aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/ellfilter/tschebyscheff.tex
diff options
context:
space:
mode:
authorNicolas Tobler <nicolas.tobler@ost.ch>2022-08-13 19:32:21 +0200
committerNicolas Tobler <nicolas.tobler@ost.ch>2022-08-13 19:32:21 +0200
commitefa82f7edc7345c29c2d44674d8c8d8ad8741548 (patch)
tree5c543013727dc265b5097e10caa549e318efd44a /buch/papers/ellfilter/tschebyscheff.tex
parentworking on elliptic rational functions (diff)
downloadSeminarSpezielleFunktionen-efa82f7edc7345c29c2d44674d8c8d8ad8741548.tar.gz
SeminarSpezielleFunktionen-efa82f7edc7345c29c2d44674d8c8d8ad8741548.zip
corrections
Diffstat (limited to '')
-rw-r--r--buch/papers/ellfilter/tschebyscheff.tex25
1 files changed, 14 insertions, 11 deletions
diff --git a/buch/papers/ellfilter/tschebyscheff.tex b/buch/papers/ellfilter/tschebyscheff.tex
index 8a82c5f..639c87c 100644
--- a/buch/papers/ellfilter/tschebyscheff.tex
+++ b/buch/papers/ellfilter/tschebyscheff.tex
@@ -1,8 +1,8 @@
\section{Tschebyscheff-Filter}
-Als Einstieg betrachten wir das Tschebyscheff-Filter, welches sehr verwand ist mit dem elliptischen Filter.
-Genauer ausgedrückt sind die Tschebyscheff-1 und -2 Filter Spezialfälle davon.
-Der Name des Filters deutet schon an, dass die Tschebyscheff-Polynome $T_N$ für das Filter relevant sind:
+Als Einstieg betrachten wir das Tschebyscheff-Filter, welches sehr verwandt ist mit dem elliptischen Filter.
+Genauer ausgedrückt erhält man die Tschebyscheff-1 und -2 Filter bei Grenzwerten von Parametern beim elliptischen Filter.
+Der Name des Filters deutet schon an, dass die Tschebyscheff-Polynome $T_N$ (siehe auch Kapitel \label{buch:polynome:section:tschebyscheff}) für das Filter relevant sind:
\begin{align}
T_{0}(x)&=1\\
T_{1}(x)&=x\\
@@ -27,7 +27,7 @@ Abbildung \ref{ellfilter:fig:chebychef_polynomials} zeigt einige Tschebyscheff-P
Da der Kosinus begrenzt zwischen $-1$ und $1$ ist, sind auch die Tschebyscheff-Polynome begrenzt.
Geht man aber über das Intervall $[-1, 1]$ hinaus, divergieren die Funktionen mit zunehmender Ordnung immer steiler gegen $\pm \infty$.
Diese Eigenschaft ist sehr nützlich für ein Filter.
-Wenn wir die Tschebyscheff-Polynome quadrieren, passen sie perfekt in die Voraussetzungen für Filterfunktionen, wie es Abbildung \ref{ellfiter:fig:chebychef} demonstriert.
+Wenn wir die Tschebyscheff-Polynome quadrieren, passen sie perfekt in die Forderungen für Filterfunktionen, wie es Abbildung \ref{ellfiter:fig:chebychef} demonstriert.
\begin{figure}
\centering
\input{papers/ellfilter/python/F_N_chebychev.pgf}
@@ -61,9 +61,9 @@ Die invertierte Funktion des Kosinus kann als bestimmtes Integral dargestellt we
}
}
~dz
- + \frac{\pi}{2}
+ + \frac{\pi}{2}.
\end{align}
-Der Integrand oder auch die Ableitung
+Der Integrand oder auch die Ableitung von $\cos^{-1}(x)$
\begin{equation}
\frac{
-1
@@ -73,13 +73,13 @@ Der Integrand oder auch die Ableitung
}
}
\end{equation}
-bestimmt dabei die Richtung, in der die Funktion verläuft.
+bestimmt dabei die Richtung, in welche die Funktion verläuft.
Der reelle Arcuscosinus is bekanntlich nur für $|z| \leq 1$ definiert.
Hier bleibt der Wert unter der Wurzel positiv und das Integral liefert reelle Werte.
Doch wenn $|z|$ über 1 hinausgeht, wird der Term unter der Wurzel negativ.
Durch die Quadratwurzel entstehen für den Integranden zwei rein komplexe Lösungen.
Der Wert des Arcuscosinus verlässt also bei $z= \pm 1$ den reellen Zahlenstrahl und knickt in die komplexe Ebene ab.
-Abbildung \ref{ellfilter:fig:arccos} zeigt den $\arccos$ in der komplexen Ebene.
+Abbildung \ref{ellfilter:fig:arccos} zeigt den Arcuscosinus in der komplexen Ebene.
\begin{figure}
\centering
\input{papers/ellfilter/tikz/arccos.tikz.tex}
@@ -98,9 +98,12 @@ Somit passiert $\cos( N~\cos^{-1}(w))$ im Intervall $[-1, 1]$ $N$ Nullstellen, w
\input{papers/ellfilter/tikz/arccos2.tikz.tex}
\caption{
$z_1=N \cos^{-1}(w)$-Ebene der Tschebyscheff-Funktion.
- Die eingefärbten Pfade sind Verläufe von $w~\forall~[-\infty, \infty]$ für $N = 4$.
- Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert.
+ Die eingefärbten Pfade sind Verläufe von $w\in(-\infty, \infty)$ für $N = 4$.
+ Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert die zu Equirippel-Verhalten führen.
+ Die vertikalen Segmente der Funktion sorgen für das Ansteigen der Funktion gegen $\infty$ nach der Grenzfrequenz.
+ Die eingezeichneten Nullstellen sind vom zurücktransformierenden Kosinus.
}
\label{ellfilter:fig:arccos2}
\end{figure}
-Durch die spezielle Anordnung der Nullstellen hat die Funktion Equirippel-Verhalten und ist dennoch ein Polynom, was sich perfekt für linear Filter eignet.
+Durch die spezielle Anordnung der Nullstellen hat die Funktion auf der reellen Achse Equirippel-Verhalten und ist dennoch ein Polynom, was sich perfekt für linear Filter eignet.
+Equirippel bedeutet, dass alle lokalen Maxima der Betragsfunktion gleich gross sind.