rationale Funktion ergeben.
+Anstelle des Kosinus bei den Tschebyscheff-Polynomen kommt hier die $\cd$-Funktion zum Einsatz.
Die Ordnungszahl $N$ kommt auch als Faktor for.
Zusätzlich werden noch zwei verschiedene elliptische Moduli $k$ und $k_1$ gebraucht.
Bei $k = k_1 = 0$ wird der $\cd$ zum Kosinus und wir erhalten in diesem Spezialfall die Tschebyschef-Polynome.
@@ -24,7 +27,7 @@ Die $\cd^{-1}(w, k)$-Funktion ist um $K$ verschoben zur $\sn^{-1}(w, k)$-Funktio
\label{ellfilter:fig:cd}
\end{figure}
Auffallend an der $w = \cd(z, k)$-Funktion ist, dass sich $w$ auf der reellen Achse wie der Kosinus immer zwischen $-1$ und $1$ bewegt, während bei $\mathrm{Im(z) = K^\prime}$ die Werte zwischen $\pm 1/k$ und $\pm \infty$ verlaufen.
-Die Idee des elliptischen Filter ist es, diese zwei Equirippel-Zonen abzufahren, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd2}, welche Analog zu Abbildung \ref{ellfilter:fig:arccos2} gesehen werden kann.
+Die Idee des elliptischen Filter ist es, diese zwei Equiripple-Zonen abzufahren, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd2}, welche analog zu Abbildung \ref{ellfilter:fig:arccos2} gesehen werden kann.
\begin{figure}
\centering
\input{papers/ellfilter/tikz/cd2.tikz.tex}
@@ -39,10 +42,7 @@ Das elliptische Filter hat im Gegensatz zum Tschebyscheff-Filter drei Zonen.
Im Durchlassbereich werden wie beim Tschebyscheff-Filter die Nullstellen durchlaufen.
Statt dass $z_1$ für alle $w>1$ in die imaginäre Richtung geht, bewegen wir uns im Sperrbereich wieder in reeller Richtung, wo Pole durchlaufen werden.
Aus dieser Sicht kann der Sperrbereich vom Tschebyscheff-Filter als unendlich langer Übergangsbereich angesehen werden.
-% Falls es möglich ist diese Werte abzufahren im Stil der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equirippel-Verhalten im Durchlass- und Sperrbereich aufweist.
-Da sich die Funktion im Übergangsbereich nur zur nächsten Reihe bewegt, ist der Übergangsbereich monoton steigend.
-Theoretisch könnte eine gleiches Durchlass- und Sperrbereichverhalten erreicht werden, wenn die Funktion auf eine andere Reihe ansteigen würde.
-Dies würde jedoch zu Oszillationen zwischen $1$ und $1/k$ im Übergangsbereich führen.
+% Falls es möglich ist diese Werte abzufahren im Stil der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equiripple-Verhalten im Durchlass- und Sperrbereich aufweist.
Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine elliptisch rationale Funktion und die Frequenzantwort des daraus resultierenden Filters.
\begin{figure}
\centering
@@ -51,6 +51,10 @@ Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine elliptisch rationale Funk
\label{ellfilter:fig:elliptic_freq}
\end{figure}
+Da sich die Funktion im Übergangsbereich nur zur nächsten Reihe von Polstellen bewegt, ist der Übergangsbereich monoton steigend.
+Theoretisch könnte eine gleiches Durchlass- und Sperrbereichverhalten erreicht werden, wenn die Funktion auf eine andere Reihe ansteigen würde.
+Dies würde jedoch zu Oszillationen zwischen $1$ und $1/k$ im Übergangsbereich führen.
+
\subsection{Gradgleichung}
Damit die Pol- und Nullstellen genau in dieser Konstellation durchfahren werden, müssen die elliptischen Moduli des inneren und äusseren $\cd$ aufeinander abgestimmt werden.
@@ -75,12 +79,14 @@ Algebraisch kann so die Gradgleichung
N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1}
\end{equation}
aufgestellt werden, dessen Lösung ist gegeben durch
-\begin{equation} %TODO check
+\begin{equation}\label{ellfilter:eq:degeqsol}
k_1 = k^N \prod_{i=1}^L \sn^4 \Bigg( \frac{2i - 1}{N} K, k \Bigg),
\quad \text{wobei} \quad
N = 2L+r.
\end{equation}
Die Herleitung ist sehr umfassend und wird in \cite{ellfilter:bib:orfanidis} im Detail angeschaut.
+Für das Auslegen von elliptischen Filtern müssen $k$ und $k_1$ mit \eqref{ellfilter:eq:degeqsol} oder mit numerischen Methoden berechnet werden.
+Die Position der Pol- und Nullstellen können dann konstruiert werden, wie dargestellt in Abbildung \ref{ellfilter:fig:cd2} und mit der $\cd$-Funktion zu der elliptischen rationalen Funktion transformiert werden.
% \begin{figure}
% \centering
@@ -95,6 +101,6 @@ Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische For
Im elliptischen Fall entstehen so rationale Funktionen mit Nullstellen und auch Pole.
Somit entstehen bei den elliptischen rationalen Funktionen, wie es der name auch deutet, rationale Funktionen, also ein Bruch von zwei Polynomen.
-% Da Transformationen einer rationalen Funktionen mit Grundrechenarten, wie es in \eqref{ellfilter:eq:h_omega} der Fall ist, immer noch rationale Funktionen ergeben, stellt dies kein Problem für die Implementierung dar.
+