aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/fm
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2022-08-16 17:21:12 +0200
committerGitHub <noreply@github.com>2022-08-16 17:21:12 +0200
commit0e61457d277865a7ffb3b4d9e3918cdee77cd60a (patch)
tree4e492c3c78d375a78bfba8d8410cc93015249053 /buch/papers/fm
parentMerge pull request #54 from haddoucher/master (diff)
parentstarted e littel bit (diff)
downloadSeminarSpezielleFunktionen-0e61457d277865a7ffb3b4d9e3918cdee77cd60a.tar.gz
SeminarSpezielleFunktionen-0e61457d277865a7ffb3b4d9e3918cdee77cd60a.zip
Merge pull request #55 from JODBaer/master
started e littel bit
Diffstat (limited to 'buch/papers/fm')
-rw-r--r--buch/papers/fm/00_modulation.tex15
-rw-r--r--buch/papers/fm/01_AM.tex52
-rw-r--r--buch/papers/fm/02_FM.tex62
-rw-r--r--buch/papers/fm/03_bessel.tex33
-rw-r--r--buch/papers/fm/Python animation/Bessel-FM.ipynb84
-rw-r--r--buch/papers/fm/Python animation/Bessel-FM.py72
-rw-r--r--buch/papers/fm/Python animation/m_t.pgf746
-rw-r--r--buch/papers/fm/Quellen/NaT_Skript_20210920.pdfbin0 -> 5455101 bytes
-rw-r--r--buch/papers/fm/main.tex17
9 files changed, 976 insertions, 105 deletions
diff --git a/buch/papers/fm/00_modulation.tex b/buch/papers/fm/00_modulation.tex
index e2ba39f..982d63c 100644
--- a/buch/papers/fm/00_modulation.tex
+++ b/buch/papers/fm/00_modulation.tex
@@ -3,11 +3,22 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+
+Durch die Modulation wird ein Nachrichtensignal \(m(t)\) auf ein Trägersignal (z.B. ein Sinus- oder Rechtecksignal) abgebildet (kombiniert).
+Durch dieses Auftragen vom Nachrichtensignal \(m(t)\) kann das modulierte Signal in einem gewünschten Frequenzbereich übertragen werden.
+Der ursprünglich Frequenzbereich des Nachrichtensignal \(m(t)\) erstreckt sich typischerweise von 0 Hz bis zur Bandbreite \(B_m\).
+Beim Empfänger wird dann durch Demodulation das ursprüngliche Nachrichtensignal \(m(t)\) so originalgetreu wie möglich zurückgewonnen.
+Beim Trägersignal \(x_c(t)\) handelt es sich um ein informationsloses Hilfssignal.
+Durch die Modulation mit dem Nachrichtensignal \(m(t)\) wird es zum modulierten zu übertragenden Signal.
+Für alle Erklärungen wird ein sinusförmiges Trägersignal benutzt, jedoch kann auch ein Rechtecksignal,
+welches Digital einfach umzusetzten ist,
+genauso als Trägersignal genutzt werden kann.\cite{fm:NAT}
+
\subsection{Modulationsarten\label{fm:section:modulation}}
Das sinusförmige Trägersignal hat die übliche Form:
\(x_c(t) = A_c \cdot \cos(\omega_c(t)+\varphi)\).
-Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert wird.
+Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert werden können.
Der Parameter \(\omega_c\), die Trägerkreisfrequenz bzw. die Trägerfrequenz \(f_c = \frac{\omega_c}{2\pi}\),
steht nicht für die modulation zur verfügung, statt dessen kann durch ihn die Frequenzachse frei gewählt werden.
\newblockpunct
@@ -25,6 +36,8 @@ die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omeg
\item PM
\item FM
\end{itemize}
+Um modulation zu Verstehen ist es am Anschaulichst mit der AM Amplitudenmodulation,
+da Phasenmodulation und Frequenzmodulation den gleichen Parameter verändert vernachlässige ich die Phasenmodulation ganz.
To do: Bilder jeder Modulationsart
diff --git a/buch/papers/fm/01_AM.tex b/buch/papers/fm/01_AM.tex
index 21927f5..714b9a0 100644
--- a/buch/papers/fm/01_AM.tex
+++ b/buch/papers/fm/01_AM.tex
@@ -11,19 +11,61 @@ Nun zur Amplitudenmodulation verwenden wir das bevorzugte Trägersignal
\[
x_c(t) = A_c \cdot \cos(\omega_ct).
\]
-Dies bringt den grossen Vorteil das, dass modulierend Signal sämtliche Anteile im Frequenzspektrum inanspruch nimmt
-und das Trägersignal nur zwei komplexe Schwingungen besitzt.
+Dies bringt den grossen Vorteil das, dass modulierend Signal sämtliche Anteile im Frequenzspektrum in Anspruch nimmt
+und das Trägersignal nur zwei komplexe Schwingungen besitzt.
Dies sieht man besonders in der Eulerischen Formel
\[
x_c(t) = \frac{A_c}{2} \cdot e^{j\omega_ct}\;+\;\frac{A_c}{2} \cdot e^{-j\omega_ct}.
+ \label{fm:eq:AM:euler}
\]
Dabei ist die negative Frequenz der zweiten komplexen Schwingung zwingend erforderlich, damit in der Summe immer ein reellwertiges Trägersignal ergibt.
Nun wird der Parameter \(A_c\) durch das Modulierende Signal \(m(t)\) ersetzt, wobei so \(m(t) \leqslant |1|\) normiert wurde.
-\newline
-\newline
+
+Dabei entseht wine Umhüllende kurve die unserem ursprünglichen signal \(m(t)\) entspricht.
+\[
+ x_c(t) = m(t) \cdot \cos(\omega_ct).
+\]
+
+\begin{figure}
+ \centering
+ \input{papers/fm/Python animation/m_t.pgf}
+ \caption{modulierende Signal \(m(t)\)}
+ \label{fig:bessel}
+\end{figure}
+%
TODO:
+Bilder
Hier beschrieib ich was AmplitudenModulation ist und mache dan den link zu Frequenzmodulation inkl Formel \[\cos( \cos x)\]
so wird beschrieben das daraus eigentlich \(x_c(t) = A_c \cdot \cos(\omega_i)\) wird und somit \(x_c(t) = A_c \cdot \cos(\omega_c + \frac{d \varphi(t)}{dt})\).
Da \(\sin \) abgeleitet \(\cos \) ergibt, so wird aus dem \(m(t)\) ein \( \frac{d \varphi(t)}{dt}\) in der momentan frequenz. \[ \Rightarrow \cos( \cos x) \]
+\subsection{Frequenzspektrum}
+Das Frequenzspektrum ist eine Darstellung von einem Signal im Frequenzbereich, das heisst man erkennt welche Frequenzen in einem Signal vorhanden sind.
+Dafür muss man eine Fouriertransformation vornehmen.
+Wird aus dieser Gleichung \eqref{fm:eq:AM:euler}die Fouriertransformation vorggenommen, so erhält man
-\subsection{Frequenzspektrum} \ No newline at end of file
+%
+%Ein Ziel der Modulation besteht darin, mehrere Nachrichtensignale von verschiedenen Sendern gleichzeitig
+%in verschiedenen Frequenzbereichen über den gleichen Kanal zu senden. Um dieses Frequenzmultiplexing
+%störungsfrei und mit eine Vielzahl von Teilnehmern durchführen zu können, muss die spektrale Beschaffen-
+%heit der modulierten Signale möglichst gut bekannt sein.
+%Dank des Modulationssatzes der Fouriertransformation lässt sich das Spektrum eines gewöhnlichen AM Si-
+%gnals sofort bestimmen:
+%A c μ
+%F
+%·(M n (ω−ω c ) + M n (ω+ω c )) (5.5)
+%A c ·(1+μm n (t))·cos(ω c t) ❝ s A c π (δ(ω−ω c ) + δ(ω+ω c )) +
+%2
+%Das zweiseitige Spektrum des Nachrichtensignals M (ω) wird mit dem Faktor A 2 c μ gewichtet und einmal
+%nach +ω c und einmal nach −ω c verschoben. Dies führt im Vergleich zum Basisbandsignal zu einer Verdop-
+%pelung der Bandbreite mit je einem Seitenband links und rechts der Trägerfrequenz. Weiter beinhaltet das
+%Amplitudendichtespektrum je eine Deltafunktion mit Gewicht A c π an den Stellen ±ω c , d.h. ein fester, nicht-
+%modulierter Amplitudenanteil bei der eigentlichen Trägerfrequenz.
+%Das Amplitudendichtespektrum ist im nachfolgenden Graphen für A c = 1 und μ = 100% dargestellt.5.3. Gewöhnliche Amplitudenmodulation
+%47
+%Abbildung 5.12: Amplitudendichtespektrum von gewöhnlicher AM
+%Für das Nachrichtensignal wurde in diesem Graph mit einem Keil symbolhaft ein Amplitudendichtespektrum
+%|M (ω)| gewählt, bei welchem der Anteil auf der positiven und jener auf der negativen Frequenzachse visuell
+%gut auseinandergehalten werden können. Ein solch geformtes Spektrum wird aber in der Praxis kaum je
+%auftreten: bei periodischen Testsignalen besteht das Nachrichtensignal aus einem Linienspektrum, bei einem
+%Energiesignal mit zufälligem Verlauf aus einem kontinuierlichen Spektrum, welches jedoch nicht auf diese
+%einfache Art geformt sein wird \ No newline at end of file
diff --git a/buch/papers/fm/02_FM.tex b/buch/papers/fm/02_FM.tex
index fedfaaa..a01fb69 100644
--- a/buch/papers/fm/02_FM.tex
+++ b/buch/papers/fm/02_FM.tex
@@ -6,9 +6,65 @@
\section{FM
\label{fm:section:teil1}}
\rhead{FM}
-\subsection{Frequenzspektrum}
-TODO
-Hier Beschreiben ich FM und FM im Frequenzspektrum.
+\subsection{Frequenzmodulation}
+(skript Nat ab Seite 60)
+Als weiterer Parameter, um ein sinusförmiges Trägersignal \(x_c = A_c \cdot \cos(\omega_c t + \varphi)\) zu modulieren,
+bietet sich neben der Amplitude \(A_c\) auch der Phasenwinkel \(\varphi\) oder die momentane Frequenzabweichung \(\frac{d\varphi}{dt}\) an.
+Bei der Phasenmodulation (Englisch: phase modulation, PM) erzeugt das Nachrichtensignal \(m(t)\) eine Phasenabweichung \(\varphi(t)\) des modulierten Trägersignals im Vergleich zum nicht-modulierten Träger. Sie ist pro-
+%portional zum Nachrichtensignal \(m(t)\) durch eine Skalierung mit der Phasenhubkonstanten (Englisch: phase deviation constant)
+%k p [rad],
+%welche die Amplitude des Nachrichtensignals auf die Phasenabweichung des
+%modulierten Trägersignals abbildet: φ(t) = k p · m(t). Damit ergibt sich für das phasenmodulierte Trägersi-
+%gnal:
+%x PM (t) = A c · cos (ω c t + k p · m(t))
+%(5.16)
+%Die modulierte Phase φ(t) verändert dabei auch die Momentanfrequenz (Englisch: instantaneous frequency)
+%ω i
+%, welche wie folgt berechnet wird:
+%f i = 2π
+%ω i (t) = ω c +
+%d φ(t)
+%dt
+%(5.17)
+%Bei der Frequenzmodulation (Englisch: frequency modulation, FM) ist die Abweichung der momentanen
+%Kreisfrequenz ω i von der Trägerkreisfrequenz ω c proportional zum Nachrichtensignal m(t). Sie ergibt sich,
+%indem m(t) mit der (Kreis-)Frequenzhubkonstanten (Englisch: frequency deviation constant) k f [rad/s] ska-
+%liert wird: ω i (t) = ω c + k f · m(t). Diese sich zeitlich verändernde Abweichung von der Kreisfrequenz ω c
+%verursacht gleichzeitig auch Schwankungen der Phase φ(t), welche wie folgt berechnet wird:
+%φ(t) =
+%Z t
+%−∞
+%ω i (τ ) − ω c dτ =
+%Somit ergibt sich für das frequenzmodulierte Trägersignal:
+%
+%Z t
+%−∞
+%x FM (t) = A c · cos  ω c t + k f
+%k f · m(t) dτ
+%Z t
+%−∞
+%
+%m(τ ) dτ 
+%(5.18)
+%(5.19)
+%Die Phase φ(t) hat dabei einen kontinuierlichen Verlauf, d.h. das FM-modulierte Signal x FM (t) weist keine
+%Stellen auf, wo sich die Phase sprunghaft ändert. Aus diesem Grund spricht man bei frequenzmodulierten
+%Signalen – speziell auch bei digitalen FM-Signalen – von einer Modulation mit kontinuierlicher Phase (Eng-
+%lisch: continuous phase modulation).
+%Wie aus diesen Ausführungen hervorgeht, sind Phasenmodulation und Frequenzmodulation äquivalente Mo-
+%dulationsverfahren. Beide variieren sowohl die Phase φ wie auch die Momentanfrequenz ω i . Dadurch kann
+%man leider nicht – wie vielleicht erhofft – je mit einem eigenen Nachrichtensignal ein gemeinsames Trägersi-
+%gnal unabhängig PM- und FM-modulieren, ohne dass sich diese Modulationen für den Empfänger untrennbar
+%vermischen würden.
+%
+%Um die mathematische Behandlung der nicht-linearen Winkelmodulation etwas zu verkürzen, ist es aufgrund
+%dieser Äquivalenzen gerechtfertigt, dass PM und FM gemeinsam behandelt werden. Jeweils vor der Modu-
+%lation bzw. nach der Demodulation kann dann noch eine Differentiation oder Integration durchgeführt wird,
+%um von der einen Modulationsart zur anderen zu gelangen.
+%\subsection{Frequenzbereich}
+%Nun
+%TODO
+%Hier Beschreiben ich FM und FM im Frequenzspektrum.
%Sed ut perspiciatis unde omnis iste natus error sit voluptatem
%accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
%quae ab illo inventore veritatis et quasi architecto beatae vitae
diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex
index 5f85dc6..3c2cb71 100644
--- a/buch/papers/fm/03_bessel.tex
+++ b/buch/papers/fm/03_bessel.tex
@@ -67,7 +67,7 @@ Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal
=
\cos(\omega_c t + \beta\sin(\omega_mt))
=
- \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_ct)\sin(\beta\sin(\omega_m t)).
+ \cos(\omega_c t)\cos(\beta\sin(\omega_m t)) - \sin(\omega_ct)\sin(\beta\sin(\omega_m t)).
\label{fm:eq:start}
\]
%-----------------------------------------------------------------------------------------------------------
@@ -89,23 +89,34 @@ mit hilfe der Besselindentität \eqref{fm:eq:besselid1} zum
\end{align*}
%intertext{} Funktioniert nicht.
wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) ersetzt wurden.
+Nun kann die Summe in zwei Summen
\begin{align*}
c(t)
&=
- J_0(\beta) \cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \underbrace{\cos((\omega_c - 2k \omega_m) t)} \,+\, \cos((\omega_c + 2k \omega_m) t) \}
+ J_0(\beta) \cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \cos((\omega_c - 2k \omega_m) t) \,+\, \cos((\omega_c + 2k \omega_m) t) \}
\\
&=
- \sum_{k=-\infty}^{-1} J_{2k}(\beta) \overbrace{\cos((\omega_c +2k \omega_m) t)}
- \,+\,J_0(\beta)\cdot \cos(\omega_c t+ 2\cdot0 \omega_m)
+ \sum_{k=\infty}^{1} J_{2k}(\beta) \underbrace{\cos((\omega_c - 2k \omega_m) t)}
+ \,+\,J_0(\beta)\cdot \cos(\omega_c t)
\,+\, \sum_{k=1}^\infty J_{2k}(\beta)\cos((\omega_c + 2k \omega_m) t)
\end{align*}
-wird.
-Das Minus im Ersten Term wird zur negativen Summe \(\sum_{-\infty}^{-1}\) ersetzt.
-Da \(2k\) immer gerade ist, wird es durch alle negativen und positiven Ganzzahlen \(n\) ersetzt:
+aufgeteilt werden.
+Wenn bei der ersten Summe noch \(k\) von \(-\infty \to -1\) läuft, wird diese summe zu \(\sum_{k=-1}^{-\infty} J_{-2k}(\beta) {\cos((\omega_c + 2k \omega_m) t)} \)
+Zudem kann die Besselindentität \eqref{fm:eq:besselid3} gebraucht werden. \(n \) wird mit \(2k\) ersetzt, da dies immer gerade ist so gilt: \(J_{-n}(\beta) = J_n(\beta)\)
+Somit bekommt man zwei gleiche Summen
+\begin{align*}
+ c(t)
+ &=
+ \sum_{k=-\infty}^{-1} J_{2k}(\beta) \cos((\omega_c + 2k \omega_m) t)
+ \,+\,J_0(\beta)\cdot \cos(\omega_c t+ 2 \cdot 0 \omega_m)
+ \,+\, \sum_{k=1}^\infty J_{2k}(\beta)\cos((\omega_c + 2k \omega_m) t)
+\end{align*}
+Diese können wir vereinfachter schreiben,
\begin{align*}
\sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n \omega_m) t),
\label{fm:eq:gerade}
\end{align*}
+da \(2k\) für alle negativen, wie positiven geraden Zahlen zählt.
%----------------------------------------------------------------------------------------------------------------
\subsubsection{Sin-Teil}
Nun zum zweiten Teil des Term \eqref{fm:eq:start}, den Sin-Teil
@@ -157,14 +168,14 @@ jedoch so \(-1 \cdot J_{-n}(\beta) = J_n(\beta)\) und daraus wird dann:
\sum_{n=- \infty}^{-1} J_{n}(\beta) \cos((\omega_c + n \omega_m) t)
\,+\, \sum_{n=1}^\infty J_{n}(\beta) \cos((\omega_c + n\omega_m) t)
\end{align*}
-Da \(n\) immer ungerade ist und \(0\) nicht zu den ungeraden zahlen zählt, kann man dies so vereinfacht
+Da \(n\) immer ungerade ist und \(0\) nicht zu den ungeraden Zahlen zählt, kann man dies so vereinfacht
\[
s(t)
=
- \sum_{n\, \text{ungerade}} -1 \cdot J_{n}(\beta) \cos((\omega_c + n\omega_m) t).
+ \sum_{n\, \text{ungerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t).
\label{fm:eq:ungerade}
\]
-schreiben.
+, mit allen positiven und negativen Ganzzahlen schreiben.
%------------------------------------------------------------------------------------------
\subsubsection{Summe Zusammenführen}
Beide Teile \eqref{fm:eq:gerade} Gerade
@@ -179,7 +190,7 @@ ergeben zusammen
\[
\cos(\omega_ct+\beta\sin(\omega_mt))
=
- \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t).
+ \sum_{k= -\infty}^\infty J_{n}(\beta) \cos((\omega_c+ n\omega_m)t).
\]
Somit ist \eqref{fm:eq:proof} bewiesen.
\newpage
diff --git a/buch/papers/fm/Python animation/Bessel-FM.ipynb b/buch/papers/fm/Python animation/Bessel-FM.ipynb
index 74f1011..4074765 100644
--- a/buch/papers/fm/Python animation/Bessel-FM.ipynb
+++ b/buch/papers/fm/Python animation/Bessel-FM.ipynb
@@ -11,11 +11,12 @@
"from scipy.fft import fft, ifft, fftfreq\n",
"import scipy.special as sc\n",
"import scipy.fftpack\n",
+ "import matplotlib.pyplot as plt\n",
"import matplotlib as mpl\n",
"# Use the pgf backend (must be set before pyplot imported)\n",
- "mpl.use('pgf')\n",
- "import matplotlib.pyplot as plt\n",
- "from matplotlib.widgets import Slider\n",
+ "# mpl.use('pgf')\n",
+ "\n",
+ "\n",
"def fm(beta):\n",
" # Number of samplepoints\n",
" N = 600\n",
@@ -27,7 +28,7 @@
" #beta = 1.0\n",
" y_old = np.sin(fc * 2.0*np.pi*x+beta*np.sin(fm * 2.0*np.pi*x))\n",
" y = 0*x;\n",
- " xf = fftfreq(N, 1 / 400)\n",
+ " xf = fftfreq(N, 1 / N)\n",
" for k in range (-4, 4):\n",
" y = sc.jv(k,beta)*np.sin((fc+k*fm) * 2.0*np.pi*x)\n",
" yf = fft(y)/(fc*np.pi)\n",
@@ -42,12 +43,24 @@
},
{
"cell_type": "code",
- "execution_count": 114,
+ "execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD6CAYAAACxrrxPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcIUlEQVR4nO3de5Bc5Xnn8e+jGd01uqEBZI2EBAgbOQ4LjLmEmFDYiQV2oVR8KXA5xolj1a6N1y6zu8bxFuslySZA7TqbMjHROk5CYlsW9m6sxYpl7OBy1gZZEheBJCCDBLoije7SzGiuz/7Rp3vO9PT0nJFOd59++/epmuo+F/W8b2vm1+885z3nmLsjIiL1b1KtGyAiIulQoIuIBEKBLiISCAW6iEggFOgiIoFQoIuIBGLcQDezb5jZYTN7aYztZmZ/YWYdZrbNzK5Jv5kiIjKe5gT7/C3wVeCxMbbfBiyPvq4HvhY9lrVgwQJfunRpokaKiEjO1q1bj7h7a6lt4wa6u//MzJaW2WUV8JjnzlB6xszmmtlCdz9Y7nWXLl3Kli1bxvv2IiISY2ZvjLUtjRr6ImBvbHlftE5ERKqoqgdFzWy1mW0xsy2dnZ3V/NYiIsFLI9D3A4tjy23RulHcfY27t7t7e2tryRKQiIicozQCfT3wsWi2yw3AyfHq5yIikr5xD4qa2beBW4AFZrYP+C/AZAB3fxTYANwOdADdwO9VqrEiIjK2JLNc7hpnuwOfTq1FIiJyTnSmqIhIIBTokknuzne37uNs/2Ctm1I1P95xiEOnzta6GVLHFOiSST/ZeZj/8PgL/PcfvVLrplTNHzy2hd/5y1/UuhlSxxTokkmnzvYDcORMX41bUl37T/TUuglSxxToIiKBUKCLZIBu1i5pUKCLiARCgS6SARqgSxoU6CIigVCgi2SABuiSBgW6iEggFOgiGaBZLpIGBbqISCAU6CIZoPG5pEGBLpmmUoRIcgp0kQzQ55akQYEumWZmtW5CVbiKLpICBbqISCAU6CIZoJKLpEGBLiISCAW6iEggFOgiIoFQoItkgGrokgYFuohIIBToIhmgeeiSBgW6iEggFOgiGaAauqRBgS4iEggFukgGaIAuaVCgi2SALhMsaVCgi4gEQoEukgEan0saEgW6ma00s1fMrMPM7iuxfYmZPWVmz5nZNjO7Pf2miohIOeMGupk1AY8AtwErgLvMbEXRbv8ZWOfuVwN3An+ZdkNFQqYSuqQhyQj9OqDD3Xe5ex+wFlhVtI8Ds6Pnc4AD6TVRRESSaE6wzyJgb2x5H3B90T5fBn5kZp8BZgLvSaV1Io1CI3RJQVoHRe8C/tbd24Dbgb83s1GvbWarzWyLmW3p7OxM6VuLiAgkC/T9wOLYclu0Lu4TwDoAd38amAYsKH4hd1/j7u3u3t7a2npuLRYJkC7OJWlIEuibgeVmtszMppA76Lm+aJ89wLsBzOxKcoGuIbiISBWNG+juPgDcA2wEdpKbzbLdzB4wszui3e4FPmlmLwDfBj7uOvVNJDH9tkgakhwUxd03ABuK1t0fe74DuCndpok0DuW5pEFnioqIBEKBLpIBqlBKGhToIiKBUKCLZIDG55IGBbpkmkoRIskp0EUyQJ9bkgYFumSamdW6CSJ1Q4EukgE69V/SoEAXEQmEAl0kCzRAlxQo0EUyQHkuaVCgi4gEQoEukgGatihpUKCLiARCgS6SAZq2KGlQoEum6dR/keQU6CIZoM8tSYMCXTJNp/6LJKdAF8kADdAlDQp0EZFAKNBFMkAHfyUNCnSRDFCeSxoU6CIigVCgi4gEQoEumabaskhyCnSRDNDnlqRBgS4iEggFukgG6OJckgYFumSaTv0XSU6BLpIBqqFLGhToIiKBUKCLZIAG6JKGRIFuZivN7BUz6zCz+8bY58NmtsPMtpvZt9JtpoiIjKd5vB3MrAl4BPhNYB+w2czWu/uO2D7LgS8CN7n7cTO7sFINFgmRTqCSNCQZoV8HdLj7LnfvA9YCq4r2+STwiLsfB3D3w+k2UyRsinNJQ5JAXwTsjS3vi9bFXQFcYWY/N7NnzGxlWg2UxqaRq0hy45ZcJvA6y4FbgDbgZ2b2Dnc/Ed/JzFYDqwGWLFmS0rcWqX/63JI0JBmh7wcWx5bbonVx+4D17t7v7ruBV8kF/Ajuvsbd2929vbW19VzbLA1EJxaJJJck0DcDy81smZlNAe4E1hft84/kRueY2QJyJZhd6TVTJHQaosv5GzfQ3X0AuAfYCOwE1rn7djN7wMzuiHbbCBw1sx3AU8B/dPejlWq0iIiMlqiG7u4bgA1F6+6PPXfg89GXiEyQauiSBp0pKiISCAW6SAZogC5pUKCLiARCgS6Z4O4NfRJRqa43+nsiE6dAl0y4/r/9hBv+9Ce1bkbNlLpj0df/ZTfLvriBk939NWiR1KO0zhQVOS+HT/eWXN/II9S1m/cA0HnmLHNmTK5xa6QeaIQumdRoOd5o/ZXKUKBLJuXzrZFP/VfGy0Qp0EUyQCN0SYMCXTKpkWvneY37t4mcKwW6SAaUmuUiMlEKdMkkxZvIxCnQRTJAFSZJgwJdsqlEwH1n8x7uXfdC9dtSAd9/fj+f/taztW6GBEaBLpkWPzj6he+9yPee3VfD1qTns2uf5wfbDta6GRIYBbpkUqMdJCx5LZfqN0PqnAJdJPM0gVGSUaBLJjXaQcJG+4tEKkOBLpmkU/9FJk6BLpIB5f8i0ehdklGgSyY1WsmlFP1tIhOlQBfJAH1+SRoU6JJJOkgoMnEKdJEMKHV1SX2kyUQp0CWTVEMXmTgFumRao1wXvXwvdXhUklGgSyY1RowPf2A1yOeWVJgCXbKpQRJuKFE3G+O9kPOnQBepoeGS0tih3SCfbZICBbpkUqOc+p8kq5XnkpQCXaSGhhLU0DVCl6QU6JJJjRJiSfqpk6wkqUSBbmYrzewVM+sws/vK7PcBM3Mza0+viSLhU2RLGsYNdDNrAh4BbgNWAHeZ2YoS+7UAnwU2pd1IaTyNMv98KEE/G+StkBQkGaFfB3S4+y537wPWAqtK7PdHwIPA2RTbJxK0fFirhi5pSBLoi4C9seV90boCM7sGWOzuP0ixbdLAGiXDEo3QG+bdkPN13gdFzWwS8D+AexPsu9rMtpjZls7OzvP91tIAQi+9FGahl+ln4G+BpChJoO8HFseW26J1eS3ArwA/NbPXgRuA9aUOjLr7Gndvd/f21tbWc2+1BK9RQqxR+inVkSTQNwPLzWyZmU0B7gTW5ze6+0l3X+DuS919KfAMcIe7b6lIi6UhlDuxKKRRe+FaLmX3qU5bpP6NG+juPgDcA2wEdgLr3H27mT1gZndUuoEixUIKuEQHRVVDl4Sak+zk7huADUXr7h9j31vOv1nS6MrWlKvYjkrTvaElTTpTVOpOkpkh9aJw6r8uziUpUKBL3Qkp4JKd+i+SjAJd6k5INeVCaalUl6xoH5FxKNAlkxrlzEldPlfSpECXTAt9dFpugF68j8h4FOiSSY1ykDDZAd6AOiwVpUCXuhNUDT3/2CAlJqksBbpkUrkQS3Zj5fpQtqQUUD+lOhTokkmNc+p/9FiuxFSltkj9U6BL3Qkp4HQ9dEmTAl0yqVECLtkdiwLqsFSUAl3qT0D55kWP5fYRGY8CXTKpfE05nIhLMvrWAF2SUqBL3Qkp4IYKNfQSncqf+h/QB5hUlgJdMqn8tMWQAk5X55L0KNAl00qNXEPKt8IIvdTGkDoqVaFAl7oT0gBdl8+VNCnQpe6EVFMu9KVBpmlKZSnQJZMa5ZT4oaHx9wnpA0wqS4EumZTP85Kn/le5LZWUD+tGubqkVJYCXepOSAGX6NT/6jRFAqBAl0wqF2IhTVtMdFA0oP5KZSnQpe6EFG+FkotG6JICBbpkUvmLc4UTceWu7e6jnoiUp0CXTCt5YlFAAZfvX0BdkhpSoEsmNcpUvXK9tMI+jfFeyPlToEvdCXKEXqZTIfVXKkuBLplU/iBhOAmXbJZL5dshYVCgS90J6ibRRY/l9hEZjwJdMqlswAU0ZB1K8OkUUn+lshTokk1lZn+EFG+FEbrmoUsKFOhSd0IasA6f9aqDonL+EgW6ma00s1fMrMPM7iux/fNmtsPMtpnZT8zskvSbKo2k/Mg1oITTyFxSNG6gm1kT8AhwG7ACuMvMVhTt9hzQ7u6/CnwXeCjthorkhTRiTVJyUbRLUklG6NcBHe6+y937gLXAqvgO7v6Uu3dHi88Abek2UxrF8LzsaLnUPtVrTsUludBYSB9gUllJAn0RsDe2vC9aN5ZPAP90Po0SySs1wyPEqy1q2qKkoTnNFzOzjwLtwG+MsX01sBpgyZIlaX5rqWPx0HYHs8a54UOiU/8D6q9UVpIR+n5gcWy5LVo3gpm9B/gScIe795Z6IXdf4+7t7t7e2tp6Lu2VAMUDqzi7SpZcAgq4oaISUykhnRkrlZUk0DcDy81smZlNAe4E1sd3MLOrgb8iF+aH02+mhCweV8U19NL7BxRwOvVfUjRuoLv7AHAPsBHYCaxz9+1m9oCZ3RHt9jAwC3jczJ43s/VjvJzIKCNKLkWPpQIvpIArjNDLlZiq1Ripe4lq6O6+AdhQtO7+2PP3pNwuaVAhhXUSOkNU0qQzRaXmRpRcim7JVmrkGtQsl/xjg9yhSSpLgS41N+KgaIPVlEP6cJLaU6BLzZUahZe7eXJIEZhoHnpIHZaKUqBLzSUZoY+cqx5Owg0OJbhjUVAfYVJJCnTJlEJ45R+ix/7B0TNhQjAwNDTuPgF9fkmFKdCl5pLMOY8HX0gBF/+gGktI/ZXKUqBL1bk7e452Dy8TL6fk143UPzByLkwo+gfHHqEXTv2PrTt6ppczvQMVbZPULwW6VN0/bNrDzQ8/xfN7T4zaNurU/3zJJTZCD+Geohal9UAU6EkP/l77xz/mlod/WrF2SX1ToEvVbXn9GAC7j5wBig+Klj5IGB/JhlCCaJ6US/S+RCWXkfscOVPyUkkiCnSpvVLFlOLSy0D8oGgAid48KferVxih69R/SYECXWqu+PK5pYwYoVe6QVWQH6EPJKkfhdBhqQoFulSdFS17iYXikfqIaYsBBFxTU1RyGRi7hp6neeiSlAJdqs5sZKSPvB566fAaOUIf3mfrG8c4fbY/3QZWwC9eO1II7zjNQ5c0KdCl6kbdiafEmaLDIZZ7MmJ6X7Tt1Nl+PvC1p/nMt5+rUEvTsePAKT7yvzbxJz/YUVhX/JeHrrooaVCgS82NmIdevC1aEa8155929w4CucDMsvxfEDsODrczf1Gu/sJB0bFphC5JKdCl5kpNWyy+CmH/wOiSS09/LtAnN2X7x3hyc659I0ouhRH62CWXwhROjdEloWz/JkiYoppLuZFn78DIkWt/iRF6V3TG5NTmbP8YN0XHDHoH4idHRZc0KJRcxg/toRDOqJKKyvZvgjSEUvPQe6PRd+9A7nEgNpI9G23r7ss9Tsl4oOcPfBbKK+6cHcivy/W4t8QB0/zB41JlJ5FSsv2bIEEbnpo4ekri2SjIu6I6ebw00dOX35YboWc90Pui69D0RX3oGxwqXDY336/uvuHrsxSP1vNLgwp0GUe2fxMkSBbVXPIlhFK3oDvbPzLo4vPQu6J1+ces19DzoZ2voecP5sLw6L0rtm7UaD1fnkkwxVEaW7Z/EyRoA4WbO8RWRs97JzJCz3ig54O4EOj9w+GdH73HR+jFgV7q8gcipWT7N0GCNjg0+jom+WfFI/T4JWO7+0aGfb2UXPJ/ZfTEwvtMb25KY1dfbIQeC3xQDV2Sy/ZvggQpf6JooYxS4sSi/IHPfNAdPdMHQNMkKwR6d72WXKL2N08yjnflAr079oGV/zDLy9fUVUOX8TTXugHSuAbL1tBzodc3MET/4BDHu/uYO2My7sMj3DPRCN2KLw6TMYWSy+DIQF80bzpHu3IfVPERev6A8PA89Jxyc9ZFQCN0qYF8/pYqIXihhj4cXt29gxzt6mP+jCnMmNI0aoSe9aAbebel4WMAbfOmc7y7D3cfWUPvL90fjdBlPAp0qZlSd+uJ19BnTc39AXno9FmOnull/swptExr5mRPrkyRr6tnPdD7itqXb/+S+TMZHHJOdPfz5smztET9zY/Q84Zr6Nnup9SeAl2qrjBro1ByGX3zip6+Aa5c2ALA7iNddBw+w7IFM1k4ZzoHTvYAw9P/ktxouZbiJ0UNDjn7T+Taf9PlFwDw8pun2XushysXzgaGZ+/kFb9fImNRoEvV5eefD5aYtuieu5hVV98g71w6H4CfvdrJkTN9XLlwNovmTefAibPA8Dz0rI/Q4x84Pf2DHDjRw7wZk7n2knkAPLHtAH2DQ7xzWW758KmRt5jzossEiIxFgS5Vlx9p9hemLY508GQusN96cQtXtc3hm5v2AHDzFa20zZvOsa4+Tvb0F0ayWQ/0eMmlq3eAN4520zZvBhfPnsZbL2op9O+D1y4GKPwFUkwjdBmPAl2qLj8yH+vCVPmSxFvmTudzv3kFLdOaufvGS7j8wln8m7a5QO7GFnuO9Yx4nayKt29XZxfP7TnOVYvnYGZ84ba30jK1mY//2lKWLZhJa8tUDkT9H3Utl4x/cEntadqiVNwvdx9j4ZxpLJ4/Axg+uHc8mrIXz/OTPf1s23sSM7jiwhbmzJjMi19+b2H71Uvm0TK1mT/5wU6OnMmVJrr7Rh5EzJru/uGa+Jf+8UW6+ga5eXkrALe+7SJe/K/D/XvrRS1s23cSGL6Oev4Yw7Ho/YJc2WrSJGNgcIgNL73J+9+xkEmTMj5/UypOI3SpuA//1dP8xsNPFZbzI9b8SDxu58FTPLnzTVYsnM2cGZNHbZ8+pYnVN1/Ka51dzJjSxO9cs4gDJ3oKZZdXD53m4Bgli2rpGxjiFx1HCst7j3Vz6YKZ/PrlC9jV2cXb3zKbW992Ycl/e+NlF/Dym6d5af9JjpwZ+YGXL0XBcBnnr//fbv79t5/j/247UKHeSD1JFOhmttLMXjGzDjO7r8T2qWb2nWj7JjNbmnpLpS7l51zHy7+vH+0CSgf6/d/fzkv7T3H3jUvHfM17br2cx37/Otbf8+v82mULGBhy9h7rBuC3vvIzbvzTf67pnO17H3+Bj3x9Ey/tz420d3V2sWzBTL720Wt49KPX8K1P3kDzGGe3fujaNqZPbuJDjz49atuB2Pu1J+pv/jEf/tLYxg10M2sCHgFuA1YAd5nZiqLdPgEcd/fLga8AD6bdUKlPxQf4jnX1setIF9MmT2Lf8R46Dp/h8Olc6eQj1y/hyoUtfPbdy/lQe9uYr2lm3HxFa66mvngOABu3H+JU7GbR+Q+NWvjR9jeB3K3xdh/p4pVDp7lq8Vxapk1m5a8sZM700X955F04exprPnYtb3/LbFbffClTmifRebqXoSHnX/71SOFmHlvfOA4MH4+IXx9GGleSGvp1QIe77wIws7XAKmBHbJ9VwJej598Fvmpm5kluwyJ1zd3pHRiiu2+Qnv5BDp06y67OLtovmceBkz08se1gYd/vP7+f72zeC8DXP/ZOPvXNrXz8b37JZa2zAPjMrZezcM70CX3/yy9s4eYrWnlo48s8vnVvYf1TLx+mbd50DOPnrx3hxksvYNrkphR6PJK7s/WN47TNm0Fry1T2HOsunOX64A9fZsidWVOay35AFXvX8lbeFdXYN+0+xhPbDrL3eDc7Dp7ioQ/8Kt/4+W4e+uHLTG6axHN7TgCw4cU3uXLhbJbMn8G+Ez0MDDpXLZ7DrKnNNE0ymidNYpINH2iVMNl4mWtmHwRWuvsfRMu/C1zv7vfE9nkp2mdftPxatM+RUq8J0N7e7lu2bJlwg5/fe4LffuTnE/53ki2XXDCDN452j1i3ZP6Mc7ouy+mzAyMOGGbRJRfMOKd/V+o9ypdZpH798HPv4m0Xzz6nf2tmW929vdS2qs5yMbPVwGqAJUuWnNNrzJ8xJc0mScom2XC9vLVlKpe1zuTi2dPYfuAUB070cONlFxRO6b968Vz6B52ndx3l6sVzaZmWzo/jmd4BfrzzcCqvdS7esWgOl7XOTOW1rmqby6bdR7n8wlm0zpoKwDVL5jLk8Oye4xzv6uPWKy+ip2+QVw+dZt/xbjRdPfvKld3OR5LfoP3A4thyW7Su1D77zKwZmAMcLX4hd18DrIHcCP1cGrzkghm8/mfvO5d/KiIStCSzXDYDy81smZlNAe4E1hftsx64O3r+QeCfVT8XEamucUfo7j5gZvcAG4Em4Bvuvt3MHgC2uPt64K+BvzezDuAYudAXEZEqSlS0dPcNwIaidffHnp8FPpRu00REZCJ0pqiISCAU6CIigVCgi4gEQoEuIhIIBbqISCDGPfW/Yt/YrBN4oybf/PwsAMa8pEGg1OfGoD7Xh0vcvbXUhpoFer0ysy1jXUchVOpzY1Cf659KLiIigVCgi4gEQoE+cWtq3YAaUJ8bg/pc51RDFxEJhEboIiKBUKCPw8zuNTM3swXRspnZX0Q3xN5mZtfE9r3bzP41+rp77FfNJjN72Mxejvr1f8xsbmzbF6M+v2Jm742tL3sD8XoTWn/yzGyxmT1lZjvMbLuZfTZaP9/Mnox+Zp80s3nR+jF/zuuNmTWZ2XNm9kS0vCy6mX1HdHP7KdH6+r/Zvbvra4wvcjft2EhuvvyCaN3twD8BBtwAbIrWzwd2RY/zoufzat2HCfb3t4Dm6PmDwIPR8xXAC8BUYBnwGrlLKTdFzy8FpkT7rKh1P86j/0H1p6hvC4FrouctwKvR/+tDwH3R+vti/+clf87r8Qv4PPAt4IloeR1wZ/T8UeDfRc8/BTwaPb8T+E6t2z7RL43Qy/sK8J+A+IGGVcBjnvMMMNfMFgLvBZ5092Pufhx4ElhZ9RafB3f/kbvnbx//DLm7U0Guz2vdvdfddwMd5G4eXriBuLv3AfkbiNer0PpT4O4H3f3Z6PlpYCewiFz//i7a7e+A346ej/VzXlfMrA14H/D1aNmAW8ndzB5G9zn/XnwXeLfV2V21FehjMLNVwH53f6Fo0yJgb2x5X7RurPX16vfJjdCgcfocWn9KikoJVwObgIvc/WC06U3gouh5KO/Fn5MblA1FyxcAJ2IDl3i/Cn2Otp+M9q8bVb1JdNaY2Y+Bi0ts+hLwh+RKEEEp12d3/360z5eAAeCb1WybVJ6ZzQK+B3zO3U/FB6Du7mYWzLQ3M3s/cNjdt5rZLTVuTlU0dKC7+3tKrTezd5CrFb8Q/cC3Ac+a2XWMfdPs/cAtRet/mnqjz9NYfc4zs48D7wfe7VExkfI3Ch/vBuL1JMkN0euWmU0mF+bfdPf/Ha0+ZGYL3f1gVFI5HK0P4b24CbjDzG4HpgGzgf9JrnzUHI3C4/1KdLP7TKt1Eb8evoDXGT4o+j5GHiz6ZbR+PrCb3AHRedHz+bVu+wT7uRLYAbQWrX87Iw+K7iJ3ALE5er6M4YOIb691P86j/0H1p6hvBjwG/HnR+ocZeVD0oeh5yZ/zev0iN9jKHxR9nJEHRT8VPf80Iw+Krqt1uyf61dAj9HO0gdwMgA6gG/g9AHc/ZmZ/BGyO9nvA3Y/Vponn7KvkQvvJ6C+TZ9z933rupuDryIX9APBpdx8EKHUD8do0/fz5GDdEr3Gz0nIT8LvAi2b2fLTuD4E/A9aZ2SfIzeb6cLSt5M95IL4ArDWzPwaeI3eTewjgZvc6U1REJBCa5SIiEggFuohIIBToIiKBUKCLiARCgS4iEggFuohIIBToIiKBUKCLiATi/wO3Cq7Lzsky6gAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAeIUlEQVR4nO3dfZAc9X3n8fdXu3pCqwfQrh7QAxKRMAiDDbXGduGzsU3OQlDS5ezYECd2HCe6OhtffHYlh487nOBLlR+uEh8XYoJ9rsQ+wqPPjuLIkTGGghgjkBACJCG0EhIroefn593Vfu+P6dntGU3P9O7O9Mx0f15VW5rp6Z35Tu/qM7/99q+7zd0REZHmN6reBYiISHUo0EVEUkKBLiKSEgp0EZGUUKCLiKSEAl1EJCUqBrqZfd/M9pnZqxGPm5ndY2ZdZvaymV1b/TJFRKSSOCP0vwMWl3n8JmBh8LUc+M7IyxIRkaGqGOju/jRwqMwqy4AfeM5zwBQzm1mtAkVEJJ7WKjzHLKA7dH9nsGx3uW9qb2/3efPmVeHlRUSyY+3atQfcvaPUY9UI9NjMbDm5tgxz585lzZo1Sb68iEjTM7MdUY9VY5bLLmBO6P7sYNl53P1+d+90986OjpIfMCIiMkzVCPQVwKeC2S7vAY66e9l2i4iIVF/FlouZPQjcALSb2U7gq8BoAHe/D1gJLAG6gFPAZ2pVrIiIRKsY6O5+W4XHHfh81SoSEZFh0ZGiIiIpoUAXEUkJBbqISEoo0KVu1u44zMa3jtW7jKZw4mwfP1lXcjawyIBEDywSCfvod54FYPvXb65zJY3vv//kVX68bhfz2ifwzjlT6l2ONCiN0EWawO6jpwE41dNX50qkkSnQRURSQoEuIpISCnQRkZRQoIuIpIQCXUQkJRToIiIpoUAXEUkJBbqISEoo0EVEUkKBLiKSEgp0EZGUUKCLiKSEAl1EJCUU6CIiKaFAFxFJCQW6SDPxehcgjUyBLiKSEgp0kWZi9S5AGpkCXUQkJRToIiIpoUAXEUkJBbqISEoo0EWaiaYtShkKdBGRlFCgizQTTVuUMhToIiIpoUAXEUmJWIFuZovNbLOZdZnZHSUen2tmT5rZOjN72cyWVL9UEREpp2Kgm1kLcC9wE7AIuM3MFhWt9t+AR9z9GuBW4G+qXaiIiJQXZ4R+HdDl7tvcvQd4CFhWtI4Dk4Lbk4G3qleiiAzQtEUpozXGOrOA7tD9ncC7i9b5M+DnZvYFYAJwY1WqExGR2Kq1U/Q24O/cfTawBPihmZ333Ga23MzWmNma/fv3V+mlRUQE4gX6LmBO6P7sYFnYZ4FHANz918A4oL34idz9fnfvdPfOjo6O4VUsIiIlxQn0F4CFZjbfzMaQ2+m5omidN4EPA5jZFeQCXUNwkWrTgUVSRsVAd/c+4HZgFbCJ3GyWDWZ2t5ktDVb7MvBHZrYeeBD4fXfX7hsRkQTF2SmKu68EVhYtuyt0eyNwfXVLExGRodCRoiIiKaFAFxFJCQW6SDPRnikpQ4EuIpISCnQRkZRQoIuIpIQCXaSZ6MAiKUOBLiKSEgp0EZGUUKCLNBNNW5QyFOgiIimhQBcRSQkFuohISijQRZqJpi1KGQp0EZGUUKCLiKSEAl2kmWjaopShQBcRSQkFuohISijQRURSQoEuIpISCnQRkZRQoIs0EU1ykXIU6CJNxJXoUoYCXUQkJRToIk3E1XSRMhToIiIpoUAXaSLqoUs5CnQRkZRQoIs0EQ3QpRwFuohISijQRZqIq4kuZcQKdDNbbGabzazLzO6IWOfjZrbRzDaY2T9Ut0wRAbVcpLzWSiuYWQtwL/CbwE7gBTNb4e4bQ+ssBL4CXO/uh81sWq0KFhGR0uKM0K8Dutx9m7v3AA8By4rW+SPgXnc/DODu+6pbpogAGqJLWXECfRbQHbq/M1gWdhlwmZn9ysyeM7PF1SpQRETiqdhyGcLzLARuAGYDT5vZVe5+JLySmS0HlgPMnTu3Si8tkh069F/KiTNC3wXMCd2fHSwL2wmscPded38DeJ1cwBdw9/vdvdPdOzs6OoZbs4iIlBAn0F8AFprZfDMbA9wKrCha5yfkRueYWTu5Fsy26pUpIqBD/6W8ioHu7n3A7cAqYBPwiLtvMLO7zWxpsNoq4KCZbQSeBP7E3Q/WqmiRrFKgSzmxeujuvhJYWbTsrtBtB74UfImISB3oSFGRJqIBupSjQBcRSQkFukgT0blcpBwFutTc4ZM9rN1xuN5lpNKuI6d5bc+xepchDUKBLjV323ef46PfebbeZaRC8fj8+q//ksXffqYutUjjUaBLzb2253i9S0gNdVykHAW6iEhKKNBFmoqG6BJNgS6J0QwNkdpSoIs0EX0mSjkKdEmMwkikthTokhjl+chpG0o5CnRJTLiHrn760BgG6K8cKU+BLolRFg2frlQkcSjQJTHh0aVGmsOjYJdyFOiSmDhhdK7f+S+PvcyWvdk8ujT//rv2ZfP9y8go0CUxBSP0iHW27j/Bw2u6+dwDLyZSU6PZsu84D6/p5vMPrCv5uP6ykXIU6CIiKaFAl7qImuWiEWhOVHtKm0fKUaBLYoYS1ma1q6OR5acnigyHAl0SEx51RmW7ZnHkRH34af6+lKNAl8Ro2uLwaeQucSjQJTHK8OHTXy4ShwJdElNw6H+FgMrqiLTSvgP9ZSPlKNAlMXGySIGVo80gw6FAl7qoFNzZneVSnlovUo4CXRITZ/StEbrI8CnQJTkK6xHTB56Uo0CXxBTMQ1cwlVU831znQ5c4FOiSGIVRZVH7DtQ7lzgU6JIYL7gdda4SBVc52jpSjgJdEjOUw9Yto9Nc9FeMjESsQDezxWa22cy6zOyOMut91MzczDqrV6KkUfS5SpKto9FUevs6l4uUUzHQzawFuBe4CVgE3GZmi0qsNxH4Y2B1tYuUdFAUVZbPa20rGY44I/TrgC533+buPcBDwLIS630N+AZwpor1SYrEuWJR1lXah6DtJuXECfRZQHfo/s5g2QAzuxaY4+7/XMXaJGUKpy2Wv8BFNjvooQ+9os0zcG4bJbqUMeKdomY2CvhL4Msx1l1uZmvMbM3+/ftH+tLSbOIcKZrxxFKLXEYiTqDvAuaE7s8OluVNBN4OPGVm24H3ACtK7Rh19/vdvdPdOzs6OoZftTQlj7gd1p8foWd0iF655aLEl2hxAv0FYKGZzTezMcCtwIr8g+5+1N3b3X2eu88DngOWuvuamlQsTSveuVw89rppFDn7R0EuMVQMdHfvA24HVgGbgEfcfYOZ3W1mS2tdoKRHnEP/+zOeW5VmuWT1g07iaY2zkruvBFYWLbsrYt0bRl6WZFcusdRyERk6HSkqifEYTfSsj0AHRuhRs4ASrEWajwJdEhPnXC7aKVqazrYocSjQJTFxDlvP+qHt/Z5vOWX0E01GRIEuiSk4UlQ7RUuq3HLJ+AaSshTo0lAUWApyGT4FuiQmzrlcBg/9z2bLQdMWZSQU6JKYOKPMrAdWxt++jJACXeoiqkc8uFMwyWoaR3+FnQgKfClHgS6JidVySaSSxlXx/Wf9TxgpS4EuiYkTRf0ZD6zBWS71rUOakwJdEhNus0QGVsaDLGo/w8CBRUkWI01HgS6JGcoIPaMt9IGNpGmKMhwKdElMYQ+9/BWLsqryRaKjlmd8wwmgQJdEVQ6dgR56Rqe5RO1DqHjhC+W5oECXBMU622IilTSuSsGsszBKOQp0aShZbx0M991nfbtJjgJdEhPnmqJZz6VKl+DT5CApR4EuiYk622J4dDlwPvSEamo0Oh+6jIQCXRIT61wuGR9rDrd1oqAXUKBLgqKmLYaXZ/6KRZV2ikYuV6KLAl0SFKcvXKmHnHZRh/5r2qLEoUCXxESNygvWyXgwVT6wKOMbSMpSoEti4hzlmA/97LZc1EOX4VOgS11o2mJpw72mqnroAgp0qZPCUfmgrE9bjPqo07RFiUOBLomJE0ZZ7xEP9+1nfLNJQIEuiYnaKRp1O4vybz/6nC06l4tEU6BLYmKN0DMeTcMfoWd7u0mOAl0SE+egmMEDi7LZRR/ufHPFuYACXRIU2UZQy2VA1CwXHVgkcSjQpS6iAijrl6Cr1DqJfFSBLijQJUGFp8/Vzr1yireDpi1KHAp0SYymLVY27J2i+igUYga6mS02s81m1mVmd5R4/EtmttHMXjazJ8zskuqXKs1P0xYrqdgr18W1pYyKgW5mLcC9wE3AIuA2M1tUtNo6oNPdrwYeA75Z7UKl+cUJnYEeekab6P39w/s+5blAvBH6dUCXu29z9x7gIWBZeAV3f9LdTwV3nwNmV7dMSYOoS9DFOQtjVgweWBTxeIwTnEl2xQn0WUB36P7OYFmUzwI/G0lRkk5DGqFndJ7LsM+2WOU6pDm1VvPJzOx3gU7gAxGPLweWA8ydO7eaLy1NoOCEXK5ReSkDI/QhRrS2oUC8EfouYE7o/uxgWQEzuxG4E1jq7mdLPZG73+/une7e2dHRMZx6JSWi2i/9WU+mSpegy/r2kbLiBPoLwEIzm29mY4BbgRXhFczsGuBvyYX5vuqXKWkQJ4qynlfD/UDTtEWBGIHu7n3A7cAqYBPwiLtvMLO7zWxpsNq3gDbgUTN7ycxWRDydZFj0VMXzz+WS0RZ6jEvQDfMbJRNi9dDdfSWwsmjZXaHbN1a5LkmhOKPIrLdc8m9/qFcuyvZWkzwdKSrJ8dJ3wov7zuXujW7J5hA9/6HXH5HounSflKNAl8TEyZxzwZE12Z22mPu3b4hDdPXQBRTokqA4h/v3BkGW1dZL/l1HjtCHeMCRZIsCXRITOYoMLe47lxuhZzWg8juIzxVtAI3AJQ4FutRFVDz1Bj30rAZYpZaLTjss5SjQJTGRLZdQHPX1a4QOcK4o0CudD10HHAko0KWKTp7t408eXc/RU70lH4+3UzQ/Qs+m/PsuDvSK31e0+j1PbOH5Nw5VpyhpGgp0qZoHn3+TR9fu5N6nuko+XnD+logzLOZbLllN9OiLQA/tg+4vH3+dj//tr6tTlDQNBbpUTT6MIi8GHeM58jtFszrLZdiH/mdzc0kRBbpUTcWLUoRCJ3whh3AW9Wa85RJl4AjSIe4slWxRoEtiwqHTc670pXkGpy1mM6CiznGT1xux3cKiQl/ST4EuVRfn4JdwMIWDSztFB9/5wP4EBrdH1AdheNsWz2GX7FCgS1309IUCPbR8YB56USa5OwdOlDzNftM6cbaP0z3nCpaF33dfib5UeLsVfF/o9lBnyEh6KNAlMeGwCgdTeLQ+OA+9MJS+98wbdP6PX9B96BRp8favruK9X3+iYFmpDzcYHJlHtVzC22uo54GR9FCgS9XFOWV3uHUQHqUOHilaaNWGPQDsOXamChU2jiNFc/bDs1z6QtvoTG9uG8UaoZ9ToGeVAl2qLs7RjOFgOtMbGqFHTFvMfwCMbkn3r2xBLzw00h4I9Bg99IJWjWRKuv93SEMpGKGHAv107+AIPR9i4ZAPrz8q5WfVPRPaFr2hQD89MEKv/PePeujZpUCXxBT00Eu0E2Cw5VK8szAf6L0pbyecCr3vvhJtqagReph66NmlQJcEhafklQ70fLsgPGqHwSDrixFozSbcijpd4sMN4EzwgdbTV7hdBp9j8HZfyj/0JJoCXarGgkNFI0/xGjHLpVSInerpK/jeNI/Qw+8//JdJ/j2f6/eK77/gMn7qoWeWAl3q4mxf6VkuR0/nZn2c6e0vOOKxt8K0vWZ24uzgh1d4Wxw/k98W54d8saidqZItCnSpmkqH6xfOsT6/5dLf7xw51TNwgegzfecHWZwecrMJh/ip3nOMCWbyHAk+3Ar/gomatqh56KJAlyoaOGw/xqH/pVouJ3r66HeYOXl8bnm4/ZCyEXp4FB3eEXqm5xwzp4wD4MipntyyiBF6wemINUIXFOhSRZVGhgUn5+rrZ9zoUYxpGcXBk7ngyl8YY8bkXKCdKnHAUVoCPfw+ThWM0PuYMSkf6LntcfBEbvtMHj+6oFUVdQUojdCzS4EuVVPpLH/h0Dlxto+2saOZPnkse4/mjv48HIxILy4R6Hlp2SnaV+KgIci95/a2sYxuMQ4Hgb472D4LprUV9NujtsQ57RTNLAW6VE3fQMul8kyMAyd6aG8bw8xJ4wcC683gPC1Xz54SrHP+ybhSM0LvKz1CP3D8LO1tY7h4yni6D+e2x56jpwF4+8WTOHq6d6DtEnUFKE1bzC4FulRNvncbdfrWcAAdPHmW9raxzLpwPNsPngSga98JzOD6Be3A4Mg03BPujZjl0WwKWy65UffJs30cO9PHjMnjWdDRxtZ9JwDYfvAU40aPYsH0iQAcClpU4a2sHrqAAl2qKD9CjxMoB0/0MLVtDO+YPZm9x86y68hpXuo+wvypE7hk6gXA4Mg0PCc9LS2XUicny594bObkcVw+cyJd+05w7Ewv6948zNWzp9DRNhYY/MslauezeujZpUCXqsn3biv9yX+u39l3/AwdbWN538IOAP7nqs0823WQD14+jXGjW5g2cSzb9udG7ifPnj/bpdmFP5jyLZf8+51z0Xg+dPl0+vqdv/jpJtbvPMq/WdBOx8RcoO85ev4ZJzVCF1CgSxVVGqHnQ2fHwZOc6e3nshkTWTCtjSVXzeDH63YxtnUUn7l+HpDro6/rPgLA7mCkDunpD4dPYbA3GJm/1H2YllHGopmTuXbuFN63oJ2H13QzdcIYbnv3XBZObwNg897jQGHfXPPQBaC13gVIc/pV1wHmtU9g1pTxA8vys1wiT/EahM7LO48CsGjmJAD+6hPv5Jar93HlxZOYfWGu3XL9gqn8YtNeXttzjA1vHRt4jmNnekmD8Pt49a2j9Pc7//LqHq6dO4XxY1oA+O6nOnnitb1cO/dC2oN2y5yLxrM++KCLmrYYteO4v99Zsf4tbrl6Jq0pPw1xVumnKkPm7nzye6u55Z5nCpbnR4a7S7QEct+X+3flK7tpbxvLFUGgj21tYclVM7lk6oSBdZe+42LaxrZyx49e4f8+t4NZU8Zz2fQ2dgQ7UPPWbD80cIh8o3J3nt16oGB64vYDuRksH7p8Gqu3HeJPf/QyW/ef5JPvvmRgnfFjWrjl6ou5OPSh+YHLOnhmy4GBHaOlvHXkdMnlj63dyRcffokfPrdjpG9JGlSsQDezxWa22cy6zOyOEo+PNbOHg8dXm9m8qlcqDSN/wMvhoqvt5A96eePAyfO+B3KB/sSmvTy+aS+3vmsOLWVObj61bSzf/NjVvLbnGFv3n+DOm69gfvuEgT4z5A5E+th9v+aW//2vI31LNfXwC938zndX8+ia7oFlbxw4ySiDP196JTMmj+OxtTv5eOdslr7j4rLP9an3zqPnXD93/9OGgtZWuMmS3/5tY1sLZhbtCoJ+//F0XZtVBlVsuZhZC3Av8JvATuAFM1vh7htDq30WOOzuC8zsVuAbwCdqUbDUX9QIfGPQGjl0soenX9/P+y/rKHj8a/+8kWOne1k0cxKf++BvVHydJVfN5P2XdXCu35k8fjS7Dp9m1Ya9bNp9jCtmThroJe84eIpz/V72A6Kent16EICtwYdR37l+Vm3YwzvmTGHORRfwyy/fwNHTvQM7Pcu5bPpEPv/BBdzzxJaBfQwwOCX00Mkent6yH8gdvNV96DRzg1lDadmhLNHi9NCvA7rcfRuAmT0ELAPCgb4M+LPg9mPAX5uZeaWzNUlDc3de23OcE2f7eNe8i+jvdw6e7OHJzfsG1tl77AxTLhjNyld2s3H3Mf7DBy7lZ6/s4VPff545F41n4bSJA+vOmjKeT7xrDl/40EIuGBNv903b2MH1/v21s/ibp7r43e+t5reumcXG3YO99cc37uH6Be1cMKaVw6d6WL3tEB+5cnriveLn3zjEpPGtvG36RM729bP/+FnW7jgM5FpNbWNbeWbLfrbsO8Ff/841AIxpHRUrzPP+840Lmd9+AQ+u7mbHwVzrZvkP1zJ5/GjePHiKfnfuXnYld/3jBr79xOvcdcsiJo8fzYtBHS++eZjuQ6eYMXkco1tGsefoGV7ddZQPXj6tYT8UJR6rlLlm9jFgsbv/YXD/94B3u/vtoXVeDdbZGdzfGqxzIOp5Ozs7fc2aNUMueH33EZbd+6shf58ko2PiWNydAyfO7/Fe2jGhxHcMTbjl0uxquT0u7ZiQqm2VNqu++H7eNmNi5RVLMLO17t5Z6rFEZ7mY2XJgOcDcuXOH9RxTLhhdzZJkGCaNa+W9vzGVbftPsiU4mnHc6FHccNk0WlvOH+Ft2n2MaRPHMbVtzIhfOz8zJj8MMeDYmT6efn3/iJ+7Vi4PpmdCru5qjoEvnzGRF7Yf5l3zLmSUFT7zopmT2PDWsYJ9GjdfNTPYL6Gwr6eJ42oTvXGedRcwJ3R/drCs1Do7zawVmAwcLH4id78fuB9yI/ThFHzJ1Als//rNw/lWEZFUi9NgfAFYaGbzzWwMcCuwomidFcCng9sfA36p/rmISLIqjtDdvc/MbgdWAS3A9919g5ndDaxx9xXA/wF+aGZdwCFyoS8iIgmK1chx95XAyqJld4VunwF+u7qliYjIUOhIURGRlFCgi4ikhAJdRCQlFOgiIimhQBcRSYmKh/7X7IXN9gPDPY9nOxB5WoE6Ul1D16i1qa6hUV1DM5K6LnH3jlIP1C3QR8LM1kSdy6CeVNfQNWptqmtoVNfQ1KoutVxERFJCgS4ikhLNGuj317uACKpr6Bq1NtU1NKpraGpSV1P20EVE5HzNOkIXEZEiTRPoZvZlM3Mzaw/um5ndE1yY+mUzuza07qfNbEvw9enoZx1RPV8LXvclM/u5mV3cIHV9y8xeC177x2Y2JfTYV4K6NpvZR0LLy14EvEp1/baZbTCzfjPrLHqsbnWVqDPx1wy99vfNbF9wBbD8sovM7PHgd+ZxM7swWB75e1aDuuaY2ZNmtjH4Gf5xI9RmZuPM7HkzWx/U9efB8vmWu1h9l+UuXj8mWJ7oxezNrMXM1pnZTxOry90b/ovcxTNWkZu33h4sWwL8jNwFYN4DrA6WXwRsC/69MLh9YQ1qmhS6/Z+A+xqkrn8LtAa3vwF8I7i9CFgPjAXmA1vJnQ65Jbh9KTAmWGdRDeq6Angb8BTQGVpe17qKakz8NYte//3AtcCroWXfBO4Ibt8R+nmW/D2rUV0zgWuD2xOB14OfW11rC56/Lbg9GlgdvN4jwK3B8vuA/xjc/lzo/+mtwMM1/nl+CfgH4KfB/ZrX1Swj9L8C/pTBK49B7sLUP/Cc54ApZjYT+AjwuLsfcvfDwOPA4moX5O7HQncnhGqrd10/d/e+4O5z5K4wla/rIXc/6+5vAF3kLgA+cBFwd+8B8hcBr3Zdm9x9c4mH6lpXkXq85gB3f5rc9QTClgF/H9z+e+DfhZaX+j2rRV273f3F4PZxYBMwq961Bc9/Irg7Ovhy4EPkLlZfqq58vY8BHzazmlwV28xmAzcD3wvuWxJ1NXygm9kyYJe7ry96aBbQHbq/M1gWtbwWtf2FmXUDnwTy54eve10hf0BupNRodYU1Ul313halTHf33cHtPcD04HZdag3aAdeQGw3XvbagrfESsI/cIGkrcCQ0qAm/9kBdweNHgam1qAv4NrlBaH9wf2oSdSV6kegoZvYLYEaJh+4E/iu5NkLiytXl7v/o7ncCd5rZV4Dbga82Ql3BOncCfcADSdQUty4ZPnd3M6vbtDQzawN+BHzR3Y+FB5H1qs3dzwHvDPYV/Ri4POkaipnZLcA+d19rZjck+doNEejufmOp5WZ2Fbm+6vrgl2c28KKZXUf0xat3ATcULX+qmnWV8AC5Kzp9tRHqMrPfB24BPuxBY65MXZRZXtW6ItS8rirVUi97zWymu+8O2hb7guWJ1mpmo8mF+QPu/v8aqTYAdz9iZk8C7yXX4mkNRrvh1451MfsquB5YamZLgHHAJOB/JVJXLXcKVPsL2M7gTtGbKdzx8nyw/CLgDXI7Hi8Mbl9Ug1oWhm5/AXisQepaDGwEOoqWX0nhzsdt5HYCtga35zO4I/DKGv4Mn6Jwp2hD1BXUkvhrlqhhHoU7Rb9F4Y7Hb5b7PatRTQb8APh20fK61gZ0AFOC2+OBZ8gNZB6lcOfj54Lbn6dw5+MjCfw8b2Bwp2jN60rsF7VKG2c7g4FuwL3kemavFIXEH5DbudYFfKZGtfwIeBV4GfgnYFaD1NVFrh/3UvB1X+ixO4O6NgM3hZYvITdzYSu59kgt6votcn3Ds8BeYFUj1FWizsRfM/TaDwK7gd5gW32WXC/1CWAL8AuCQUC537Ma1PU+cjsbXw79Xi2pd23A1cC6oK5XgbuC5ZcCzwf/Fx4FxgbLxwX3u4LHL03gZ3oDg4Fe87p0pKiISEo0/CwXERGJR4EuIpISCnQRkZRQoIuIpIQCXUQkJRToIiIpoUAXEUkJBbqISEr8f7DBJ3GnZJ8oAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "<Figure size 432x288 with 1 Axes>"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABGbUlEQVR4nO29eZwjV3nv/X2qtPS+zfTsM+7xigdjwJ54AcJusCGxAwRiEt/ADQkhCTcJITeBS14gLG+C74VwSeDNJUCIkwtO4hBiiIkxBC8sxp4xxtt4Fo/Hnp6lZ+t9kVRV5/2jFlWru6cl1Wl1qft859OfkUpS6ZR06qenfuc5zxGlFAaDwWBYHVjL3QCDwWAwNA4j+gaDwbCKMKJvMBgMqwgj+gaDwbCKMKJvMBgMq4jMcr3x2rVr1cDAwHK9vcFgMDQlu3fvPqWU6q/39csm+gMDA+zatWu53t5gMBiaEhF5Jsnrjb1jMBgMqwgj+gaDwbCKMKJvMBgMqwgj+gaDwbCKMKJvMBgMqwgj+gaDwbCKMKJvMBgMqwgj+k2K8jwe+95duE5puZtiMCxKqTDD4/d8F1PKffkxot+knDh0kDv/+n/z7GOPLHdTDIZFOfjQLv7jc3/ByPGjy92UVY8R/SbFdRwAPNdZ5pYYDIvjBVeknusuc0sMRvSbFv8yWXnmctmQfkJbx9g7y48R/SYlFHulvGVuicGwOEb004MR/SYlEntzDhmagEj0PROkLDdG9JuUcuRkTiJD+gn7qYn0l5+qRF9ErhWRvSJyQETeN8/jbxeRkyLycPD36/qbapiFuVw2NBHR2JPpr8vOovX0RcQGPgtcAwwCD4rI7UqpJyqe+o9KqXcvQRsN82Aulw1NhQlSUkM1kf4VwAGl1EGlVBG4FbhhaZtlWIzyQK45iQzpp2zvmCBlualG9DcDh2P3B4NtlbxJRB4RkdtEZOt8OxKRd4rILhHZdfLkyTqaawhRGNE3NA9RNzXdddnRNZD7DWBAKXUpcBfwd/M9SSn1eaXUTqXUzv7+upd4NACEto4RfUMTYCL99FCN6B8B4pH7lmBbhFLqtFKqENz9AnC5nuYZFsLkPRuaiciONJMJl51qRP9B4AIR2S4iOeBG4Pb4E0RkY+zu9cAefU00zEdk75iBXEMzEEb6xt9ZdhbN3lFKOSLybuBOwAa+pJR6XEQ+AuxSSt0O/K6IXA84wBng7UvYZgNmINfQXET91ET6y86iog+glLoDuKNi2wdjt98PvF9v0wxnw0zOMjQT4RWp6a/Lj5mR26SYMgyGZiJK3jFXpsuOEf1mxUT6hiaiHOkb0V9ujOg3KeUZueYkMqQfk22WHozoNymmtLKhqYgGck1/XW6M6DctJnIyNA+RvbPM7TAY0W9aopPI2DuGJqBcNsRE+suNEf0mRZliJoYmwszITQ9G9JsVU1rZ0ESYICU9GNFvUkw2hKGpUMaOTAtG9JsUI/qGZsLMIE8PRvSbFLNylqGZiPqpiVGWHSP6TYpZaNrQTJTLMJggZbkxot+kmIWmDc2EKcOQHozoNyvG0zc0EcaOTA9G9JsUMzBmaCqUmZGbFozoNykme8fQTER2pIn0lx0j+k2KMnnPhibCBCnpwYh+s9IE9k7xmWfwCoXlbsaqwJuepjg4uNzNWBAj+unBiH6TEp08KT2JVLHIwV94AyP/8i/L3ZRVwZl/+AcOvekXl7sZC2JEPz0Y0W9S0r4wulcsoaan8cbGl7spqwJvbAx3dDS1/SEayE3xlelqwYh+05Ju0cd1AFCeu8wNWR0oNxDTlA6UlueVLG87DEb0m5ZyPf2UnuRuIPZmoLkxhP3BTeePrDKRfmowot+kpN0jVY4f6ac18lxxhGIafu4pIxqCMkHAsmNEv0lJ/eQsx9g7jSS0d1RqRd+UYUgLRvSblHL2zvK2YyGMvdNgUm7vkPJss9WEEf1mJeWRftneSakIrTCiK6q0Rvqe8fTTghH9JiX1C6MHEWdq27fSCFN4Uxrpp30MajVhRL9JUaQ80o/snXS2b8UReuZOukXf2DvLjxH9JiXtk7OUGchtKFGevptSe8dE+qmhKtEXkWtFZK+IHBCR953leW8SESUiO/U10TAfqY+cIk8/pe1baXhpz94x9fTTwqKiLyI28FngOmAH8FYR2THP8zqB3wN+rLuRhvlId+Rk7J0Gk3J7J/pRWuZmGKqL9K8ADiilDiqlisCtwA3zPO+jwCeAGY3tMyxAZO+kNJI29k5jaRp7xwQBy041or8ZOBy7PxhsixCRy4CtSql/P9uOROSdIrJLRHadPHmy5sYayqR+WrvJ028sKc/TN5Oz0kPigVwRsYBPAe9d7LlKqc8rpXYqpXb29/cnfevVTcoHxkKbwUT6jUGl3tOvvGFYLqoR/SPA1tj9LcG2kE7gEuBuETkEXAXcbgZzl5a0Xy4r1wzkNpSwH5hI37AI1Yj+g8AFIrJdRHLAjcDt4YNKqVGl1Fql1IBSagC4H7heKbVrSVpsAJrg5DEF1xqLSnekn/YZ5KuJRUVfKeUA7wbuBPYA/6SUelxEPiIi1y91Aw3zk/rSysbeaSjlgmvp/LxTP4N8FZGp5klKqTuAOyq2fXCB5748ebMMi5NyT9/YO43Fa47sHZO0ufyYGblNSnlGbjoj/XL2Tjojz5VGeEWV3uyddAcpqwkj+k1KeSA3nSdR2d5JZ/tWHGEQkFJPP+39dTVhRL9JSXvkVLZ3UnolstJIefZOtLKXsXeWHSP6TUrqPVIzI7ehpD5P30t3ivFqwoh+s6KaI3vHDOQ2CC/l2TspvzJdTRjRb1LSfhIZe6fBpD57x0zOSgtG9JuUtIt+eeWsdEaeKw2V+kg//D+l/XUVYUS/SUm7R2rsnQYTFVxLd6RPWlOMVxFG9JuUtF8ul+2ddEaeKw2V9uydlJcCX00Y0W9W0l61MMreSWn7VhphpF9Kd6Sv0ppttoowot+kpD7Sd8zKWQ0l9fX0TaSfFozoNykq5VULQ3vHDOQ2BpX27B0v5YkHqwgj+s1K2iMnM5DbWNKevUOUvrO8DTEY0W9W0p6yGdkMKbUbVhrlgmvpjPSjH6WUXpmuJozoNynR5XxqRT+wd1LavhVHeEWV0h/ZtAcpqwkj+k1KOXknpZGTWTmrsaQ+e8fYO2nBiH6z4jVH9o4ZyG0MKu3ZOynvr6sJI/pNStpT4MzKWQ0m7dk7Ke+vqwkj+k1K2lM2MXn6jSXl2TsxQ3JZW2Ewot+0pH1gTJmCaw1Fpb32TsprRa0mjOg3KeUCVmkVfWPvNJRQTFMa6ad9Bvlqwoh+s5LySJ8wiySlA4srjdSvnJX2/rqKMKLfpJQHxtJ5uRzZO+Ykbwypz94xop8WjOg3KWmPnMzKWQ0m7dk7pLu/riaM6Dcpqc97Nnn6DSXtK2dFP0omCFh2jOg3OylN2YxsBjOQ2xjSnr0TXpmalM1lx4h+k5L2SD8Sn5R6zCsNlfrsHTM5Ky0Y0W9S0u7ph9k7qW3fSiPt2TspD1JWE0b0m5WUR05leyed9tOKI+3ZO5HYp7O/riaqEn0RuVZE9orIARF53zyPv0tEHhWRh0Xk+yKyQ39TDXHSXobB2DuNpWzvpDPSJ+UpxquJRUVfRGzgs8B1wA7grfOI+leUUs9TSr0AuBn4lO6GGmaT+hmOjsnTbyhNEumb/rD8VBPpXwEcUEodVEoVgVuBG+JPUEqNxe62Y67hlpzI1klp5GTsnQaTetFPeZCyishU8ZzNwOHY/UHgysonicjvAH8A5IBXzrcjEXkn8E6Abdu21dpWQ4xosssyt2MhygujG9FfamZ9xim1d6IgxYj+sqNtIFcp9Vml1HnAHwN/ssBzPq+U2qmU2tnf36/rrVcnaa9aWDIzchtG7DNObfaOsXdSQzWifwTYGru/Jdi2ELcCv5CgTYYqSPvlslkYvXHEf/jTau+Ygdz0UI3oPwhcICLbRSQH3AjcHn+CiFwQu/t6YL++Jhrmo7zkaLpFP63tW1E0g70TZZmZ/rDcLOrpK6UcEXk3cCdgA19SSj0uIh8BdimlbgfeLSKvBkrAMPC2pWy0IXYSpTVyMgujN44miPTNjNz0UM1ALkqpO4A7KrZ9MHb79zS3y7AIafdI49k7SilEZHkbtIJpBnvHlFZOD2ZGbrPSLKIPJmNjqWkieyet/XU1YUS/SUlzpK+UglIJwug+pdHnSiH6gRVJZfZOvI+msb+uNozoNynlAlYp9MyDtkkuB5gTfckJPl/J5dJp78wS/RT211WGEf1mJ4UDY6HwSDbrbzCDuUtL+CObzabS3pn1o28CgGXHiH6TkupIPxCeMNI39s7SotzylVUaI/14HzVXfcuPEf0mpezpL3ND5iGK9DXZO57y+NAPP8STZ55M3LY08fCJh/n4/R9PLoQqZqd5XuomQMXTNE3K5vJjRL9JKWdDpOsEh3IpAF32znhxnK/t/xo/OvqjpE1LFfcduY9b996KqxJG53F7B1J3ZTU70k9ff11tGNFvVtI8I7dC9JNaDo7n76/klZK1K2WEx5NU9FWF6Kctg2e2p7987TD4GNFvUqKISanUCX+lvZPUg/KCYy26xUT7SRslNxB9T1OkH9ppKYv0TfZOujCi36SkOSNCORWin1CEwkjYRPrzM+dHNsWRftoClNWIEf0mJdUnkhtm7wR2Q8LBu9DeWWmRfng8iSP9KE9fj52mm1nff9r66irEiH6TkmbRnzOQm/CSfqVG+kXPF31HJYzMU+/pm5TNNGFEv1nx0nsiKc15+mEkvNJEX5enH+bpW7m8f7+UNtGPp2waT3+5MaLfpMRlPm2DY6HoW5ry9MNIeMXZO0GknzhlU80eyA3ttdQQF/1lbIbBx4h+kzIrYkrbhJfI3tET6a/47B1dA7mptXfinn66ApTViBH9JkWlOA0usnfygd2Q8JJ+xdo7nq6UzWAgN/y80yb6cSsybQHKKsSIfoNQJZfx+47o6/RpHsgtVXj6uuwdb2VF+lH2jmZ7J9WeviaDRzke4/cNRuMZhuoxot8gxu4eZPTfDzL10JCW/TVF9k5e80CuuzIj/TAltV4ieyf8vJ10fU6zsnc0BT3j9x1h9N+fZvKB41r2t5owot8glON3fHdCzwmZ5jQ4FYhONJCb8ERf6SmbySN9//ONPu/U2Tv6rUh3rDBn34bqMKLfIKys/1Grop6JM8pTiBXsM21pcJUpmwlP9JU6OWvJyjCkTPTDnB2xLG0BiiqGaaq2lv2tJozoNwgJOmfYWZOjsALRT9ssx8oyDElniEbZOyvM09dXhqFS9NM5I9eyLG19VZXCPmYkrFbMJ9YgItEvaYz07WCfqRP9ipRNXfbOCvP0tQ/kZkPRT9fnFFo6YtvaI30sI2G1Yj6xRhEG5QVNoq/KkX7a7J1QdMIUQhLaFyu1tHLk6SeekRsO5Aafd8rsnVDoLcvS1lcjm9R4+jVjRL9RBJ3TK2kSaKWwrCDST9s8R6ey4Jqe2jsr1dNPXnunouBa2kQ/snf0+e9eIPpmILd2jOg3CjdY3lDXQK7yyvZOyjr+nNo7CS/pV+rkLF2Rftrz9KOBXNvWGOkH+3HT1febASP6DSIUZl0DuXF7J3UDuaXZtXeS5umvxNo7SqnIttJVhsFK+YxcS2v2Thjpp8vabAaM6DcIpT3Sj6Vsasp99jw9q3Apd3akn/RKZCVm78SvWnTl6essuKaUwtN0BRn2KdGZvWM8/boxot8oPP2ib2m0dwrTDl94z70M7hlOvK85efoJ7YvQ/nA8J3WZSvUSv2rRNpCrMU//4MMn+dJ/vw9HQ3+NBnI1Zu94wRWzMvZOzVQl+iJyrYjsFZEDIvK+eR7/AxF5QkQeEZHvisg5+pva3ISd09N1EmmO9GcmSpQKLmOnpxPvq+zp6ym4Fh/oXCm+vtZIPxzIzerz9MdPz1CYdChpyDaLFm63LH3FAR3j6dfLoqIvIjbwWeA6YAfwVhHZUfG0nwA7lVKXArcBN+tuaNMTRvozGiJ9NTsbQkfwFI05aLhqmFNwLWmefiwSXimiH4/0k9bemTOQqyHS98IgRUd/iPVXLf0rVmQtbUkMzUA1kf4VwAGl1EGlVBG4Fbgh/gSl1PeUUlPB3fuBLXqb2fxEolryojo8de+L8uUy6In0tZ7kjgO2jdhWuPNE+4tHwitlMDc+PqGtnn5e3+SssB94OiLpuL2jIb3YiwdOJtKvmWpEfzNwOHZ/MNi2EO8AvjXfAyLyThHZJSK7Tp48WX0rVwKxzunNJKyqGF7Oa8ze0XmSK6eEZDIQXokktXdikfBKEf1Z9o6mevpRtpSGSF/rlV98IFfH/qbLx2ci/drROpArIjcBO4H/Od/jSqnPK6V2KqV29vf363zr9OPFRT9hZKdmi76OtLXw5NGSseG4/hwCS4Kd68negZVj78RLSugrwxBOzkpuIUZXfjqCAKXX058VNBnRr5lMFc85AmyN3d8SbJuFiLwa+ADwMqVUQU/zVg6zfMjppB5upaevIdJ3NUZ2jgPZbPlHKWk9/bi9s0LSNnUO5EZ9y7Yhk9Hj6WsMAuIzcnWMP8VF30T6tVNNpP8gcIGIbBeRHHAjcHv8CSLyQuD/ANcrpU7ob+YKIL6kbVJ7J4iWLDvM3kmbvePMsneSRmNxe2elFF3TmbJJLDtGMhktnr7SGQTE+quWSH/aePpJWFT0lVIO8G7gTmAP8E9KqcdF5CMicn3wtP8JdAD/LCIPi8jtC+xu1RKP9PXZOzojfb99egZyfU9fQntH40DuSrF3tA7khp+vZfm2ms5IX4u9U+6vWib/xdJIzXKJtVONvYNS6g7gjoptH4zdfrXmdq04ZkVMSTtqlA2hfyBXy2SXMNK39QzkxiPhFTOQG7tiSZyyGfYty/YjfQ15+jrtnVn9VcuM7/hls4n0a8XMyG0UnoKMH/kmFdZ4qVrQNJCrM2WzFIi+hJF+QnsnNjlrpXj6OiP9aCDXEshmtXj6eu2div6aVPjDlOeMmBm5dWBEv0EoV0VLuyW9JC2nbGq0d3QO3DkOZDLllNKE9o4X+1FbKZ6+zuydaKA88vR12jv6MsPK/TVh/3fDFFXbRPp1YES/UXgKCdbJxUkY6VMZOembnKVnxqRbYe8knJG70rN3NOXph6Kvo+CaXk+/XGXT35Bwf+HykFnLZO/UgRH9BqFcVV4yMXGkX15+DjSXYdA4OUtEz0Duis/eSVx7J5iRG0b6Gjx9rXZfOJCraQa5csKqoibSrwcj+o3Ci4t+0lBnCSJ9nQN3oaevacxhJWbv6Iz0VTzSz+q2dzQO5Eb9IeE+XQW2ILbx9OvBiH6DUG7c3kkY6VRMztIR7WivvZPVl6e/ImvvxAuuJV4usZynj61J9JdkIFeXp+8htvgzvo3o14wR/UbhKSRjgaUve0fX5TLotnccJJPVlqfveA552y/TvFI8/fA48nZeQ6RfOZCrYXKW0mnvzLYjE9dccxXYFtjG068HI/oNQnkKLEFsK7mnXzEwlsbsHZ15+p7yaMm0ACvH0w/tnbyd11ZPH9vP09cyOUtn7R2vwt5J7On7kb5YYjz9OjCi3yjCS1JbkmfvVFTZ1BHt6LR3cBw/qtOUp+96Li22L/orJdIvuSVsscnZOX15+iJBpK9j4RP9ZRhEU5CiXOWX7baMp18PRvQbRRjpZ5JH+lTW09dQo1y3vUNWX56+oxxaM63AyhnILbpFcnYOW2xtyyViWaB7IFenp2/rmVeiXA/J+AO5JtKvHSP6DcKPToKMA02RfnkgN32LqEgmqy9P33MjgVxJ9k7GypCxMvrsHctCMnpm5Oq0d7RXhQ09fUuMp18HRvQbROjpY1uJa+/MqaefUk9fV56+q9zIClkx2TtekZzl/5Alrb2jPBdEYvaOhoHcpVpEheRjPJGnb0vyOlarECP6jcJViKUpt1jz5TIszeQsXXn6jnLIWBmyVnbFePqRvWPZeiL94LOWjA06Cq5pHcgNSyvbifcFQR/NGE+/XozoNwg1y9NPmrJZOTCWLnuHkoNky9k7SX1Xz/OwxKLFblk5kb5bJG/nscWetTJYXXheefwkjYuo6F7pLR7pG3unZqoqrWzQgKei7J3EC6PPOYk02ju6BnJte0nsnYK7MhZlK7iFaO6BFnsnivQ1VdlcSntHR/ZO1nj69WIi/QYRppmJDk/fq7B3NGTvhNUU9RVcy2rL03c8397J2/kVJ/ra7J3gs5ZMBqWj4NpSDOTqqr3jxvL0jb1TM0b0G4UbTs7S4UPqL8Ogc2H0aHJWGOkn/JFbqZF+zs6RkYyGKptudFUlmYweT38pUjYtTTNyHT97R8yM3Lowot8glOcXiUKHpx8NjC2Bp68jciqVkGyQvSOSuH2u52Jb9oqK9CNP37IT195R8YFcTXn6Wu0dzf01zNPHwkT6dWBEv1F4XpS9o6vgWppTNskEw0V28vK3YaSft/MrZiA3tHcssbQsjK59IDdcM1nrGrl6xqDiVqmJ9GvHiH4DUEqBh7YZuXOqFmpcLjH5CemCUr7NgF8aQNdAbj6z8iL9jGQSZ+/MGsjVVWVTq70T1ooKUzaTTs7y/Ktm4+nXhRH9RhDVygmyd3RV2VyKSD9p2wLBEbsc6etYGD20d1ZKpD/jzkR5+slLK1cM5OpcI1djwTVtkb4Ty4QzkX7NmJTNRhBVQfSrbCYtuFa5KIWOpbO0RXah6GeDrmVZWuydjGSwLIsZZyZZ+1JCPE9fi70TDuRmNVXZ1LmojublPX1P3wqqbJoZubViIv0GEEZLYgmSEX32js4ZubrsnVD0Ndo7juesuEg/zN7RkbIZt3fIZECpchG2OtFq71SmGCfdZaz2Dp6e/r+aMKLfAKJL5CDST1xwrWJRCp32ji7Rjw/k6lgY3RabnJWj4Gny9L9yIzzxb7W95uGvwm2/puXtC26BlkwLGckknpzl2zvlyVlAYotH6SzDMKe/asrTt/WU7l5tGNFvBKGnGdbT1zU5S9e0dpbA0w/ER0QgYdSp3dNXCvZ9Cw4/UNvrnv0R7L8r8du7novjOeTsnJ+9o2FhdJFQ9P0f26SLo0dBgIaCZkqjHak8PykiWi4RPeMOqwkj+g2gvHC1nto7oUeqcyBXaaq9E4pNKD46Uggrs3cSH28YWdf6A+IWa3/NPIQZSGGefuLsnZIDmfJALgAJK20uhb2jpb+GP0IZy0T6dWJEvxG45U4fFolKYnlU1tNPk70Tio0EImR1tONNTCTaZTxP31Ne8mwXJ7CI6hF9p5DYlA6vVsKUzaT2jjs5gd3e4d8JPndt9o7Wgdzk/TUaH7OtaA1mE+nXhhH9BqBi2Tuh95okv7iyyqbW7B1N9k7o6dudXbgT44n26XpuVHsHoOAk9PVDsXdqFH2nAKjylUKdhJG+roFcb3wCq6sLiNk7CURfeSrqUnpSNiuqwiawI8NihZIJrFIwkX6NGNFfhOnp6eQ7ccNOXx58SuKVVmbveBonZyW2dwL/PvT0rc4OvPFkkb6jnKj2DpB8glYU6de4n+jHItn7xyN9HSmb3vg4dqcf6ZcHcuvfpxcLInRE+mH/tLTYO7GkCI1VZrWc501CVaIvIteKyF4ROSAi75vn8ZeKyEMi4ojIL+pv5vJw7Ngxbr75Zk6ePJloP5FlG3j6kDCCCk6abN5fLNwpJs9oKQ/cafL0gzx9u6MTd3ws0T5dz8WyrCjSTzyYG4p9reJdry1UwSxPX5JH+u74OFZHJxCbH5HA04/3AR3ZO07R/7wyLS3BGyS4yg0j/TBlExLPyj169Cg333wzp0+fTrSfZmFR0RcRG/gscB2wA3iriOyoeNqzwNuBr+hu4HIyMjKCUoqxsWSiFUX6duySNEH9nTBSyrW2AVDUEKXEF1FJFIlFnr4vPlZnZ+JIP5ycpS3SD9fZrcfTr+d1FVQO5Cb19L3xcawo0k9u78Sjex1RdHFmmmy+Ra+nn4ldNSdsY3iej46OJtpPs1DNjNwrgANKqYMAInIrcAPwRPgEpdSh4LEVNT2uGEQopVKyTIi4py928ki/PNnFIpPPU5xJLvrxE0epclXkmvdTMTnL7uzEG6/f01dK+QO5QcomaLR36o30E9o7szz9hCtnKdfFm5zE7vQ9fXSIvqvX3ilNT5NtaYlmDSfJ048P5EbrSCRMK3WCzyo831c61dg7m4HDsfuDwbaaEZF3isguEdmV1DJpBGEncJJOa4/V3pGMBk8/TNkUi1xLKyUNkb4bO9ET/SBVDORanZ14U1N1i1AoiGH2Dmi0d9waf8zrvUKoIB7pZ6xMInvHm5wEmBvpJ8jTjwcAOuyd4sw0udbW8kpqSXYZnjd2PNJP1r4wqDOivwQopT6vlNqplNrZ39/fyLeuC22RfnjiWDF7J8nJ5JUHhnMtrdoj/STRXSRCgfUUDjDWm7YZCmI8e2fGTVh/J8zaqXkgV0+kXzmQm8Teccf8qyi70/f0rbZ2oPw91MNS2Du5ljY9kf68nr6J9GuhGtE/AmyN3d8SbFvxaI/04/aOBk8fhGyrHtHXdUnvDg8DkOnrBcAKbAe3TtEPBdGSpRjIrSdlk9p/LCqIR/pJZ+R6QTqsFYi+3dvjN3FkuP59LpG9E3qGieaoxDx9NHn6JtKfy4PABSKyXURywI3A7UvbrHSwFJG+juydyN6xhFxLixZ7Z1Z0l6BtTiD6dl8fULYdvDoHw0NB1JqyGdk0daZs1moLVVBp73jKq9vXD8dLwkg/0+v/2IY/vvWwdPZO0PeT+DtRymZ5clbSPH0T6VeglHKAdwN3AnuAf1JKPS4iHxGR6wFE5GdEZBB4M/B/ROTxpWx0owjFXqenH0UnSSL9cH+Bp1+cSV5uWJe9454ZRlpasFpbgbIYuXVm8IQ57HF7J3Gkn7KBXKDuaD/8XMOUTbunx2/imTN1t0+/vTNDrqVVi0iX7R19tXfC8zxpcNcsVFVPXyl1B3BHxbYPxm4/iG/7rCi0R/q2hdiB2CeakRuKvpBtbaN4YihR+6C8PJ5/O5m9YwfRJpTFyKtzVu7SRPoJyjDU87oKKlM2gQSRvn8FFU3Oymaxurpwh0fqbp+uACCkND1FrrUV0Ji9k7GQMHAykX5NmBm5Z2FJPP2MDk8/eK1IkL0zlax9zD65k8zw9UW/J7pvdwWR/lhC0bdsWmx/ck/ylM06xXsJZuRmxI+76p2VG0X6QRkG8H39JPaOp3lyVnFmmmws0tdScE1T+jMYT98QQ3uevlWuvaNjRq6I7+lryd5xFVYm+cCYMzJMprcvuh8OMNabqx/ZO1onZ9VRe0cp7ZF+WHsHqLuIXHgFZXd0RNsyPb3JRD+cB5JJvhyhUsq3d2Ipm4kmZznlPH00efpG9A0R2iL9eWrvJEkzi9s7uVbf009aadPzFJngKiSRvXNmtr0TilG9RddCMYxn72gT/Vr2Exd6DaKfkQwZK4MVDG7WH+mPI/k8kstF2+y+vmhAvR5Coc9krMSRvlPwq5LmWlpj2TtJ7J1ywbVyHStj79SCEf2zsDQzcpN31LDsQjbfQralFZTyT64EeJ7CzlrR7Xqp9PQlm0VaWuouxRCKoW2VPX1tA7lusfo6MHFLR8NAbngskb1T50CuNzYeXU2F2L0JI/2gb9pZK7GnH16FZltafeEHSkkSD2LjYybSrw8j+mdBW6QfXZLq8fSnx/waIW3d3eX6OwktHuWWRb/eS3pVLOJNTEQ5+iF2Z/1F16LJWeJHxVkrq28gF6qP2jVG+uGi6EDZ3qlzgpY7MR5lSIWEnn69V3+h0NtZK7G9UwzGm3KtrbQG4w5TY/XXuImXVhYNmXBgIn1DDF2RvjtRBAGrLatlRu7U2Ch2NhtET/7gZlLR9zxFJhsUxKrzHHKCjJF4pA/Jiq6FYhiKo5YlE+NefrVR+1JF+pYf6Ze8+vqYNz4xJ9LP9PaiCgXUVH0D/OFVaCZrJ7Z3wnTiXEsrrZ3dAEyNjdS9v3jtHavDLyPtTSQ7P02kb4jQJvpjRayOHGIJVj5I0Zup/+phemyUtq6eIGXTv2ROWmnT8xR2Qk8/nAVq98wW/cyaNThD9aWVnp7xy9325v195u28Pk8fqp9opdnTDyP98LiGZ+qzY5wTJ8isWTNrW/ij69SZthlF+pnk9k44cTDb0kImmyXf1s50gqq1asYJFiMSrHwGydm4Y8n6g4n0DQC4rht1hqT2jjdexO7yIzvJ2lhtGdzR+jvq1NhodKkc+aQJRT9u79R7orvRbNzZop8bGKD4zDN17fPU9CkA+tv8Wk36Rb/KfekUfadAPuOLfnhcJ6drL0CoPI/iM8+QGxiYtd0Osqfq9fXj9k7ySN/vl7kgOGnt6kpk77ijBezufJQJZHflcMeTfR8m0jcAs6N7HZG+3RnLrujO447W38GmRkdp6/IvlUPRT2LvhMvjZSJPvz5/J6q701sp+ufgDg/j1lGv/OSUL4b9rb445uwcM07Sgmt1WDU67R2vQM7y+0N4XKemTtW8H2doCFUokDvnnFnbk9bfKds7GgZyQ0+/xR97au3qZjqBveOMFrC7y+eS1ZlNLPphUFcqlbSsQpd2jOgvQPxXP2mk78YifQhFv37hmB6PiX5rctEPl8eLIv06o7vi4CAAmfXrZ20PI9F6ov2T0ydpy7TRlvVFo6+lL4r+62aZB3JPTZ2ir8WPxvta+rDE4sT0iZr3Uzx0CGBOpJ/dsAGAUvB91MqsgVxNnn42GHtq6+phKoG9444Wsbvz0X27K483pifSr7y9UjGivwCh6OdyuUQdQbkKb7KEFY/0e5KJvm/v+KKfbUnu6YcnduTp1xndFfbtJ7NhA3ZsdigkFP2pk6xrWxfd39K5hSMTCYu8LuNArlKKIxNH2NrpF661LbvuH7JI9LcPzNqe2bABq7OTmX376mqj52r09Cvsnbaurij7rFaUp3BHC2Tiot+px97JBfMcVoPFY0R/AcIvv62tLVGk700UQVER6efwphy8Yu252aWZGZxCgbbuHqB8MpWSRPqxy/n4/Vop7NtH/sIL5mzPbt0KlkXx6UM17/PU9CnWtq6N7m/p3MKJqRPJfP16ovZ6rg7mYbQwykRpgs0d5XWI+lv7IxurFoqHDiGtrWTWrZu1XUTIX3ABhX3762pjNDkrSNlMMvEvDEZCG7Ktu4epsdG6LERvsgSumh3pd+ZQRQ+vUN85qpTCcRza2oLUZyP6q5fwy29vb08U6bvBpWelpw/UFe2Hg2CVA7lJIv345TzUl6evSiUKBw/ScuGFcx6zcjmymzbVbe+EvjfAlo4tKBRHJ47WvK+IukQ/1gcSiP7ghG+5bOks1ydc27q2zkj/GXLnnFNekSpG/sILKOzbV5dg6+gPURtnpslkc1i2n7XW2tmN8jxmpmpf5CU8X+KibwXBlFunxRMGdO3t/uIzRvRXMfFI3/O8ugd4wktPfaI/4rcrsHcs2ybf1s6khkUzktg7haefhlKJ/EUXzft4bmCAwlNP1bRPpZQf6bfNjvQBBsfr86uBZR3IDdsdF/3+tv66sncKTz01x88PabnoIrzxcZxjx2rer47+EDI1MkxLzO5rCydojY7UvC93JBD9ntmRPiQXfRPpG2ZF+lD/AE8k+jF7JxOJfu0dLMxxbuvqibb1bdnK6SPP1tU+KEdySQZyQyshP0+kD9B62Qsp7N1bU02YydIk0870nEgfSObruwWwssHtGgdyrayeSL9jdqR/ZuZMTfV3SkeOUBocpO2yF877ePg91OPr6+gPIacGn2Xtlm3R/dbAlqzH1y9H+rEAKjivvDp9/fC8NpG+gUJQyybsDPX6+u5owZ+N2zFPpD+SxN7pjrat3bKNU4efTTztPpPgcn7m0UeQbJbc9u3zPt7x4heDUkz96EdV7zOMfuOe/trWteTtfLJI3y1BPpjFWmukn+9MJvrjg/S19EXZSADrWtfhKY8zM9UvfDLxwx8C0P6iF837eP7CC0GEmUcerbmNOvqDvx+XM4OHWRMT/fAKtZ4JWs5oETKC1Z6NtkWRfp0p0JX2TiFhDatmwIj+AowFnbInWImo3ki/dGSCTH9bubomIFkLuydP6XjtvuboiSEQoT1oF8DarecwMz5W1yUzzC6wBbVfziulGP/P79F29VVYsWqPcVouuQSrq4uJH/yg6v1WTswCf5ByS8eWKGKuC6dQFv1aB3LzncnsnYnBWVE+ENlXtVg8kz/4IZn168mdd968j9udnbRedhnj3/tezW1M2h9CRk8M4ZSKrN1ankfQ0efPHh45cbzm/ZWOT5JZ0zprDENabOzuHMUj9VVxDc/r3mBuyViCdNJmwYj+AoyOjtLZ2Uk+70fl9UT6ylMUnhkjP9A157H8ud0UDo7UHEUd2/8k/VvPIZtvibat2eKfVKcO1zfrVVVEdrVezhf27ad0+DCdr3r1gs8R26b9qquYvO/7KLc6G+PJM08CMNA1MGv7QPcAT555sv6sErdYR6Qf/Djku+qO9D3lsX94PwPdA7O2b+/yr472ntlb3X6KRSZ/9CPaX/SieQdxQzpf+UoKe/ZQHKzNCkvaH0LC/rhm6+xIv6t/Pcf2P1lbmxyP4tOj5M/tnrVdRMgNdFM4NFZXfwjP687OTnK5HKN1TCBsNozoL8Do6Cjd3d1ks/6lZD2Rfun4JGrGJbe9e85j+XN78CYdnBPVF8XyPJdj+/ey6aKLZ21fu80X/dOD9fn6lQN3tf4QjX/3OwB0vOLlZ31e1+tfj3PiBBNVRp+7h3azpWMLG9o3zNp+9carOTJxhKfHnq6pnRFOAXLBoiO1evr5jroj/SdOP8GZmTNcvenqWdu3d2+nN9/LrqFdVe1n7I478EZH6Xr968/6vM5XvRKAieD7qZak/SHk9GG/P8btHYBNFz6Ho3v31CTSxcFxVMmj5byeOY/lB7rwxoq4w7V/L+F5nc1m6e7uNqK/mglFP5MJqiDWIfrFZ/xLxfw580T65/k/BDNPjVS9v9ODhylOT7Hpwtmi39bdQ0tnFycOHay5jTDXw60lsvOKRUZu/UfarrySbEW+eCWdr3olmU0bOXPL3y+6X6UUu4d2c/n6y+c89tItLwXgvsH7zrqPgycnePjwyNwH3AT2Tq5j3tfsOnSGw2fO/gN+z+A9WGLxkk0vmbVdRLh8/eXsHtq9aDOUUgzf8vfkzjuP9hfP7+eH5AYGaLnkEs585SuoGq5Uw0y1pJH+yWeepqt/fZRWHLLpoouZHBlm7GT1s5ALT42CMG8AlRvwtxUO1S7Y4XmdyWSM6K9mlFJzIv167J2ZvcPY3Tns3vycxzK9LdhrWph54nTV+zu6dw/AHNEXEbY991IO7n4At04bCurzcEe/9q84J06w9jffuehzJZOh76b/wtQDDzBx3yKCPXqQkcLIvKK/sWMj5/ecz92H7z7rPv7sW0/y+7f+ZO4DdQ3kBkKfa59X9N/1Dw/xqbvOnilz7+C9XLr2UnpaeuY8dvn6yzkycYTjk2f3usfvvJOZJ56g71d/9azWTsiad/4GpWeeZew/7lz0uSFJ+kNIqTDD0w/vZtslz5/zWNh/j+7bU117lGJ6z2myG9qxY4O4Idn1bUhrhpl9tacth+e1ifRXOZOTk7ium8jecc7MMLP3DG2XrV/w5Oy4YgOFp0YpHq2u1vz+B35I55p+utdvmPPYxS95OdPjYzz76MM1tRPmDtxVeznvnD7Nyc98htbnP5+2q69e/AVA702/Qm77do5/+E9xJxY+7jCK37l+57yPv2bgNewa2hX5/vNx+MwUg8PTuJXHM2sgt9oqmwWw85DJz/mhmCo6nJooMDi8cKT/0NBDPHH6Ca4555p5H9+5wT/O+44s/GPoDA9z/OMfp2XHDnre9Maqmt356leTv+ACTnzyk7hVDlLqsHee2v0ApZlpLn7Jy+c81r9tgJaOTvb/+IdV7at4aIzS4ATtV87t9+AvQ9r+wnVMP3qq5pIMlfbO1NTUiq+/Y0R/HsJf+yT2zsQPj4JAx1UbF3xO+xUbkZzN+N2HF93fqcPP8MwjP+H511w374/I9hdeTkt7B4/d892a2gkxeycT1Pqv4nJeOQ7H/scH8MbH2fDRj1QVdYI/O3fjxz9GaWiII7/7e6h58qIdz+GrT36Vy9ZdxtaurfPu51cu/hU6c5385U/+csH3OjY6g+MpToxXVOV0i37EDtUvju4UfcG3c3Mi/SPD/mzooyPzV/9USvGZn3yGta1refNFb573ORf1XsSFvRfyf5/4v/N63d7MDIO/82680TE2fuyjSNAvF0Msi40f/xjOiRMc+9CHqip/4HkKEbDs+u2dJ+75Lh19a9i645I5j1m2zfNe9VoOPHi/n412FpRSjH3vMFZ7hrbL1i/4vParN4KrmLi/tslolfYOsOKjfSP68xAX/Z6eHizL4lgNMxtLxyeZ+NFR2p6/btaU8Uqs1gwdP7uZ6UdOMfXo2dP1Hvi328hkczzvVa+d93E7k+XSV1/Lvh/dV/Vlc8jEsC9WreFEl0UiO1UqcexP/h8m7rmHde9/37ylF85G22WXsfFPP8zkD3/I4Xe9a07J5W8f+jZHJ4/ytue+bcF9dOW6eMcl7+DewXu5bd9tcx6fKjqMTvsndCjKEU7BF287X2Okn5s30h8c8fc/NDYz96oCuOWJW9g9tJt3XfouWjOtcx4H36J7+3PfzlOjT82J9p0zZ3j2197B9EMPsekTf07Ljh3VtTmg9dJL6f/932P8W//B0Mc+tmj2lPIUYgutwcpU42dqK2V96KcP8fTDu3n+Na9DrPkl5gWveT0IPPiNr511X1O7hyjsG6bzZVuxcvaCz8v2t9GyYw0T9w7inKq+JMmxY8fIZrN0dHQY0V/NxEU/n8+zbds2Dhw4UNVr3ckSp7/6JFZrhu6fO3fR53e9civZLR0M37Z/wYGo/Q/8kD33fY/LXn9DNLllPq584y/RsWYtd/71Z5iZrH55wqP7RsjmbdZt8y0P9yxrjpaOHePZX/8NRr/+ddb+t3fT98u/XPX7xOl505vY+Gd/xuQDD3Lw+hsYu+MOlOdxavoUn3jwE1zYeyEv3/rys+7j7c99Oy/e9GI+/uOP882D35x9TLGoezAu+p4HXikWtdewclb0QzE70g/373iKUxOzfxBu23cbn9r9Ka455xrectFbzvoW1w5cy7bObXz0/o8yWvCLko1+8985+PPXM/PYY2z+9F/Qdd111bW3gjW//uv0/dqvMfyVr3L4t36L0omFB1HdksKyhHXbu7Bs4diBkarfZ2p0hO988XP0btzEzp97w4LP61rbz/OveR0//fa/c+inD837nJn9w4z821Pkz+2m4yWb531OnN4bzgPb4vStT1a1Mp1SigMHDrB9+3YT6a929uzZQ3d3N61BBcvzzz+foaGhRSduOKenOfWFR3FOT9N340XzDjpVIrbF2v+yA7szx6kvPsbE/cdmeaiHHvkJd/zVJ1l/7vm86M1nF9hcSyvX/tbvM3L8GF/78w9XXY/n6IERNp7XjZ216N3QNu9J7pw+zYlPfoqDr/85ph95hI1/9mf0/87vVLX/heh5wy8w8NWvYnd1ceQP3suBn/95vnjzTbgTE3ziZz+BJWfvnrZlc/PLbuYF/S/g/fe9nz/5/p9wbMK/Ijs2Whb6IyNx0Q9E3s5BJlfbQG4meM0C9g7A0eC9jk4c5Y/u+SP+9Ed/ytWbruZjL/7YohZY1s7yiZd+gsnhk9zy0bfy1PXXc/QP/5Ds+vUM/PM/03XttdW1dR5EhPV/9N/Z8KEPMnX/jzn4+p/j5Gf+ct6yGEcPjNC3qYNszmbdOV0c2TdS1XuMnz7Fbf/vB5kcHuba334PmQUm6oW89Ffezpot2/jGX/w5g08+Hm1XnmL8viOc+vLjZNa00vfLz0Gsxe1DuztP31supHR0klNffAxnkdpWp0+fZmRkhAsu8CvDdnV10dbWxp49tV0pNxvVGYOriCNHjvDss8/ymte8JjpJzz//fL7zne+wZ88errzyyjmv8Youk/cfY+y7z4LA2l99Li3n98553kLY3Xn6f/NSzvzTXka+foDJB4/TesVaHjnwPR74xm2s2bqNN/zxh7Azi/+InPO8F/Bzv/dH3PGX/4u//+Pf5Wd/+e0858Uvw17AA56eKHLm6CQXXuH7peddto7d3zrE1FiRlpzH5A9+wNi3/oPx73wHVSjQee1rWffe95LbsmXe/dVK6/MuYfvX/5Un/vkLHPnc57j+q0V+Ppcl/5NPc+aqq2n7mZ8hf965C3rYXbkuPn/N5/ncTz/Hlx/7Mt84+A1esfUV9HpXgZXBUq2zB1hDkc/k67B38uVIXykI+sfg8BSWgCczfOvpb/HlAz/m3sF7ERF++wW/zW887zeiBdDnwysWKezdy/TDP6Xr3nv5m/tdrNLTHNrcwpYP/j4DN/7GgjZJrfS+9a20XXkVJz71SU597nOc/vKX6XrNa+i67lrarr6aiTGXk8+O86I3ng/Apgt6ePiuZykVXLL5+e0V1ynx+D3f5b6v3oJbKnH9e//HnAyz+cjmW3jj+/+U2z72Af75Ix/g6l/4JXZsfynTPzhO6fgULRf30ffmC7HaFu/3Ia071rDmV57DmX/cy9CnH6LrVdtov2LDvNZQKO7nn+8fq23bXHHFFdx9992cPHmS/v7+Oa9ZCUiSWtlJ2Llzp9q1q7rJKI2iUChwyy23cOrUKd7znvfQEqz2o5Tib//2bzl+/Djvete76OvrQzkehadHmX70FFOPnkJNO7Rc1EvPDeeT6WtZ5J3mx3Ncjt31GIUfnSJXzFF0Z5jqnGTrqy+j/cJ+7L6WqiIe8HOk7/zrzzB0cD/tPb089+Wv5oIrXsS67ediWeUT4NG7B7n31n284T3PZ01ujOO7D/DN79hcMvV91v3kNiiVsLu76bz2Wvre9jby585fW6ceXM9l99Bubt17K3c9cxfrWvv5RO872PLjQ0z8539SOuqXT5Z8nvz555O/6CJy55xDdtMmsps2kt20iUx/f/SDcGziGP+49x/5l/3/wkhhBKWEnLuJDmsLN11+Bdu7t7POhbVf+SXWvOpjtDz4BVh7IfzyrYs39m9fj1ccY+Ki6xj9/v/izNtvZ7A4yuHxw9zy4G6mrWcoWccRUaxrXcd126/jph03RRPLvGIR98wZSkePUjp8mOKzhykNHqbw1EFm9u6FYEAxd845dLz85RzcuZH3nf4iw4URrh24ljde+EZ+Zv3PYFsL+9q1MrNvH2f+7u8Y//ZdeOPjSC7HkcveypMtV/CG18HaF5zPsZFWvvm5R3nV2y/mObGkBM91GTp4gH0//gGP3/NdpsdG2XTRDl7zm/+NNZvnH3yvRHkK58QUE/tPMPjdh+mY6iJr5SjmCrS+dAPrX7kDq84fu9LJKUa+foDCU6NI3qbtsnW0XrKW/DldSMZiaGiIv/mbv2FgYICbbropet3ExASf/vSn2bx5MzfddFOUvZcmRGS3Umr+tLZqXm9E3xf1gwcPcuedd3Ly5Ene8pa3cPHFF0ePqWmHU08P8cV/vQUbi5/tuJQtp7oQRyE5m5aL++i4eiP5gYX99kpcx2H0xBAjQ0c5+cwhhp7az5G9TzA1OoJYFs9/3mt4zrorkeMu3oQvCJKzyG5oJ7u+Hbs3j92dx+7Jk+nJY3XkkJw1y0JQnsdTDz3II3fdwaGfPoRSily+hf7eNXRncjDTylOF59FbmuCFD/01UiqigAd3vp+Z9n5ese0gm176fNqvuhLR0PmnnWn2De9jz+k9/PTkT/n+ke8zUhihM9fJjRfdyH+95L/SmeuMnl8cHGRq1y4Ke/dR2LuXmX37cE9V1J0Xwerqwu7pxu7uwe7pxuru5r7jQxwunULapxnNjDOTm6aYhUIWXMv/ExEyeGTausnm28hkcpw4/SwdHX205TvwHBfPdaBUoDh1hhmxEU9hKbA9yJegpQj5Ygu9bhfuaAvntq7lynXrUBOTOCPDuGeGcc+cwZucnNPuzIYN5M45h9ZLnkvLJc+j9XmXkN1c9q5HZkb40mNf4rZ9tzFeGmdd6zqu2nQVO9fv5Dl9z2Gge2DBgeFa8IpFf1D9nse59+h5dIw9y+U/+QsA3JZWdr/gt5nIZDiv9XFUS5HRUoGTp09SLBawLJtzL9vJpde8joHnX1bR/xTetIM3WcIdL+KNF3FOz+CcnsY5PUPp2ASq6I8fWR1ZvE3CvuMP8tPHvoPnOrR197Dl4ktYf+75rNmylTWbt9G1bt2soOVsKKUoPjPG5I+P+4kSjkLl4Jm+Ub4//giWbfPrb3ob3Zv7sNqzUdsfeeQRvva1r7Fx40Ze+9rXcs4CaxYsFw0RfRG5FvjfgA18QSn15xWP54FbgMuB08AvKaUOnW2fjRZ95XqokkdhcoaJ0XFGR0YZOj7E0MkhDh0/zNj0OJ25dl657Uq2Zdbhjhbxxgq4Y0VUye+YwzLBf+YeY1gm6ci2sX3zOQzsOI/evm662tuxlEdxepri9BSFqUkKU1MUp6eYmRhnanSEyZHh4G+E8dMnZ6XPdfevY8PWAbZdeDHbtp9PPpuDUgmvVMI5XcI57eAOu7hjCnfKAmeejq9clCqAO4MqTqIKE3gzk6jiFK5XZNJWjGVtJjMwLQUcVcT1Snh4eMoll8vS0tmB3dnFqaNFHNeiZ1MPa7b20buph7a+TjL5HJl8nkw+Tzafh4yNaysKUmLcm2TUnWC0OMpwYZjhmWGOTx7n2OQxjkwc4djkMTzlH3NvvpcXb34xL9vyMl629WVVi5c3NUXp2DFKR49ROnYUZ+gE7shI+W90FHdkhJHTI2RLRXLVpmQmRInFTCaHm8vTu6YLq72DTG8vdl8fdl8vmb4+7N4+/wplyxaymzcvWJyukhlnhrsH7+bbh77N7qHdUTVOQdjUsYltndvob+tnfdt6+tv66W/pp8Nup03ytOL/5VQG5bg4xQJuoYhTLOIUCkwNT3BmcJjTz55h5NgouZzH2g05nLExZiYmcYoOIhaWZLDFxiJDq8rR4Vp0l1zaXJuMnUfybUhLB5JvR+w8ZFoRaYF5xmUk62K1KuxOhd1rkVmbwe7NYufzSC7HTKnI0/v2cOTQUxw9uJ/xM+UJjJZt097TR0dvHx19a2jv7aO1s5N8W7v/195Ovq2DfHs7uZZWHKWYnJrmxNApjjx1mKcOP81EaYq1qpNXFC+hWwXVTjMWmR4/iLI6sjxdOMb3Bh9gsjRNd1snW9dvYcuGTfT1rqGnr4eeNT1kWnNI1p5VTLERLLnoi4gN7AOuAQaBB4G3KqWeiD3nt4FLlVLvEpEbgTcopX7pbPu9cP1m9dkbfwfEt0dBAEGJABb+Jv9/JVL+AzzKt5X4j3uAJ+AKuKJwgv9d8XBEUaDEtBQpyex0tbzKsMHrYcBdx3ZvHcotUXKnmXEmmHHGmQ7+xp1hRounGHPHKHb34nT14rR3gR3zal0HcRzEdRDPQVwXcV1QHuJ5ZFyXjOOScTxyJZe845EveuQdRcYDUQoQJDwwiG4LsW2AWFmsXCeZfBd2vgs704qVzWPbeexMC3Y2T8bOY0kGy7KwxSKDfyXgf9KxSoWxe+Gt+OPz4SkPhUIpD/xb/lURCoUXu+0/R/nfVvC/f2DR7XD7rLes7JcqtiX2OuXvFxW8g1L+D4vnYVsKWxTKcxClUAo8K4tnt4R2PJYzA+6ML05WlrzdT8mbwKMAygPP8f/PtODZef+dFVhuAUsV/W9DBBEbFws/pd3CssLPOngcgv8FYp/27P9V+Xb88FX5W4q/Ptoi1jy3y+8vWNF7n21wXM35zJnzmce/RU95OErhKBdXObieg+eWcL0CbrGA50zhlKZxSlO4zjRuaQqnMIF4RcDzP1f/bEaiPhC8jwieJSgBxxZmshYzOYtixqKUsXFswcnYOLaFsmywbJRto6zgz86gslmIXxW4DpnJcTKjp8iPjdKd6aE7u4a2TBdtmS5as920ZbrI2W1k7VawszxtD/GMdYoha4QZKWd6iYIcWfIqQ05lyGGRURa2Ev9KUAkWYCuwlGAp5WfNKOWrm1KIUtGxh/u0UNE3LMqfLxFuD7+HV3z6fYlEv5qB3CuAA0qpgwAicitwA/BE7Dk3AB8Obt8G/JWIiDrLL8qErfhB7/IvWFDC5bB1msPWae5joVF7C1gT/JWRytPEzvidbYG9LN3RFoI/Q3IWnyhnqId88Fd9goNuxMridfZR7OyjCIzjR7E+U8FfdfNxlECBEgVpvtm71Yj+ZmafCYNAZQpL9ByllCMio/gKOcuAFZF3Au8E2LJhM52l2ROXhHJkISoWyQSRrijBonx71r8wGo721FiqGRlRonwrRTw8UXgolKgocvJvR3GzfxUTRljxx6LDmxv9zgoQZYHt4Y302JSGZiK8WCP+v4RBesU1ZHArdpU6e3v8fnm7pcrntVXxvyDR45aKXzlVvv9yUj7jvOi8D8/F2ed3tDV2jhN/bJ6LvyQ0NGVTKfV54PPge/rv/fj7G/n2BoPB0PT80cc/kOj11eRDHQHiOVhbgm3zPkdEMkA3/oCuwWAwGFJENaL/IHCBiGwXkRxwI3B7xXNuB8JCKb8I/OfZ/HyDwWAwLA+L2juBR/9u4E78lM0vKaUeF5GPALuUUrcDXwT+XkQOAGfwfxgMBoPBkDKq8vSVUncAd1Rs+2Ds9gwwf81Yg8FgMKQGU3DNYDAYVhFG9A0Gg2EVYUTfYDAYVhFG9A0Gg2EVsWxVNkVkHNi7LG/eGNZSMSN5hbGSj28lHxuY42t2LlJKdS7+tPlZzkVU9iYpGpR2RGSXOb7mZCUfG5jja3ZEJFF5YmPvGAwGwyrCiL7BYDCsIpZT9D+/jO/dCMzxNS8r+djAHF+zk+j4lm0g12AwGAyNx9g7BoPBsIowom8wGAyriCUXfRF5s4g8LiKeiOyMbR8QkWkReTj4++vYY5eLyKMickBEPiNpWoq+goWOL3js/cEx7BWR18a2XxtsOyAi72t8q+tDRD4sIkdi39nrYo/Ne6zNRrN+N2dDRA4F59PDYbqfiPSJyF0isj/4f/nWMawREfmSiJwQkcdi2+Y9HvH5TPB9PiIily1fyxdngWPTe94ppZb0D7gYuAi4G9gZ2z4APLbAax4ArsJfKOxbwHVL3c4lOL4dwE/xFwbdDjyFX5raDm6fC+SC5+xY7uOo8lg/DPzhPNvnPdblbm8dx9e0380ix3UIWFux7WbgfcHt9wGfWO521nA8LwUui+vHQscDvC7QEAk05cfL3f46jk3rebfkkb5Sao9SquqZtyKyEehSSt2v/CO7BfiFpWpfUs5yfDcAtyqlCkqpp4ED+IvMRwvNK6WKQLjQfDOz0LE2Gyvxu1mIG4C/C27/HSk+xypRSt2Lv25HnIWO5wbgFuVzP9ATaEwqWeDYFqKu8265Pf3tIvITEblHRH422LaZ+CL1/u3NjW9aYuZbUH7zWbY3C+8OLpO/FLMEmv2YQlbKcVSigG+LyG4ReWewbb1S6lhw+ziwfnmapo2FjmelfKfazjstZRhE5DvAhnke+oBS6t8WeNkxYJtS6rSIXA58XUSeq6M9uqnz+JqSsx0r8P8BH8UXkY8CnwR+rXGtM9TJS5RSR0RkHXCXiDwZf1AppURkxeRur7TjQfN5p0X0lVKvruM1BaAQ3N4tIk8BF+Ivsr4l9tT5FmJvKPUcH2dfUH6xheaXjWqPVUT+BvhmcPdsx9pMrJTjmIVS6kjw/wkR+Vd8C2BIRDYqpY4FdseJZW1kchY6nqb/TpVSQ+FtHefdstk7ItIvInZw+1zgAuBgcIk2JiJXBVk7vwo0YzR9O3CjiORFZDv+8T1AdQvNp5IKL/QNQJhhsNCxNhtN+90shIi0i0hneBt4Df73djvwtuBpb6M5z7E4Cx3P7cCvBlk8VwGjMRuoKdB+3jVgNPoN+F5TARgC7gy2vwl4HHgYeAj4+dhrdgYH9hTwVwQzh9P4t9DxBY99IDiGvcQykPAzCvYFj31guY+hhmP9e+BR4JGgw21c7Fib7a9Zv5uzHM+5+BkePw3Otw8E29cA3wX2A98B+pa7rTUc01fx7eFScO69Y6Hjwc/a+WzwfT5KLMMujX8LHJvW886UYTAYDIZVxHJn7xgMBoOhgRjRNxgMhlWEEX2DwWBYRRjRNxgMhlWEEX2DwWBYRRjRNxgMhlWEEX2DwWBYRfz/1xncqxmjNuwAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
@@ -62,17 +75,17 @@
"# Number of samplepoints\n",
"N = 800\n",
"# sample spacing\n",
- "T = 1.0 / 1000.0\n",
+ "T = 1.0 / N\n",
"x = np.linspace(0.01, N*T, N)\n",
"\n",
"y_old = np.sin(100* 2.0*np.pi*x+1*np.sin(15* 2.0*np.pi*x))\n",
"yf_old = fft(y_old)/(100*np.pi)\n",
- "xf = fftfreq(N, 1 / 1000)\n",
+ "xf = fftfreq(N, 1 / N)\n",
"plt.plot(xf, np.abs(yf_old))\n",
"#plt.xlim(-150, 150)\n",
"plt.show()\n",
"\n",
- "fm(1)"
+ "fm(2)"
]
},
{
@@ -120,12 +133,12 @@
},
{
"cell_type": "code",
- "execution_count": 85,
+ "execution_count": 131,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAATwAAAElCAYAAAB53F5VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACz6ElEQVR4nOz9eZRk237XB372PlPMETlnVmbN860731ulJ+QntECDeeoWg0FChkZyQ7NYxt3CxsgPmYXbyBjJtrxkwA3GAiMs3G6EEBKDnniahcR77753h5rnIYfKOSJjPuPe/ceJiIzIzMrKqaZ747tW3VsVcWKfEyfO+Z7f+P0JrTV99NFHH58FyBd9AH300Ucfzwt9wuujjz4+M+gTXh999PGZQZ/w+uijj88M+oTXRx99fGZgPuX9fgq3jz762C/Eiz6ANvoWXh999PGZQZ/w+uijj88M+oTXRx99fGbQJ7w++ujjM4M+4fXRRx+fGfQJr48++vjMoE94ffTRx2cGfcLro48+PjPoE14fffTxmUGf8Proo4/PDPqE10cffXxm0Ce8Pvro4zODPuH10Ucfnxn0Ca+PPvr4zKBPeH300cdnBn3C66OPPj4z6BNeH3308ZlBn/D66KOPzwz6hNdHH318ZtAnvE8ZtNZo3R9F0kcfW+FpQ3z6eIWglMLzPFzXxbIsLMvCNE2klAjx0sxR6aOPF4Y+4X0KoLUmiiKCIEAphRCCKIoIwxCtNUIITNPsE2Afn3n0Ce8Vh9aaIAiIogghROePlLJnmzYBAriui2EY5HK5PgH28ZlCn/BeYSil8H2/Y8U9ibQ2vlcul4miCMuyOu+bptn50yfAPj6t6BPeKwitNWEYcufOHU6cONFjze2EqNrbGIbRWS8IAoIg6LzfdoENw+gTYB+fGvQJ7xWD1hrf91FKsbi4yMmTJ/e9phCiQ37tfWwkwHb8r0+AfbzK6BPeK4QwDHsSEXuFEGLb0pWtCND3fTzPA0BK2SFA0zS3daf76ONlQp/wXgG0XdgwDDclJJ4HtiPANtm1y2AMw+gTYB8vLfqE95JDKdVTbnIQRPI0C28nn++O/wH4vo/v+0BsAW6MAfbRx8uAPuG9pOiurQMOlDT2S3gb1wL6BNjHK4E+4b2E2Kq27lXBTggwDENM0ySdTvcJsI/nij7hvWTYaW3dfnCQFt5O9gW9BLi0tIQQgomJCaA3CdInwD6eJfqE95LgRScmnhe6O0EMw+iIHXie18kCG4bRcX/bWeA++jgI9AnvJUB3bd3zcGGfp4X3NGz8vlprlFK4rtuxctsE2LYA+wTYx17RJ7wXjHZi4iBc2DAMuXHjBmtra2SzWQYGBhgYGCCRSBzgET9bbEeAbfQJsI+9ok94LwgH7cJWq1WuXr3K1NQUp0+fpl6vUyqVuHXrFp7nkcvlOgT4oi283ey7T4B9HCT6hPcCcJC1dVpr5ubmmJmZ4Y033iCVShEEAdlslmw2y5EjR1BKUa1WKRaLPH78GNd1MU2TXC5HoVDoiAg8T+z1Oz+JAJvNZk+CpE+AfWyFPuE9R2ysrTsIsrt8+TKGYXDp0iUMw0AptWk7KSX5fJ58Pg/AysoKCwsLVCoVpqen0VpTKBQYGBigUCj0dFW87Ngoh7UVAXYrwfQJ8LONPuE9J2itKZVKaK1Jp9P7vukqlQqNRoNjx44xOTm5aV/brS+lJJFIdIQHwjBkbW2NYrHIgwcPkFJ2CDCfz79SGeOtCLD9kOkmwHYWuE+Any30Ce85oF1bt7S0hGVZZDKZPa+ltWZmZoa5uTlSqRTj4+ObtnnaDbwxhmeaJsPDwwwPDwNxkfDa2hpLS0vcuXMH27Y78b9sNrtvgnie8cMnEeAnn3zCmTNnOq5vXw36s4E+4T1DbLQu2nVne0UQBFy9ehXHcbh06RJf//rXN613EDerbduMjo4yOjoKgOd5lEol5ubmqFarJBKJDgHu1Vp9UaTSJsB2t4eUskcNui+G+ulGn/CeEbaqrZNSbhlj2wnK5TLXrl3jxIkTHatur9nW3X7OcRzGx8cZHx9Ha43ruhSLRR4+fEi9XiedTncIMJlMvhIE0V0GtDEJEobhJjHUPgF+OtAnvGeAJ7WHCSF2TXhaax49esTCwgJvv/02qVSq895+CG+vEEKQTCaZnJxkcnISrXWnBObu3bu4rksmk3npawCfFOfcigD7atCfHvQJ7wDxtNq63RKU7/tcvXqVZDLJpUuX9r3exmM9CAghyGQyZDIZDh8+jNaaarVKqVTi5s2b+L7fUwNo2/ZL0eWxUxHVvhr0pwt9wjsg7KQ9bDcubalU4vr165w+fboTS9uIF2Hh7WTtXC5HLpfj6NGjKKWoVCqdGGAURZ0ymXYc7UVhr7HHnYih9tWgX070Ce8AsDHm86QLfCeEp7XmwYMHLC8v8+6775JMJp+47ctg4T0N7RKXQqHA8ePHiaKI27dv02g0+OSTT9Bad6y/fD7/StUAQl8N+lVDn/D2gY0u7G7LQTbC932uXLlCJpPh4sWLT61/e15Ji4OEYRgkk0kGBwcZGxvr1ACurq5y7949DMPoEGAul3ulagChrwb9sqNPeHvEXtrDtrPwisUiN27c4MyZM4yMjOzoGF50T+x+0F0EvFUN4OLiIrdv3z7wGsDniaeJoTYaDaIoYmhoqE+Azwl9wtsl9iO9vhVBaa25d+8exWKR9957b1dZzVfRwnsaNtYAuq5LqVRidnaWarVKMpncdw3gi8JGAmw0GjSbTbLZbN8CfE7oE94usF/pdSllD9F4nsfly5cpFAq8//77u764X2biOigkEgkmJiaYmJhAa02z2aRUKr3SNYBtaK07Qqjtf7djgN0E2FeDPjj0CW+HOAjp9e46vJWVFW7dusXZs2c77txe1nsVLby97lsIQSqVIpVKPbUGcHBwEMdxDvjIDxZKqR4C26oGsK8GfbDoE95TcJC6de02pjt37rC2tsb777+/r5vyRRPXfnAQN+rGGkClFLVajVKpxI0bN/B9n3w+31GBsW37AI784LCR8DairwV48OgT3jY4aOl13/dZXV0lk8nw/vvv73u9V9XCe1aQUj6xBnB2dpYoijoqMC/D91dK7aoOsU+A+0ef8J6AMAx58OABo6OjOI6z7wtneXmZmzdvkk6nO7JM+8WnlbgOClvVAK6trVEqlWg0GnzjG9/okcF63jWAT7PwnoY+Ae4efcLbgG4XtlgsMjg4uK9+UKUUd+7coVar8eabb3Lv3r0DO9a+hbc7GIbB0NAQQ0NDlEol3nzzTdbW1lhZWXkhNYD7JbyNeBIB9tWg19EnvC5srK3br5xTs9nk8uXLjI6O8u6773bc44PCVsQ1NzfH/fv3yWazDA4OvpQN/DvtY33WsCyLkZGRTt2j7/uUSiUWFhZ6agAHBwfJZDIHfswHTXgbsZUW4GedAPuEx5Nr69pJhr1gcXGRu3fv8tprrzEwMAAcvGXVvV4URVy/fh2tNe+9916nfq3dwJ/P5xkcHKRQKHxmLbw2nvTdbdtmbGyMsbExYL0GcGZmhmq1SiqV6liAqVRq3+TQfrA+LzyJANskf/z48U+9GvRnnvC2q63bi36dUopbt27RbDa5ePFiT2ZwP3p4W6FNXPV6ncuXLzM1NcXk5OSWQ3zK5TLFYpHp6WmUUoRhSKlUeuUk3A8CO7Uwn1QD+ODBA+r1eo8M1nY9z9sdx4vsHW5f7+17YKMYKvCpU4P+TBPe02rrdktQjUaDy5cvMz4+zrlz5zat9ywsvGKxyO3bt3n99dfJ5/Nbri+l7NyYAPV6nevXr/dIuLfd32fhur1s2ItLvV0N4J07d3Bdt2cW8E7KjdoP2ReNKIq2FDZoez5tAgyCgL/5N/8mP/qjP/qiDnXf+EwS3k5r63ZDeAsLC9y/f58LFy50poPtZ72nQSnFysoKAJcuXdrVqEXLsrBtm7NnzwLrrtv09DS1Wq3TvTA4OLgny+VpeNExvIPY/1Y1gG0dwOvXrxMEQacGcGBgYMvfp91p8aLRJryN2EiAa2tr/PZv//bzPLQDx2eO8HZTW7cTgoqiiJs3bxIEARcvXtyWeA7qJnddl08++QTLspicnNy0z53sp9sS3Oi6tS2X27dvd4Z4ty3AFzHD9qDxLAi3exTmsWPHOmGErWoAC4UCpmk+86TFTrHT46jVavsaQPUy4DNFeO3ExE7bw55GeLVajStXrjA5Ocnhw4efi9XSbkk7f/48a2tre1pjO9d6K8ulu3hXKUWhUGBwcPCV1K+D52NhbgwjhGHYIcCHDx8ihMD3fSqVCrZtv9Dz+CQLbyPacctXGZ8Jwttre9h2hPf48WMePnzI66+/Ti6XO8jD3RJaa+7evdvTklYul595tnVj8e5G/TrTNDvu76si3/QiXGrTNDs1gBDHwz788MNOKKFdA9g+j8/T8tsp4TUaDdLp9HM4omeHTz3h7UW3ro2tCK9d/qGU4tKlS89Fotz3fS5fvkw+n+9pSXsRhccb9evaIxzb8k3t0o12/G+r8/1piOHtF+3M5+nTpzEMA8/zWFtb4/Hjx1SrVRzH6ViIzzqRFEXRjvqM2/HdVxmfWsLbWFu3l15YwzA6Mj0A1WqVq1evcvjwYSYnJ5/LTdMOgm8lDPok4nqeN/TGEY6NRqNHvaSduRwcHHxpmvdfBsKD3tiZ4zg9NYDtEph2IumgawC7sVMLrx/De0mxW+n1J6Ft4WmtmZubY2Zmhtdff51sNnvAR7wZ7fGMi4uLT5xt8bK1lgkhSKfTpNNppqamejKXV69e7QTuXdfdc0H3QeBlIbztjiOZTJJMJjl06FDPg+T+/fs0Go191wB2Y6dJi/Z+X2V86gjvIHTr2pBSEgQBly9fRkrJpUuXnktwOQgCrl69iuM42862eNk7JjZmLtvN+/fv3+fevXvMzMy8kLjVy0J4Oz2GjQ8SrXVHBqudSd9tDWA3+kmLVxDdLux+devacF2Xubk5zp07x6FDhw7gKJ+OSqXC1atXOX78OBMTE9tu2y0ouhu8KKJsN+8Xi0WGh4dJp9OUSiXm5+e5desWiUSiQ4AH7bZ142UhvL1CCLGpk6a7BjAMw04pUaFQeGop0W5c2vHx8YP6Gi8EnwrC01qzsrJCKpU6kP4/rTUzMzM8evSI4eHh50Z2s7OzzMzM8Oabb+7oSboVcXW3C73sN/XG3tVms0mxWOy0bnXH/w5SvfhVODe7wVaWdLuUaHp6Gq11jwzWxkTbbrK0fQvvBaPtwt65c4fz58+TSqX2tV4QBFy7dg3Lsrhw4QLz8/MHdKTr2HjDdTf+X7x4cceZ373etC+rK5xMJpmcnOy0btVqNYrFYsdq6e5c2E92/GXpcHhWv0G3zBX01gA+ePAAIUSPDJZSqu/SvuzYmJhoV67vB+VymWvXrnXcyUqlcqDN/sAm66u78X9qampXJPayEtdBoNttO3r0KFEUdW7aR48e9dy0uxVA+LRZeE/DVjWAa2trLC0tcffuXZrNJrOzswwPD28bS20PTXqV8UoS3lbtYfvpU21nRBcWFnj77bc7VuJBq5t0ryml7PTf7rV4eT9Z2heJvRCOYRgMDg4yODgIxDdtqVTakwDC85Zl2govknQ36gB+7WtfI5VKPbUGsG/hvQCEYbhlbZ1hGHsqdfB9n6tXr5JMJrl06VLP0+1ZEJ4QojPIx3Xdp/bfPm2tT6uF9zRYlrVpfm1b/qpdINsmwI1lGy+DhfcyHEMbQohOLzVsXQP4W7/1W3sqPP7Sl77EH/gDf+AWYAA/pbX+sSccw38A/FPgotb66/v7Rk/GK0N4T6utMwxj1+TUzmqdOnWqEzjvxrMgPK01H3744RMlpHaDzzLhbUQikeDQoUOdurV6vd6RzvI8ryf+9zKQzcsiHLAVNtYA1mo1vvSlL3Hjxg3+yB/5I7z33nt8//d/P1/4whe2XSeKIv78n//zAH8AmAU+EEL8otb6evd2Qogs8EPAV5/RV+rglSC8nbSH7UadWGvNgwcPWF5efmJRb3vNgyS85eVlKpUKb7zxxoGk919lwnuWhNMtgNAu26hUKhSLRWZmZgiCAMuyKBaLL0wA4WUmvG60Y6l/6S/9JX7lV36Ff/2v/zUPHjyg0Wg89bNf+9rXOHXqFPfu3bvfWuv/BP4gcH3Dpj8K/Djwlw76+DfipSa8J0mvb4WdurS+73PlyhUymcy2Rb3t/R0E4XU3/rczYweFrQjPdd2OTPduPve88Lz33S2AALF24erqamd4j2maHff3eQkgvCqE141ms0kmk+Gdd97Z0fZzc3McPny4+6VZ4Ju6XxBCvAsc1lr/KyHEZ5fwtpNe3wo7IadisciNGze27Evd65pPw8bG/08++eTAbngpZc9abct1fn4erTWO43QC/c+ykPdVg5SSdDrNsWPHgFgAoVgs9gggdMf/nsV5e1kIbzfX4kFL0gshJPA/Aj94YIs+BS8l4e2lPWw7C09rzf3791ldXeW9997b8RSvjYSyW2zV+H/QbnL7+MIw5MqVKyQSCd577z2EEJ1Afrv/slvI87OMjTE8x3F6BFC3EkBon7eDEkB4WQhvpxlrrfWu74XJyUlmZma6X5oC5rr+nQVeB36jdQzjwC8KIb7nWSUuXirC26tuHdCR2NkIz/O4fPkyhUKB999//7lcZNs1/u+XRLvRXqtWq3H58uVO/WD7YbGxkLdarbK6usrc3ByNRoN79+51hDyf9833sspDPUkAoVgsMjc31xFAaLdt7dXieRlKY9rHsZvvsJtjvnjxInfu3EEIcZyY6P448B+239dal4HhrrV/A/jPPxNZ2t1Ir2+FrbK0q6ur3Lx5k7Nnz3b025412o3/iURiyxjhXvtfn4R24fIbb7zRUXF5UstZLpcjl8tx/PhxvvrVr5LL5VheXubOnTvP1f190YmW3WRpu9u2jh8/3hFAaFvOexXufFm6PXbaVraX38w0Tf723/7bfPd3f/cvE5el/AOt9TUhxF8Dvq61/sVdL7pPvBSE17bq9qNw0p2lVUpx7969HnXg54GdNP4fVGZVKcXMzAz1ep3f83t+z65r+aSUPcWnG0cQtt24l0nH7qCwn7KUtgBCu2uhPby7XbS7UwGEKIpeKcLzPG9PMlRf+MIX0Fqf6X5Na/1Xt9pWa/1tu97BLvFCCW8/LuxGtGN4ruty+fJlBgcHe9SBnzV22vh/EDG8tpveDq4fxGCdjbVXbff36tWrPXMsCoXCS3Gj7gcHWYfXLYCgu2bXtuOmTxJAeFksvN0M8Nlvn/rLgBdGePuRXt8KhmFQr9f5xje+wfnz5zstSM8a3Y3/O9HL269Lu7a2xrVr1zhz5gyJRIKHDx/uea0nYaP7255jsbKywt27dzttXIODg6TT6V3/ds+y8Le6sMytf/NbrD1eRGjN8MljFA6PM/nu65gtwnlWZCPE5tm1G2Wb8vk8g4ODhGH4UhDeZ0ntGF4A4e2mtm6nUEoxPT1NtVrlW77lW56bC7aXxv+9Ji201szOzjI7O8s777xDKpWiWq0+l3jYxjkWbSvm4cOHL4X7uzb7mN/8H36Ku7/9NRqrJVQQIqQkdH2UEAggYZsUJsc4+v7rnPqP/ij5yWev69b94NgogLC0tNTJfA4ODpLL5V4IAX6WxD/hOROe1ppisdgZBH0QT/lms9nJwubz+QO/4doW2caLca+N/3shvLYVCfRYkS+q02Ir97dYLG5yf591F8PC1Vv80o/8D8xdu0nY9ImUwjIk9VqTfC5D1fMZyKbQSuNV6lTlEh//3C9z55d/i8MX3+D/8nf+BonC1kPTnwW6BRBSqRSe55FKpVhcXOT27dudpv29Ws57wWdpYhk8R8Jr19ZNT08zPj5+IImExcVF7t69y2uvvUYqleLq1asHcKS96FY3gfh73Lp1a8+N/7t1aZvNJp988gmHDh3aNPv2ZWgt67Zijh07duDu71bQWvOv/rO/xuV/+WsoPyRsNHHDiGw2TbNSJWcahCqikM9QKtcoDORAKRCCRNKhulrm8Vc/4R998x/kW37k/8WF/9sfOYAzsTsopTYJIGy0nNtzKwYHB3dcO7pb7Mal7RPeDrCVbt1+B7i0SafZbHLx4kVs2+50ZRw0upMMbWtydHR0z43/u7Hw2kO3L1y40GmL6sbLQHgbsdH9bRc/d7u/zWaTMAz3tP7K7fv8s//HF1m4N40EhCHxIkUCjed6GIkETc/HCUPMhM2QY7BaqmBIQUZHWNk0CJCGxK01+fW/9NdZ+q1/x7f+3R97rj21SqlNIqZbNe2XSiVu3ryJ7/s9AggHkahqH8dOXOm+S7sDbFVbt1cZpzYajQaXL1/epDay33WfhDbhLS8vc/v2bV577bV9dSrsxMLr7gzZrqxmP4T3vIhyo4pJtVrl5s2b3L17FyHErtzfy//4n/Pr/83fpFmpkXBsdKRw/YCBbBItJZW1KpZjY5oG1aaPY1s0hMFgxgQhKddd7FKVoaE81WIFhGBsOM+9X/5Nyt/8PXzHz/2vpA8/Hzn/pxUebzW3oh3/m5mZQWvdI4C6V7Le6UzaPuE9Be3ExMbaOsMw9vx0b8fNLly4QD7fG3s5yA6GbgghuH//PvV6/UBq+p5GeO0WsWQy+dTOkJfRwtsObfe3rWKSSCQ67u+9e/ewLOuJ7u/X/se/x1f/l3+M7/qg4u+8VqqSzKbwIkWz2iRnG+BYrFUaDA/nWFmpUMglUVrjiIhCIU3kB6yuVhgaymE2G5SLFVIJk2a1zq/+4f87/97f+W8ZvPjuMz8Xu+1wkFJukm0vlUqbBBAGBwd3Nbi779IeANpuLGzOwu7FpY2iqGPW70cwc7fwfZ9yuYzjOAdW07edjNXGFrGn4VUjvI3Yifs7ODjIrf/5Z7jyT/4lbsNFRwqZsCmXa6RyKbTn0Yw06UyKRtNFNppMDCSYXakwMpyltlYnUprceAHVaLDmBmRSFpHrksylaSxXSJiSUEVUllb5nT/7w3zTj/8Io9/5+57pd99va5lpmj2F420BhJmZGarVKul0uhP/265geDdZ2qmpqT0f78uCZ0J420muG4aB7/s7Xqtd+jE5ObkpaP8s0a6dymQyB7rf9qzbjWhbr90tYk/DkwjvZejR3A5PqsPbyv397R/5cR596TeRYUQqYcdhkqbH5MQA5apLNYJsJkG93sA0JMlkgqVig2MjKeaLNbSGQ6M5VpbKmJbB2IBDvRHihYowiJgYS1NZdaEZMjScRTUaXP6Rv8HbQjL8Hd/2TM/BQZahbCWAUCwWO8rauVyuYyF2u7A7tTT7Wdo9YjextsePH/Pw4cM9z3zYC7TWPHz4kKWlJd59910ePHhwoL2vG0lKKcXt27dpNBq7tl5fdQtvOwghuPm3/jdWfvMrmIZBqBRBGFKrNkmnHRqlKqZhMDk1yPxcEcs0sA1Jpdxg6ugwSzOrHJrII4Vmcb4KwNhoFq8ZIGSEk7RJGbCy3GRwIIFh2wQ1l0TSoLZa5vaP/09YAzny7z8b9/ZZqqV0CyAcPnx4kwBCu3RoYGBgxwXQbYv7VcczI7wnWRmmaT41hhdFETdu3CCKIi5durSvkXy7wVaN/wfd7N8da2y3iA0ODvLOO+/s2jL7NBPezb//f3D7//xFfC8gROOFiqYfUBjO0aw2iDQkpaKyUOLQRI7SWpNazePI0SEWZlaRUmBbJkEY/3ZHjg6yPFsCYOzYCM3lMs1GfB1amTSUqwRBRCVUjI+maTya59Zf/mtc+Hs/Sfr4sQP/fs9THmqjAEK7dKhYLLKyskKj0WB4eLgjgLrVcX0aJpbBS2jh1Wo1rly5wuHDh5mcnHxubUvtxv8TJ070yK/vRjp+J2gTaLtFbD9KLvshvJfZ7Z39pV/jo7/903hhBAKiMMDzPAqDWWo1F6RB0jFo1lwSaYeg6jKSd4jyDgszRUxTMjScZXmuRCJhcvzkKAsPlwEYnhyk9rjI4NQwyw+XOXRqnPKDRXIjOfBqDA4ncRsBCcfEXSly74f/Mq/9w5/CPOCb/UXq4XXHThuNBidOnKBer/cIILT1/9oCCJ+WLO1zP+NPIrx269Tly5d5/fXXdz2jtb32Xqyx2dlZrl27xptvvrlp1oRhGAdqRQkhWFtb4+bNm7zzzjv7kq16VS287R5Kq1eu88H/+ycwogArCpFhSFIYHD40iIhCJGCbAq/hYyctJNCo+yQSCSzLxk6YDA5lKS1VMC2D/FCW0ItjpuPHRqnNl4hCTWmuyJGz41QeLiGEoFFuMHFqHK/UJGj6yIyDaVt4K2Xu/vB/ceDn+WURAI2iiGQyyfj4OOfPn+fixYucOnUKgPv37/PVr36VP/2n/zQrKyu4rrurtb/0pS9x9uxZhBB3hRBf3Pi+EOI/E0JcF0JcFkL8qhDi6MF8qyfjmZ3x3bi07VKMUqnEpUuX9hwr2K01FkURV65coVgscunSpS2fYAepUBxFEY8ePcLzPC5evLhv9YntCG8nN+jebmIR/2mVGj3pD13/R7Q+04J8QpDcrzf48D//UZTrEoSKSCvMhEUyl2JtuYwjDcaG0gRBhGVLDA2Nqsuhw4Msz6yimh7jEwOsLVdIZBIMD2Uoz69RXihz+u2jlB4tAwIrYTE0miesxINonJTF8HCWyvQyTj6FlXIwIrBTFn6phvfoIY//57+5h3P1ZLwshLfxONoCCFNTU7zxxhtcunSJH/zBH6RUKvHDP/zDvP/++/zUT/3UU9dtTyz7pV/6JYDXgO8XQry2YbOPgPe11m8Sj2j87w7siz0BL9ylbbuSR48eZXJy8kDX3g7t7O/TXOeDcmnbBdPtOQkHUdW/1TGHYdhR5hgaGtokS/SElVp8JNoLb7+fHWQYtVKIJ2zzxhtvtpZpE65Ga/joP/nL1FeLhGiwTWzbIFKa0kKJ7HAWv+GhqhFHjg6zML9Gs+oydXKcpQeLZAYyGAJkEJEbSmNrWFuqIA3J1IlRVm/NkxlII6QgaUrqi2sAjJwZR69UcVcqACQGshjVGlG5QcM1yUwN4ZdrlH79t0i/9z6Fb/6Wp5zLneFlIbynZYullHz+85/HNE1+6Zd+CSklq6urT123PbHsxIkTaK39rSaWaa1/vesjXwH+5N6/yc7wwghPa83MzAxzc3NP1ZDbKXZqje2m8f8gLLx2l8aFCxeAeJrTs0Cj0eCTTz5hcnKSVCrVKa0xDIPR0THyhQKJZAIhJG+/+x7S3JwR3lkMNCaqrc6Lbv1HoxFPOG+u6+LYNqKVFALBzR//n1i6fpsgilCAkOA1POqVJoWRHPVyA9s2UWGEu1xhcDgHQxmWHiySH0yjg5B6zaMwkuXQWI6HNxewHJPRiQLL95cAmDw9RHlmhWalCcDQ0VHkWp2w9UBLD6VRxTKp0QKNiouZcjBESKQ0Qc1l+R/8XdIXXsfK7V9w4GUhvJ3Cdd3Og3onnslOJpZtwJ8Gfml/R/l0PPcsbZtAPvnkEyzL2pGG3E7xNAtvL43/+7Hw2i1ixWKx06VRqVQOfLg3rPfdvv7GG6RSKZTS5AoFjh4/0fktum+yJ7UTxZJFbUqL/x7/bf3/Ao1Q0SZLsHehJ18DdiKJbu1LClj5rd9l5he/RNIU2IZFGAa4QlJu+AxNDbO2UCKVTRI0fZyEQ6NcZ2JigMePSwyMFQhqLl7DY/jICN5qhVLNZfjoKEakKM4UARg7fYjq/QVyh4ZYqS8xfvYQzYeLhEozfGaC0FeolTKh69NYLpMYzSOIqC9WSU/ksZI2hBELP/HfcPi//u939dtshVeN8OBgpNy2ghDiTwLvA7/3meygC8/9jJfLZer1OmNjY1y4cOFAG7a3I7xms8kHH3xAIpHg7bff3nG9214tvCAI+OijjwjDkPfee6/jVh5koqE9inFpZYUgirj4TZ8jlc6AkEjDQAjZQzrdf48iRbPZpFyuUKnVaLheXIyrNaGGSEOkBYr4j2796Y7hbToepTt/lNYopbb8U61WW5L+Crdc4e6P/ySmDol8n7Dp4tdcLNfn+OkJio9XyQ5m8BseyUyCRrnO+JFhVu4uMDU1iFdu4DU8Dp2dxF0qEbo+6YEsY8NZKvMx2U29dYLagwVUqEDB2GuHadyb77SoCSGxfR/lxgXxZjpJZiSFasb/VoZFFPi4KxW8hQUW/vn/d99hjmcpgnrQeEYTywAQQnw78F8C36O13jyF64Dx3Fza9iSvhYUFUqnUjlqndosnZWn30/i/F8KrVqtcuXJlU4nLXtfrhtYaDTGhaM0bb8dDkbe7ddoXbKQ0WoiWdQXSTpCwe2WHatUqmWxu0+d7968RrT12W350HYkB6Cfc0Ml0pvUZxZ0f+a/xS2txkiJUhJHCySQxbIvKvXlOn5vkwZ15sgNZqstlxo+PsfpgkcGjI9RmVhk/NgKGweqdObTSDB8bJSjWWLr6iJHjYySzaYrXHiIAaRpkChkkCrd1bONvnqB67QEDpw7RWCqTOz4BlSq12TWsTAJpSozIJzE+iLuwgmFZuP/mX3A5MwhDo3vqX22fxxdNeLslsb1MLHvw4AEnTpyw2TCxrLXeO8D/Avz7WuulXR3MHvFcXNrugt5Lly7xla985Znsc6P7qbXm7t27+xrms1uCmp+f58GDB0+MS+7FwlNKoRGoFtl1rbb1B7QmarmmkQbVsspk12e2una11iSSSVzXxQ8ClNaYlo1pWcQzk+mss93Fr7VGi/g4Wq+s/1fHCaNEMsnqP/lZKldvEmhQaLAMEimLyAuozJUZODpK7dESh89MMnN9hvHjo6w+WGT4xDj1uVWiIGQ8n+HeJ/fQSjN+dpLao2WiIMS0TcbGB3j4wW0AnFyawnCOys2HJEcKGI7F6JkjVK8/iEuF7s0z8u5pmvdnIYyvoeTkYXSzQlht0JhbIX14GL9YIjU5yuErv036z/0Ia2tlpqenOxLobQJ8XoOj9oOdutV7Ief2xLLv+q7vArjB1hPL/nsgA/xsa/1prfX37PJr7O64nuXisD6D4dSpU4yNjQFPVhHeL7otvI3zaPf6NN0p4XXHB7frDtnpelprlKaL5LYnSaU0CghVe8stXM6uV4MwRLZKRuL9gEYgMRCWiWM9+YYNohDLMDuLxjYfndifRoDULRd487Ek0hmaj+d5/I9/ljAKY4vRMjClxKs08WtNBo+PU3m0SH5yCHe5xOSpMZbuLjJy+hDVR0uoMGLy9aOsXrnP4deOEiFYvf4ItCY5kCU/kGHlozsMnzmC13Cxw5D69AIAoRtw+L1zrHztWueYRt49h6GjDtk5IwNEtSpmOgHVBsIysXIZVK2Kt7yGlRBEX/5ZJr7nBzr9q7VajWKx2MmSH8T82meJnU5Oazabeyqh+sIXvsAXvvAFgJPt17onlmmtv33Xi+4Tz4zwtNY8ePCApaWlzgyGNtqxtoMmvLaF185OnjlzpqMmsZ81n0ZQnufxySefMDw8/FRh0KfVzmmIXc+nHJfWChBUag3sxLoaxtb7bmdVNQrdIjeDSLOJR7tJUWvd8/eo5RaHQQCJ7ktnq3geIDdkPFrE6Loei//dj2ObYCZNImFQaXjUVyoIKSkcHWXt3jyDx8cpP1xg+NQhlGXB2UnK9xfQkWLywlGKN6YByOWz3P/gBmhN/vAYVuBTa5FbYWSA5St38BpxZjZzeBwnivBmFkHGtYIj75yjcfMuAOnjU/FMDOURrFVwho8irSrJsQHqD2ZIjg5iJCyEYdD48Gsk3voc5tGzPfp17fkV3fNrN8o3vQzYjTTUp2FiGTxDwgvDEKXUlsOo24R30DJPUkqWlpbwfZ933313T3M0t1pzO8Jrk+tOW8S2Wq8dX9uWVrWm6bqEYYSVSHWsvm6yk6KbW2I2i5QmaFlvwBPdUa1jxzfScRZWQ+t4uq00gZDgOOtxv0hFBJ5HGIYYhhm7v4aBkCImvR7Ea639/M/iz82gwxAihfADMlqhBjJI02Dt3jxDJw+xdu8xI2enKN+ZY+DcEYLVCmjNodePUbzxCCEFE2+epvj160y9eQa34eLPLeI24o6AifcuUP3oOpmpCcr3Zxh4/SxMzxI2XUJg6P23EL7bITsAe2gAd/oRUauroP5wlqF3z9G4/yD+BpaFYYK/skby8ATur/wsqT/1w0irN+u9cX5tW76p7f56nsf8/PwLdX93qpTyaWkrg2dIeLZtc/LkyS3fexbqxEEQMDs7i2EYW5LsXvGkREi7jvDx48e7ItduC6+deFB6+6RDGEXUGk2cRArT3Ma5bbmXftRNnr0ry3gzwjBonSNBpCHsWtQSbAryxdZefKDt440tRYnhJDG67lkN1Gs1nFQKCUghaRuT7uwsjV/+N6hQo8MI5YeoSGGnEwxaBjPX5hg6M8na7TlGzk1Rvj3H4Lkj1O7MMn7uKM0JRenGQwzbZOT0EUpX7gCQTtqUrt1FhxHCkEy89waVD68AkBoo4HzTMO6Hlztnwzk0hmUKatfvd4479+4bNO7dJTF1CPfRDNKxyZw6guqS8zIyKaSpUI06IPAXl7B/++exf9/3bfMLbpZv+spXvoLv+y/U/d2NFt6nQTgAnnEM70nu204UU3aDdrdGeyj1QbrKW6mlRFHEtWvXkFJy8eLFXSvXJlMpgkj1ENems6QhiFSLiAROYmuXolatksxk8SONKWMLbWtoJMRlJ0qgMHiSSSlE22WO0SbE9tISMLtOcdv1bVuYSoOdTKKQ8S66jqn4d3+SqN6AMEJrgXQsrIRNWHcJS1UOvXuShQ/vMnr+MGu3ZjtkZ9gmjpCszM5jZ9MUxgYo34ytrrH3X6fyjesMv3aG0v1phk8c7pCdtG2shEU0/bhDdvL4YWSzSv3addKvnaV+/RaFS2/TuHEt1nJMpjDSKVLHDuE/nsUHEocncQZyBI8fIcfH0FKiAw8jnyOYeYA5cxN5+NyTTv4mmKbJ0aNHd+T+Pqtsbp/wnhMOysLTWjM3N8fMzAxvvfUWjUaDUql0AEe4jo0uaLubYWpqamMl+VOPtW3NnXvtwpZWWjtR4T+BtQzRcjlFnJzwI42RzHS2j1oJi/b9IVuuaag0fusr2LJTftYD0SItBQQhhNvWFOuOpai6ybBr3aQhCVV8zKAJwojqv/g5/Adz6AgQEtMxQGv8YqxXlzoyiltcY+S1o6zdnGbo/FGqt2cwUwnSY0NUbz7k0Lvnqc4sUn0whzRNRt44S+WjuFspkUxQGB6gdj3OzNpDg6TGBmlevU7m7TfxFpYZ+KZ3qF+/1uF6ISH/7us0b17vEIu/tETmtVN4d293vo81No7/IN7GW1gk9/YbqMVpQsvCTCeIPvlN5KFTYDz9ltqYsHua+/ussr87TRy+rEO4hRB/GPivNrz8JvDdWustuzZeWcJrW1lCiE63hud5B+4qd7u03S1iW00RexK01oRq+1yr19Jt24qMIHYhA6Xxtvl6GjBFXOLhhqpVjtKL9vpRGGHIuOg2VL0ubWLDQ1+0OiJi8uy19p60XaREq3g5Pnp/tUj0u7+GnTXxlEI3faJQEZRrmJkkdi5J/cE8+fPHqJSaDL12nOqtR1jZNMlClsbDxySnRpFuk8b8MlY2Q35yjMrlGwBkL5wheDyLMOJYWvr0CUSjivcoTmx40zMMfO4dGteudc6KPTqCJEC76/WuiSOHkcLHsNZvjfTrFwjuXcOeOES4tIA9OQXNRvyAajYRziHCxQWMD38ZefG7n/wDtX+DpxDNRvf3WWV/X/Uh3Frrnwd+vv1vIcSfBf4E8MtP+swLcWn3S3jdjf/dOvt7lYfaDlJKwjDk7t27lEqlzljInaBtsUXb1N3F3Q3x340N/CRoxb1CRaTX42/dLo7WGlPGpSWNQOGYAl9151rXYYj1BEmgBaHa2ozTWmG0CpQ3kmH3sdFl6QWq153OmK1ja+0i+id/DxmFCNOAvE2j2iSoNHCG8gjLoDG7Qu7cUWp3Z8icPcbi717HHszjJByas4tkTh0mWCvTWC0y9s1v480uUr8Tu7QD3/Q2jes30VFE5u03SYyP4t65A62wiT06gj2QxnDWSSZ97jRUi4QL86QvXMCbfUz6wnmi5TlU4NNo1DFyOZLHjhBO34ld3VQGozCAiUe4UsI+cgwzmSAqr2GkHMTKHBQfw+D2k892U5K12+zvbtzfV53wuiGEOAP8VeD3aL05XdbGC7Hw9hPD267x/6DFOiG+KKrVKoVCgffee2/HF6rqsuo2olqtYifTm4gkUjpWGUGjpYG7YQNFHDtTukVeQLnpIc11At64R6NVAOxFmmbHrRWbSLPtevqRRiuB3uprtiy4uG1MEmwsaWmtI4jd61ALQg3hV3+DaPoRWim0ihBhSHKsgJlKEnk+/lKJ7OnD1O/NkjlzlPrdR+TPHScsVnAXVsi9form9Bw6CEidPIqdSlB5vAhSMvS5t6l+fKX1ZQ3sjE3tyjVoCwKcP0NUXMKfnSNxLL7c5blTREuziNaDqHHnDrmL7+DdWXdrCUMyr7+Gd/2jzmvB/BzpU8dQC7HVqIIQrSoQesjRcVS5iHnnq+hLf2jbPuP9DPA5SPf30xLDE0JYwP8B/EWt9fR2274yLu1OGv8POvvbbhGzLIuzZ8/u6DNt9/VJNp0faWRiM9lprWnUa9hOkpCtA22twhCCSFNvvd9NdhCTpilAaYUbbp3EkAKCKOqUqPiRptm1nWPErWNa69Y2mjACN1r/Xrn2vdQiOa3BizReawPTiV8UfgP1q7+AjlRcmKzBsC2sZAJ3uUpYb5A+NkH9/izZs8eo331EcmIEmc2zcvsRhfcuULt5B5Qi/foZvIfTBEtL2GMjpCZHOmRnFfKkjo1Tv3yZ3JvnqHx0jfzFt2lcX3dh/YVFBn/vJZqXL6+fi0SC9NmTGAkDv0VCwrLInD9DOH0XYVoQhch0hsTEMNK2O/E/I5VCphLo5Tm0NNCGia7XkA8/Rh1/5wlXwMEKB+zH/d1qGPhWqNfr+xKqfQ74UeCa1vr/97QNXxjh7WZyWbPZ5PLly4yOjm5b2HuQYp3tAUJvvvkml7tukO3Qtuq2OrpIadxo6/e8ZpNAC6QT67VtJDuj9VIj0NgGLZeVTdtIAXVf0ZIq2bSNII7xRVFEM9AtvbretdpuuKkVfqQJtjidhtCxdaQ07obni0BjyVYcD+DnfxpdqbWsQwEJB4EmXIsVSSI/Q+Ph45js7k2TmBpHuw2i8iqFb3qT2uU4IVG4+Da1K1fjfYwMYQ4UaFy+BUDy5FFk5OK2auUM2yD/zgWaXWTnTB7CSplYpqDZes0eH8dMWfgP7mKNjMafzeVITgwTztyLP3f6LMHCYxKjg+jSMn6lhJHKYE8dgaUZFGNgWoh6ET0c94eL4iyMnYLU1kK2Bz2xrI2duL8DAwMMDQ2RyWQ+FRaeEOLbgP8A2NG0pWcew9typ7twaXfT+H8QFt5OW8Q2fW6bxEQzUB2rQANuo0EilUJoTaXpYlhOR7YmaFmHgth9DSKodvmOfsvKEi3X0W3UsBMpKl0mY8oUPe6mJSDUioqnUBqylugR54zjgPH/66GiFkDS7FVaMUTszvqRphpobCk7mV+hNaYRu7GNUNMEbBP0/WtEN66io1hBBSkhjAirVcxUCiOZpPjhnXXL7sghomoZ1XTJvvEalYdLICX5997okF3bRbUTJkUg9dZ5oumHqNbvbk6MQ7NGsLzWOfbsW68TzE8TrvioZh1tGGTOniZamidaibP6wfIS6bfegtIi0dLj9ZMXBDhDBfTaSvzvKMQ6chI9fy8uWVpdxD7/FmJtBrU8h546DpUixqOPiM5/69bXynOShnqa+9ueH53NZkkkEk9c52WdWCaEGAD+N+A/1FpXd/KZl9albTf+l8vlHScK9kt4ruty+fJlRkZGntoi1n2cUcsq2vAGvooJbCM8z0VYNhESY0PPqiYmqEaoaWweX4smzqJGGqp+hDKThBv8YyHAbGnZVf1ok5UWqNhNlcSxpHqkCDfsK66za5FcqKlu8I0FGlvGSY1mpONSk9b5cAxQkcL5t79ImLFpVl2E1ijPQ/s+Zj4XJ4PWVsieP0n95j2Sxw8TFVfixMOFczRu3iJx9BRWNkP9Stzzmr/4Fs1bN0EpvNkZBr/1IvWPP+kcU/LCecLZR4SVEH3oMDSaZN44h//gzromoOsiL5wheHCv5/dNnT+PlZC41bXOa/bkFDKsY+YLhNVYaso+cgJdml93dQdHkVFr1oNhIBwLXSkjfA9ZmkENbC5delFaeBvd32vXrqGU4saNG4RhSD6f7wzv6bb8XmIL788Bo8Df2XCv/o0nubcvJeF1N/6/9957Ow7w7kdrrt0idu7cuc4T8WnQWm9JaBDHuzbGz9rdCXEMT2zyOk0JNV+hDEG4hStpG9AIIhpabEpoQOzS2lLgBorqVr4oYLWIrNb0wTTZaI8KNJYQhJGiueEnisksVm3xol531mxZgLVA0Qwh+/V/g6yUsC2Jn3QI1qoIrbCGBsH3iCoVEpOT1FcapE8dxV9cREhB6sQxmrfvYA4UcApJVj6+ijAM8u+9TuN67N6agwUSY0PQCuMK2yZ74Szu7VsdFzaTTeEdmyB8eLdz/ciBARLDeTzld1x+YZqkL5wneHQbZZqIdAZdr5E4fRbKCxCFiNFY9MI6ehKqy6A15pFTREtzWCkLVudhdAIjnYXSPDo7jHSryNXHqMwYbGg7exnEP4UQSCmZnJzsuLflcplisciDBw867m+pVNpTHd6XvvQlfuiHfogoirh3794XtdY/tmH/DvCPgPeAVeD7tNYPd7MPrfXfAP7Gbj7zQlxawzCe6NLutjd1J/vbDlprpqenmZ+f31WLmO6K13VThtKaZouMut+TQD2IuysM08IU6+UephQ0AkW95YeGG8pKLANqXki5lRFImr03SztmVnLDOIOLQsr1J7QAEqagGSqKbkyESdErDOBIQaAUZS8+xpGU0TkGsxUfrPmaeotIk6aB0BrLEPiRotI6dq016eYa1vWvdB4+ZsZBNVxkOk1UqyIDH2dyAm9mhuTRk5S/cRWZTOKMDOI+eIg1eQgZ+Xi3b5A6dQwzaXfILnnqBLpexpueJnHiJPbYGFYmgXv7Vuf7pi+8Rrg4gyks2leZc+Y0enWRaHEeQwiidBpp2ySH852yE6II58QRpGmgHq9bgMHMQ+xT52F1Lm6vA6JyEWvyMKLSknHTEiOsIZRC2wlE6KFCH6s0TTBysiem+jIQ3sbjMAyjk92Fdff3J37iJ/ja177GX/krf4U//If/MN/1Xd/11Nkz7QE+X/7yl5mamsJxnO8XQvyi1vp612Z/GihprU8JIf448OPA9v15B4AXctZN09xk4bXVVW7fvs277777XLJC7all1WqVS5cu7ZrsNL1kF0TrZAcxSQhiAqsFva1kQrRidEpT9qIeSzFQ8XuWhEYQstIIcLvMRTeMS1cSpqDeaLDSDFlthutFxci4CDgK8Bs1Kq7PUiOk6ndZfSpEaoUpNM1AsdwMWfPWj1EpjSMBrVnzIopu1EmWOIYgVIpmpFjzIhph3GebMuPvnPudfwa+H+dOEJgpB5lJE62VkSrCGh3Fm5klcfwourqKkc9h5dJ4s3MkTp+CRoWovIZ96BDpo+O4D+JkRPbdNwkX54gq8cAdI+lgWhAszMfnO5Eg+9YFwpm74HskjxyOrb+33kDPP0IEcYGx0JrE2TOYVkS0srD+mySSWJkkev5+z8PTOXkGM53okB2ANTKKaa/bCzKZBDu+foQ00FYiloxx6xjN3u6fl4XwtktatN3fn/mZn+HcuXP8xb/4FymVSu0pZNuie4BPKxTVHuDTjT8I/HTr7/8U+P3iOSiivhQubbdA6EE2/m+HdovYxuLlJ6EtgtiO2eneN7d0YZWOXdSNP2Po+yjTpBFuTqa2M6luqKgHm91+Q8QWoRdq1rwAjA2xTa1JWZIwVJQjCeYGEtcKGXrUfB+V2FzaYxsCA2iGCq/bXdeatBW70iU3ImlYKB2TsiWh4mtcT5O5/zHJxRloTS0ThoGpNVGpjLQkVqGA//gxiZPHCWYeYY6MYOUl/uwcqTdex79/G5QidfYswcIsMpdFODbZ187QvBV3VQjLInPhPN6dmyQOn6BWKuEcnsIwFP6DO+vnUmiSU2P4D253CEzYNurQBImohhusVwqI0TEsM0JN30YNDCNLKyAlidPn0EszqEy+s61z6hyy9LiTlZWjkxi1JRieREuJDBqozGBsTYQeZn2VyEpDK177KhBeN+r1OpcuXeLbvu3bdrTuDgf4TAIzAFrrUAhRBoaAlR3tZI94YS5tm/Dajf9byaE/K7Qzv6+//jr5fP6p23fHBrdKUHhPILtGoJAq7OmvNARUlUSEsZvpdX3QloK1ZoivYtLqRpvoluoBkYbB5IafLgqxJKwFUHRDhjb0h1kyXn+1ofCVia0D2ltopUgYEGhBsRW4KzgGiHVCK3ua5Vblclsy3jEEFX/9tbRUjH3yK3HxtI6lpHQYQrOBPTKAhpjsThwnmH6ANTkJ9QpGrkD67TfxbsUeT+atN3Fbf9deg9SRQzRbLqs9NoqVSeLduRmfF9sk89Yb+I/uEqn1B0Tq9deJ5h8Qh4pa53fiEKYj0OVFIsAcGiFcXSZ1/gJ6eRrhxd/FzOaJGjX04CB6KZ7LoGtljIkjmOkUshRncfXKPHJ0CosgvtZX52HqJNKrosvLMHIYUVuFZAbTqxIaFrRKp14WwtvJcXie90ooOO8EL8TCa9fLzczMMDs7y1tvvXWgWaAnSVJrrbl3796uW8Taxyuk3ER27ZKTdrxOAF6oO+6f53k4KRNDxK/XIr1pXqstBVUvZK3LHW4ECkuClLGk+lIj6Nl3u/eW0MdzPRpGosfq9CMFSFJm7H6uNHpjptqwMFBYUrAWKOrhesRR67jjw7EM1rxofW6F1mRtiRtqGqEi0KJl+UlqgWLw5q9jhm5cXSw0OogQgY/IZDASNu6NWyROniB4dB/72HHU6gIoRWJqhOrvfgVhW6ROn+qQXfLMGVRxATOVw6cVm5ufIVhYA+KaOStj4X50DdHqJjIKAyTGhwlnYkvPOX6CsLRG+vXXiebvo911t96eGMcZHUIvPeypjzRViD02iq6uu6JaCGpCMljqKlmxbMyBgbjuDsA04+ytBxgGmDZEHugIw6+hrCTKSe+r0+KgsRPCayc4doodDvCZAw4Ds0IIE8gTJy+eKV7IYyaKIlzXZW1tjUuXLh0o2T2p+DgIAj788EOUUrz//vs7JrvuNWNxzHXEDfoxDLGemOguDLaTaSRQ9lRPHA7iYuQoUizVg57YH6zH8JbrAQv1YBPRCsD3XIqBoL6B7AStvtsoZKHmbyK7tCUJw4Cyp1hxFaFudcZqTUoqdOjzuOZRapOd1mQsgRSw1Aip+IpQKdJmnLFdboao0hJjqw+RhhkTnlKIKELkcgjLQkpwTh6Pye7UadTSHMK0sCanoLyEMTBI4tA43r07ICSZt94gevwA7TZxhgtk336T4OFdtBfH4ZJnTmOnTYIHd0gcO9x67SyWownnp7vOhSZ97hRq7m7PnFz78DFMU3UsuM7rJ88hvSpGrrC+RiJF8thxBv0SuiXTpaRBlB+A4hzaiEMDYmQKWV2O/50bQTbW0E4aI2jG/cmhi1DRS2Ph7QR7mVjWPcCn1WDwx4Ff3LDZLwI/0Pr7HwV+TR/UOL9t8Nxd2nbjv2EYvPHGGwe+z7a73B2baLeInTx5sjNXY7draiF6sq5eq6G/DaXjkoxuYorLUDa7wHFTvWK5rkjbvRd+O6O6WPfJ2samIua0JfHCiMdVjyRhbEm0IAXkbIPlus+MqxhK9P68OVvSDBWPaz5gMWiBr2NSyFiSiq9YchUQu7OO1BCFVAPNUmi0jl2Rtw0CBcvNsHVMgnMPfxMdBGAYcbJGgcjlETqCSglzeArv5k2cs+eIHt1FDgwjbQO1MIs8dAQrWSdYmMfIZklMjuHfi11Wa3QMK+1Qb3dZ2DaZ82fwH3RJNw0OYKTTBNN3e665xJnzUF4k8roI37KIxg9BdQlVExjDY0Qri4hEEmfqCHplrvU7xOQoB4axUzaiEoeWjIFR1PIciYlDyMYaaGgkC2itKDRLCCGIEhkMIVo90a3fIIqQoYcRxYT9qhBeG7uxSLsH+LRCV/9kiwE+fx/434UQd4EiMSk+czxXl7a78f/q1avPZB8bFVO6W8T2qviQzeUQXWUeodI9vbBxyYaCKAAZP+0NEQf+QxW7rG1YUrBabRDJzQmDpCkoNQOKbrx4LYg6AncpSxJEivnqupRROpVizYswBGRtg8Wax1pzvYLYNAQi0uQcSdmLmKn2tvOZRDi2xWozouqvx79MARlLEmmohBJaKitZM84oLzQ0KUJySRtDSpL3L5OoFWP32zJRQiJyabQfIOoVxMRhxMoK9tnzRI/uYExMQaOCLtUxTp5DLDzCyGQxshmEXyeYfRSfj3OvEc4/IpipIkwTe3wsllfvIjvn+CnMhKR2d72MxMgXYpd0KV7HnjyBe/sG1sQU0tRQW+lki4zCYCzbLhR6Zd1djRbmsI6exGiWEG6t87quV7DGJ5GNdXc3ZZuYho7JHWg06mRlXMsTKIUh7FhUVYAMmhSy6fWQxEuOvVqjXQN8AP46sHGAjwv8sYM4xt3guRDeVo3/z2pyWVsxRSnFzZs38X1/Vy1iWx37+KH1uqN2k3zb2uuQHTERShmTWqUr9uWrVn+phqW63yFFaEk6SUEjUjyu9WZlQwUDCYNmoFjoIro2/Ehhhk3KkUmp2dsqIUV8sH6kmK70urSOIRCBS8O3qHldBNkiuqVGwJobcnIwidaagmNQ9SOWXA1IbAlJ06IeCUTT5a3HH8WxESljlzaVQnseslmDiSmYn8U8fBz36x9injiNnp8GrTBOv4aYiedJJI5O0LzycaymkkiQPH6cYLo1a0IIchffxb1xpZOYEIkkqVMnCafvEQIynUHVayTOnIO1RfTSbOd7CaFJnH8dtfCg9wRKiZFKwMocPQVGUmIfP410LHRteX2ddA4rm0I6Np2G3GQ2NrLTeagV0aZNNp1Bp/LgVpBaUWm4SG3S1qx2DJtIv9gpZjv1HhuNxsvaZbEnPHOXtt34PzY21tOu9awmlxmGQbPZ5OrVq4yOjnL+/Pn9BYiFIApDaGWpmq0nc1vost5V22Zadite10tcpojl2ksbOu2lAFMIGlFExet94ltSYEqoehFrbi9hGQIyjsFMxcNG0C1rJwUUEibzFY/ZIIr7V1twDEHKFMxWPEIlGXIUSLmJ6KCV+NExUc/XY1KUaPK2wXzNpy4Eoxmbd+Z+B1PHcySEYSBME9VsIv0memwSufgYOXkUsTCNdf4N1J2rkEwjR8YQM3cRtoN1+CiR54OKsKYOI5VPMB037xsDQ1iFAtrQ0CI75/gJpN8gbG0DkDxxAuV76MVedSBzbBLTFPhLMz3xV2NkHCuVgKVpzKERotW4gFjmB7HyWcTaPKIwsl44PjSOZSiEW4VUy1NIZDDSaWToro/gLYwj/Traq6MSORxDYKOJEg6mgDXXx3AMPNdjeXmZgYGBPT+M94PdqB1/WiaWwTMmvCiK+Pjjjzl37tymxv9nNbksCAKuX7/OhQsXdtwith0ipXESiVax8bodEJedRHTrnxiCTS1fthSsNDYrw9hCU/EVjVCRT/R2RWRsyeOqT9gqT2lnnSWQSxjMVX2WWxZdRka4xHGzgYTJfNXnXqPZWW8gKZEiJrqZssdS1+G5kWY40Ut0AFlL4oWKqhdSCeOg9WDCYLURMlPx0VqTT5pk60ukS48xDSM+C0IgDYEMPBidRKzMI0YnYPkxHDmFWFhGjIwjtEIuzWIMjyFNSTT3EJ0pkHrtdYKZu52QhHPmPGppjmhpDmPiCMJJkDp9inD63vo4DiGwT5xF2BbejfXpY8J2cI6dRC3OoD2wJg4TzDwAaRCOT+K4FajG50nmB4hWlzCPnsJoFBH12F3Va8uIzAAyX8B0S4h20La0COkBjFQCGcRriMoyeuQIhl+P/+030bkRiFxAIC0brRW5pEMtVAzls8wsrvDo0SOklAwODnZUTJ5HBvfTJP65GzxTwjMMg8997nNb/oDbtZftBVprHj16RLlc3lU/7NPW1LTkrDyPoMsVdf2ARr1OMhOLkBoizsQCnbYxS8JifZ3sMrakESgCt8GCWl+r4kZYBiQtg7VmyHR53c1sBIqUiEgnHJYaAStrva5rpCFvw4qruFts9rznGIKMKZip+D1EJwWkCVis6o5IJ8QqK1LDbDl2nxOWJGsZuEHETDn+HhlLopTmUbHBd7gfYwkFIh7saIQ+kTDQw+PI4hLG4DBUishDR5BL04jCIWRxCRH6iCMnobiACgNkJo85PEzt+nVQCpnNY4+NEc2tu6CGY5MYHeix6oyhUYxMGr08A5l1MVjryAlk0EAvzazP90gkMUYmMByTRKPc+zu7dZzjpxGVxd4LwDAwDx1GrjzsvYZTWcTwGLK83qWhM4MIJwVhLCQQFx63ahSTWYzQJbJSSHQsrGAZnDpxAnXiBL7vs7q62lExyWaznTav3VQT7AZ9wntGkFI+cXLZQYl1hmHItWvXME2TycnJAxtz151djVjP0vquS2TYpDLZzhyJtS6X1JSiVW7SS+gCaPgRDdVr1VqGwDFiC2wjklJhmhb319xN7w0lTRaLLotubxbNlIIBW/Kg5OJI0ZNNHkmZLJQ9HnX6cgVeBMnW/tubpkxBEEYdN9wQcTHy9Fq8zXfKBzhehbjaTyGUii03J42af4yRzYLnIgeHkKuPCSdPIGpxeYY/eYxkqxwkHD1EImigl+cwh0Ywsln02jJRq7REJNM4h4+i5h8hnWRMIaaJc/wM0dI0uhRbVLpWwZo8ipFMopZne1tYLBsjlYTVx4hG77VoTB7DCGoggt7SnvwQViaJdNfQ3WsNjGOIEBGsP1x0egBp2wi3Glv8holhmsigSeRkEJaDIKKnqKmjHh2PNO1WMalWqxSLRa5evYpSqkN+uVzuwEJAOw0n1ev1vkt7EDgodeKN8y3u379/YCKg7VkUYRiCNDEANwgIhNkiP4ElodRVzCoAN4xY2xCvS1mCR2W3J2MLkHMM5qseGbuXpKWKsA3BbC1kcEN3WN4xaHgRNxfj2aijaUEjivc9mraYLjZZqsTHVPdCQDCcNCk2Am4tNTrrGCKWolpoBCy3FZTRDCZNHpY8Fqo+E4UEw0mTlXrAo2aIRHPcdDnhLkAUYQgdt6uh0bkBqHnxABzTwjBE3Bc7fhR7eZowO44YHSe5+hhMC+f4KazHD+Nzbdp4iRyJ+Ued47OPn0HU11Ct18zBITBtBBFq8dE6fQiBdew0QkrCrjYyAHPqOEbYgJVpGBhCleLyEpHOYg2PdJr/xcAoUTmWgDKmTmK6xTheB5AbhsoKYuwo0i3HCaFGGZ3OgwbpOEitIFKo9CDCdpCqZdkLidStHkIhUEgQGklLRHWDJKwQglwuRy6X49ixY4RhSLFYZGFhgdu3b5NMJjvu73Yadk/DTodwv6wTy/aKZ054z2qQD8DS0hJ37tzpaRE7yLkWHYvODxCWQ6gUQRghWrLqsRxSr2KK1nFyImPLTvbWNgTTLestZRv4bkwUlpQ8KseWW8kNcQxBoDRm0KQUWZ0C5mIzJOsYSCGwBNxdbtANW2gyKZulqseNxXrPe0prHKG5veEzg5ZiualYqQexEILWjKQslmo+d1fjY8rYkgHH4NFafOwDCYO6r7jo3sAyDaLWg8UAyOSRYYAwDHRuEKO2ik6kEckkVnGOcPQwZhARlZYIswVS2TSqRXbm1HHMZhnDSuEDKplG5wdgZa5zXkUqjVEoEM496LHejLFJTEtC6TFiZL0nWuYHMQcKiPLS+ra5Aqq0gj98iIxuriudALpZg2QGa3gYo9HbzikSKcgcx2yUeo00Jxsr0+guS9604lq7Tu9uIq6VVCFIiZYSgWrNEFYgticd0zQZHR1ldHQ0HgPQaFAsFrl58yZBEOx5glnfpX3eO97HIJ/txEEPcuZt+/mrhKQtlmTZToeIQhWrpsTSS7F2StsFDKJ4HkSkFY+r69+zGShMHVDxoTsxqwEr8qh5ilXVq1NntAqKby83Ng0GyhiKhgf313qJLm1Jkpbk1nKDE10m4lDSoOlH3K/Ex5lwI3IJE6U1d1eb7S/PZM7mftFlPOdgCM1wyuJByeNzcpZxOwIl0DpECoFO5ZAozKABzjBm+R5q+BBGo4yoNwgPnSRRnME3HMxT5zAXZtDlYqxOMjGFarm30krhnHoNXVqAduIAgTc8TtKvEpUW10UAUlns8Qn06hx4rU6RyipYFtbhE3GWtYvsAIQUGIemyDbXNv3eMp3FTCeR9V5lE9J5pGMjqr0kqHMjGAaIcP1aU5lBDB2g7RQiaKKSOQyhUEYCJQRSK3Tko4TsXFtx9HNnSQohBOl0mnQ6zeHDhzdJuFuWxdDQEIODg6RSqW2THzslvEaj0Se8g8Beicn3fa5cuUI2m91SHLQ9n/ag4Af+upUhJUGgkMTVHm19ulDF7kmxK9OpdDxIZ7XZS+qmFJT9CE/3ZmYNv8FyJHA3/CSDSZOlisdSK2vbRsKUZG2Dm0v1TpmKQmBKwUja4vZyvTOg25KCtC1JWwa3V3pdWhPFfMXrJC4GEwZupLi1EpOfLUEKwYOSx4B0+fecVbQWcbxOA8kUUkrMxhpufhyrXsOfOI61OoNKZNCFQRLFGcJEmuTAEPWr1xBozKlj0Kysk11hGDObw725LplmjE4gTQOr3CKbZhXPThBkB8ioBhQf98rQD4wgC0Oturou2AnM8bjtiw0KNCI7gJnLYbhrqMIhqK+tvzl2FCOoIRslVHYIqnGrpx4+jAw9ZOij0gOIegmVKmAYcSY9Mix06CPtRKwsHbiETqYzhrP9MwopEHrzSICdYqOEu+u6rK6ucv/+fZrNJrlcrhP/21j6stMYXq1W69fh7QY7UUzZKSqVCleuXOHUqVNPbBE7qEE+sbsmCIIQdOyWt3thTdmbpJBC4HcpdZhSUPNDzK54ndGquZsuu+SM9Us8aQiKlRpVFf8UeUfSjBSOIUgYklstF7XihiSseGj2eNbm7nKDuVZNYKRhIGliGwazZZerC17PfkGzXPOZi9bFASbSFgs1n5srPqeH09T8iOGUyb2iG2emBYxnLCpuRNmN3/u/RjMYKsIyBG6gMRJJMC3M+ipBfpRUfYVKahR79jLh8CSWV8WortAYnCQbVBGlReTAEK5pYZZaGU7Twpo6Biuz6NUq2AmEITEnptCL0z1kYEwcJiOMjivchp/KYaeSGPUV9NAUnV9CyDgp4ZY7GVhdGEasPI4TC4eOYjRWke5avHnUStok0sjCMIZXWd+JZaOFRIwciS3Z9k+rNTqZw7BMZOtopVdDZwfj+CbE7q20QAcowyZv2ygt44lwHVtv/0gkEkxOTjI5OYlSikql0plh0S59GRwcJJvN7jiGV6/Xn5uK0fPAC3Vpd2OJzc3NMT09zdtvv73tE+cgXFrXdbl3/wGnz54lmUzSDBSe66LMuPg40jGpBa2RiCuNALv1+DYFNPywowzsGPEM2LofstIqSK5FEik0aRMelJoosf4z5BIGGW3wYLVBs0umPdIwkXV4XPa4Or/e6gSxW7tWWmMp6pXwOZSN43ofzlZIOyYIQUJEpByLW12WXs6RVP2Iu8U4djecMqm6ATeXG5wfSTGethh1Fxg2K1iGpGXjguVgNkpEmQEMr06QLmB7DfxDJ0gUZ1GGTXP0KLlKTG5idAqzVCa1HLdwGROHkaELy7GVJ6TEPnEGtTjdU0AsB4Yxs1koLaKHpzo1eCKdwxwcxirNI1r9so1aBQdQA6PYjonR1SkBIAwDPztEJmMjN8TqqK7GVl3YQHaTHSB8F4YPYwS9sVCBRiTS60kKQKULSCvZqsGDyMkgiTtvtLTi6W1tZZoDIruNkFJSKBQoFAqcaJW+FItFZmdnqVarSCnJZDL4vr9t6UvfpT0g7JSYulvELl68+NSq9P0SXlti/sKFC50ZFBsTL41AY0lBgMZtCQa4oSZjS0rNkFoXUWVtg0dlt+NeQut57tW5V7NArLsVSVPS8ELuF3tLUGxDUHBMFsoui7X1OjxLCsYyFtcWqgym1snOEXGc8Mr8+gNlLNnO+ioW625nf4Mpi5V6QNmNM7CTeYcbS3V0y2oMIsX8WoU/XljCUhIlTUwp0a6P4dcRTgItJKYhIPLxk3kSC9fw82OYhGQrC5BIIgdGEKUFhJEmtBIkJw7B6nrvqhw5FI9/FALfj49PpNJYY5OwMgulmGiEimJZpokjiLUFxNpCTxIjnXCIDh0hUS8i3A1kks7HqshBGeFvkMtK5RGZAtJ2kKVestMDE/F+bQfC9XIUlRvBQKGdJDRjwlOpQjwBTgWgNZGVjDO4CCLDXvd4pGSH3V0HAtu2GR8fZ3x8HK01d+7cwff9TunLwMAAg4OD5PP5Hlf3JR7gsye8MMmGnRCT67p88MEHpFIp3nrrrR214OzHpZ2ZmeHWrVu8++67naxv1FpKC4ltxDEy1eqntQU95BZEuqcJP2MbPK71xt5SlqTacCn31g8zkrJYrnrcWGqQd9ZdjfGMTdUNubpYY67i0faSJ7I2QRRxeb5KpGMZqZwtOVpwKDYjpruMwLwMCHyPB5V1KfkjhQRuEHFzqU6pGTCUNElakuuLdZTSHB9MsloPuLHU4M8ebuBoHwwLU0qilqCpQUCQzJHwK/iJLNIwsIIGzdFjJL0ytlcjHJ7CsExEaQEQmIUCdsJYJ7tMHnPyOEajBPU1pGmAYWIdO4PlmDHZtSElMp3BymaQpccdDTwg7mmdOoElXGxT9IRSlJWgmR/FNCKSbgnfWr+BtWHB6HGkZWJ4tVapSOs904HhIxiRj9RR5+GkEeiBCUyiWBkmaBUbJ3PI1nhLqQIiKxGv3zoWLeQ6OUtr04iA5wUhBKZpMj4+zrvvvsvbb79NLpdjaWmJr3/961y+fJnZ2VlmZ2f3VZZSLBb5ju/4DoQQd4QQX26NVdx4LG8LIf6dEOKaEOKyEOKZzrV4aWN4xWKRGzducP78+c5gkZ1gLxZee1RdFEVcvHixK7YRz2sNI+IaKr0uvCkAL1q/4ZKm4HHNJ9MSw4zbw1wiDcMpi6V6QN6WPCo1CDEAg0LCpOZH5GyDawvrDJVxTPwobiu7PL8+btOLNEcLNs1QcW2hdwzneMYmYUg+nF23ThxDkBU+9ypwYiAudrZFRELozv4EmpQhmK+4eFGsYjyecbi+EM8t/Y9OwmBQQRrx4KFIGghhYLpV/OwIqdoy1ewh8s1lmk4W306RXbmBZ6dRmRyZWitTWhhBSpBKYbSttPEjiNI8rK13LEgngT04AKtdRCcExqFjyKCOKD9GWSa0HxhO3EEhG6vI+nL8w6RzqEoRDBMxOoXtlkmoZodsfNPBCRvUEwVSCbs3Vldfi0kqMxCH3vz17LdoltGmjcgOYXRNPpOhR5gewDQk3WWWynQwulxXIWMlmdD3sR3ZIryDi+HtBt29tKZpMjIywsjICFprms0mxWKRH/qhH+L69esEQUCxWOTbvu3bdmXt/diP/Ri///f/fr785S+fFkJ8Efgi8F9s2KwB/Cmt9R0hxCHgG0KIX9Zarx3MN+3FC7PwnlSWorXm4cOH3Llzh/fee29XZAeb5aGeBs/z+OCDD0in07zxxhs9gVxBy52NIrQ04hGLrYvcMmLrLmnFXRLztdilsUxJ2pLM1/xOh4MXabIm3Cs1CbtOedY2CFpWVjcipVmpedzY8PrRvEPFDbi9vP66JQXHCgluLNZ6pKEmMybNpse91r08Xws5krNxI8lcKwyVMRRpHfDJXJWsJRjP2BhCcHO5QcIUvDMg+aahCEOFGEKgEAjTxopchGViulWa6WHyzWXWshMkREQirFMZmMI2NZnGKtpJIsaPxImDRhmEppEbwcpkEMW5eNANsXimMTSK4VfAXf9+xqFjWKNjGNUlROt1mRuMuyemTmBlHMz6csttbP1uQiPGjmDmC1iN1Vhmvwu2bcPoUXKOgal7H45amujRY0gVItWGB2cigxgYj8muCypVwEikesgudHJxMXbr946suExEAE2/e5jJ8yc7eHJZihCCVCrF1NQUP/dzP8frr7/OF77wBX7zN3+Tv/W3/tau9vELv/AL/MAPtDU++WngD23cRmt9W2t9p/X3x8ASMLK7b7NzvFQxvDAMuXr1KrZt73mYz24Kj8vlMlevXt2291aIONBNECANaERxS1Cj5bpKAWVvvS3JDxVVL+pxY1Xos1BuAOvB4ZyhuL1UpxH0ZndH0hYfzVWYyjvUW0Nmso6BLeHDuQopK7YiFILJnMNixeMbLatuutRkOGOTEBHXl5q0b6acYzCUiDst6n6E1prTQ0luL9Zxwzg+6Sif+0UfhWA4IWn6iu89GpE0dOvG12AnESpEmBYhElsaiMinlhljwC/RMNM0rQQDpVtxO9boYYx6MY6zAbowjmHa5Fcf006lisFxpCEQ9a4EgmkhhycwCBEbkg6YNkZ+ECOsxRZdF7QQiKFJpBQYxQU2QiezBIksyciDoLnhs5IwO4xFSN1tku3yTLSQUBhDRh6665rUgMoOYwoFkd+x1UIn2yG/yDDjCXJta1ArdGvwUnyFvFyEtxGu6/Kd3/md/Ik/8Sd2vY/FxUUmJiba/1wAtlXfFUJcIr5J7m233X7w0ri07RaxI0eOPHXu5XbYqUvbzvq+8847T+wVlCLOjgohiAIP0zLRgGOst5MJwJCSuNsW3EjhmAJaRkBCBzwoK8bSaZotmaWCCbeL8d+PFBJMr7kMJk2qbthxNRNmfDEeLTjcXKzRaMUKG4HitdE0Sms+mut1aw8XEtRrTW4318n2zHCKB0t1bq65vH04T9pWDDgGl1ufzdoGQ0mLQBgofI7nLW4vN/lz5wRTGUlQrWGhEZZNKCRpEVIiSSGoUEqNklMN7KBKMTnKQLCGiBT19BA5R0K7FCQbN9Yb9RKRap3r/DAykUBuLOgdPISVU4hulxbASiBHJxGNMlqE6GjdmtVCxkSnAqQXnz+VyscWJaCdFCI/inCrJJQHAqJUAdGuq8uNIE2DRBQAgqwh0FGsWNyQDmYiRbLlwmqvFmdWpURnhrBEq0dWKyIrGbeStdrIIE6yKDPRITwlLQwzvj7VCyI72F2nRTabfeL73/7t387CwuaHy1//63+9599aay2EeGLIUggxAfzvwA9orQ+mN3QLvBQWXrtF7I033iCXyz3lkztfdyu0xUg9z3tq1ldKiYoUaI3RFZ/ROs5wNkNFxVufa5G2JDMVD0Ec0wvdJtPN+EOL9YCcYyA0PcW/XhhxOO9wbaHWYxUWGwEjKaMnJgcxQXp+xNUudzdtG4wkTS5Plzk9ZHVem0hbXJlZVwYRWuN5Ibdb7WzHBxIslj3uLNUZzVqcGE5zbb7Gt4xpPj9hIqTECD2kFASGjaM8mkYSy/MpZ8YZDNao2nlMoRkKSjRlgrJMMRotxpGZZAaRG0ZWliGMM8a+hjA/QjqoQhCTkwYYmkIKjWxWwcmuB/OdNHJ4AlEvrXc7uLU4/tUmushHer3kTzqHDjwYGEd4tfj9Ln4Rpo1O5hCpHGbYXM9OAUKFqMwAWA7pyOuQVfscliKDTDqHIza7w6KL7DRxwiSuwWtJiZk2WTseBvUiNY93Wofn+/62E8t+5Vd+5YnvjY2NMT8/z8TERJvQlrbaTgiRA/4V8F9qrb/y1IPaB15YDK+dTb1z5w7T09NcvHhx32QHT+7dhfjH+8Y3voHjOLvI+gosEU/xgnXhT0PEsbuqH9EIFIOJWJATWhd6o8pcc/1GsQ2BLQR3NnQ6aKWZK7s9ZDeZc1ioNPG6MsCmFJwcSHBltsKtpXqnyPXkYBKvGXD9cXzDrzbh5GAC5Udca71mGYLXRtN8eL9E0w8RaM6PpLmzUKfcDBlKmUgF82WPiZTmz75mIYREaIVNiDIdhBAYaCJp4UuTVFhn2RmOLbzIY8kZwTYlw8IFy0GMn4hjVpXY7dSpPI3UEAkD0m2iEwI9cgQxOIHhVhDNFmkZFjqZQ06ewkjYyOoyojsOpyIYO4EsjGB4VWTYW8+prQQkc4h0Jn5/Qy40NBywk3FmNux1bYFYACBTwFR+D9kBROlBciNjOGbvrdM0kvG119UbG1kppJC0nVdl2p2JdS/SnYWdd1rsR5vve77ne/jpn/7p9j9/APiFLda3gZ8H/pHW+p/ueWc7xDMnvCedMN/3aTbji+299947MN2vJ+2vUqnwwQcfcOzYMU6cOLHjH1IAhhG3UsXu7HpZSjeaXTMKjMhjVTkkWzeFJQUq0txdbdAeN+tIjSPh2mKNXKsMRQBHCwk+ni2z1gw7JDietXEEfDgTW3t1P+LUcIpTAwmuzJSptFrabEMylrEpld1OAuNQ3iFvGXz8qEwQaU4NppjMJLg8W0EDJ4eSVBsB08UmU1mbL77tkDAllmUSBCHSkATSIqma1O0cBVx8JcG0GI3KrNiDBHaaMR2TlZEfRiRSiPJifM7SBfTQFFKFpJUbE0giDWPHkANjGI01pLdurapUHp3MYFoyJrou70bbSdTgFCKVR9j2ZqJLZNBDUwgngRG6yA0PPu2kcNPDmMkEpl9FWL1qIyqRRedHMYXCCDckJkwHnR/FsgxMFcRxPeLsq2tlcOy4xq7ajK1nXzrI1hwUqRWRMJGt6WZa6xfqzsLOXNq9TCzrxhe/+EW+/OUvI4S4A3w78GMAQoj3hRA/1drse4FvBX5QCPFx68/be97pU/BCXNp2i5hlWZw+ffqZ7689yOdpXRpbQYi439E2DQTxUJZ2xajSsZWWMCXzVY+CqSkHioYyCLViPGMzX/HQSvO4Zf0dG0iw1oiTGNVWGGqmFcMLI8UH02udfT8sNrkwluHrj8odqap4jSTaj7jc1XFxuJCg3gj45FGZt4/kma8FXBjPcHU6JjqAUyMpIj/iwWoDrTWvj2f4eLqMBs6MpPiDR2AsBbZlo7SAMECJuGVKmw6ODlgzMlhUcQ2HppFlRDeIEMwZA4yaAaJZQYQ+QSKLkcphNNbWhQBa4wuFvYaoFTvHrgEK47EL3SgjI6/9anyeU3lwMkivinRj0hfGuqagzgwgnBTSrSFaMTwCF2UnEL6LdtKQziP8OikRy2VBK7YXemgrgU7l4zGKUUx0IvJRVhIRNNGZIaQRd8fQ+nRoJpCRj3LSdD+qs8kEjUiTsNePL9IaZVoda3FpZZWB4dFtr7vngR0/9Pdo5Q0NDfGrv/qrAD03udb668Cfaf39Z4Cf2dMO9oDnTnjdLWKffPLJM92X1prbt2/TaDT2NchHSEGzUWcgncGLBFqC8OOylMGk2bGw3FDhGAYrrar7UjPAFPCosm6JKBVnU7vHXgwkLbSKuNnl7mZsg7wtqTWDDtlJAedG0nz0cA3LiC1PpQUXxjN88qhM1LIIK42AE4UkHz1Yi48fzWvjWT56tMZEIUHKloynbT6aLqO15s1DWU7mNOcLIbZtEel4X4mgimemyekGZSNHQTcRIqKiTUZkiNIhC8YAWSNiSrTaqFI5IiR2swyNeP++tJGZAUy/hqgXOxPbtGFBYQwRuOvacwB+M4535UcRhkQ2a4gNMTqtwjjZYJgYQRO8ek/HBYBOD0FGI/w6Mmhseh8hUPlRZOj3SDp1Pm+nEKks5haxdi1NtGltcpG06WDbZsdbVVoTCBNTyLgMSwhmHi+8FIT3NOw0sfEq4blladvFvWEYdpIFz2pyGcQu8+XLlykUCrz99tv7ikUYUrI4/5iR0bG4/atVWLzmhTQDTaneBGGSSjg0u+SCkoakSxuUiazN1YUqExmbh+W2xZfkw5kyoxm7M7viSCHBQqnJ7VLAaDZ+fThjY2v48OFa/P0ieOdQhnIj5MMWsQGcHEkxv9ogm45JZSBpkrYMPnoUbyOBAdvg5kINS8Kp4QwycPkTbwxgm3Fnp5QGgeuSNCwkGs9IkselaGQYEB6Odlk08qQMmOgQXR5pWLGV1YwTJQ3pYGfy2G4F4a4nT3wMrKEppFvtzI9oQ1sOIjcMTiqO6QX0EJE2bcgMYqAQtRKoDS0rECuY2E58PNXlTUQWSRORHUJKEF5zEw9qw4otPsNAblhfCxn3xrbaxbp7YiM7jtlpYbSSFDFpOq3OlDDSLK+WqFarfO1rX6NQKDA0NLRrLbvnhU9bWxk8JwvPdV0++eQTxsbGOHr06DOfXBZFER988AGnT59mdHT/T9K4v9PHkoJQaixDUPU1SUPQcJukbJNKAL5SVLwollhPmFxfqGEbAseUDCZNbi3VCZXGa1liRwsJvtYioscVj2MDCVKWwcfTax0JoaWqz7tTOT6ZqdDsals7O5qmUQ+528rWSgGvTWT48H4JDRwfTZN1LGZXGyy25OHPj2e4MVPhzWMFCkmLjCVZLTf4yT90hIxoIIgnpTUigYoiGjLBoHRZ1mkMI2REuCypBNp0GBcNlIZZlWYgYZIJPQg9FOAlCigVkiaElguqEejccCuh08DYSHS5YYSdQDYrCLdCZPbGdHVmAGEl4oxrEH/ntssKscWl0gMYUmOqEEK3Z5obxDFAVzqkbIkkBAWRnUT4zdYaBipdwEBjCAVKoYQRt5URJyEwjDgJIgSRtDCUjxIGykp2XFbRIjtlJuKxle3rSBrYiVix+OzZs6ytrXXknNpadkNDQy+NpPqnTRoKngPhKaX45JNPOH369KauiWcxuWxhYQHXdbl06VKnH/agIKXAMUU8ZxZF5NZJ2AlKjYiRlMGtYuySHsrafNKqc/MjzbFCgq9Nr8fhVhshQ9Lng+l1V9cxJTnb4GstCw7izOzpoRRrVa9DdqaEMyNxxtUQUMg6mIYka0m+cT8mEUGsQnx9LiYb2XJp25ZgFEZEYcRK0+N//eOnycgmWomOjoGQEjNsog1JTaQYlT6LYQLPEow5EeVqwAw58mbEYSMCInSrzEN5DZxGZV09yU5BpoDwm7FbCfEN7a6hLQc/kcNQPnbkQXP9fAjLiV3e7BBChxihB36tN7HppGNrKpVDRC6WDnpqPUTgxq6n5SCSWaTyyWx0W60EOnDRqQGkAdaGjK42bVTko+z0pmyvQKGkhTad3tIVIDQSGOb6da10XKnZ9mi65ZqATjvX3bt3cV33mVp/O01EfNrUjuE5DfH5pm/6pq13vg/V441oqyBXKhVyuRzJZPLpH9olhBAYQqK8KpEXkM9liHmoNRya2MGpeVFsDSpNPmFye6UeS3pHMYllLMFaOaKdJB9ImohI8cHDNfIJk7IbMpSysDRxvE4KHBNySRtDaT5sEVukY0vv8kyZhVYcMZc0GUpa/NsbKxwfz1APIgZss0N2FyazXH1UZnDA4e9832mytsDyQ4SUKDRKSEwVEUmTAemxopMoYTKejGgqyUyQZMCyOSLjOKVvZ7CcBMKrI70aBhBKA50ZBMNAuNWOiwstS89yEMOTyGaVpOpVhtFAXTgEfkTeSXSsuZ5thIR0AawkUq8gtigt0cRKzNq0Mf06QgebY3RCxjMysoOdntdNa0gLpLmJ7NpST0izZ9m2ZdeTVNEQtvSNnxTCSSaTPVp23dafbds9Ssb7xW4G+PQJbw94lnMtIJ5Fe/nyZbLZLO+++y4fffTRgQ3y6Ua7aNn3fU6de42iq/CaYdwTqxSTWZuKH3FvucFUzmFmzaXqhqw1Q04Npbi/2iBtidZ8CYPhZNynu7rWoNHi/alCguFAMb1Up9oisUBp3pnI8fWHZdyulrbXD+W4/7hKpRkghOD4SIrlosvNYmxdTuQc7szXuFOMhQDeOZLn6/dLmBJ+8o+eYiBlQbOCKQU+kqShqUcCS0WEQlKTKUaMkLXIZC5KMe4oBsMIKRQPghRDCUmeEFqZUV+YmOk8IooQQWO9wR/QyTzYCWTgxrVotQ0STKl8XGQcuORUSGglkeVe7bnQTmMkMwjlI7VCic0ZRG06seS8jjDQKMuOj6ULkTBQiSyGjGsLN+YkNBDZaRAGWzUHKGmhWlZdJAyMlsurEbFr27LIlG5Zey2ya19DTyObray/1dVV7ty5g+d5+7b+djPA52Vxrw8Krzzh1Wo1Ll++zIkTJzrKrAc5yKcNrTUffvghAwMDnDt3LtaLI8KLFLVAUqqHVIMI0SLax1WPwaTJlVar2ELVI2vFjfltHBlM89V7xR7V8craGg9LiqAVgJICzo+lufO4RtMLEUKQT1oMJgy+fjcu7TgxnmEgY/HhvVInU/vW4Ty3p9dYdSMSluT4cCYmO6H5x3/2TUZSJlEUYEuNkBKBxDYiakrSDBTjVsRi5ODhMJKMGECx6ErKHhy2EpxwFKBQhkU1hFTCxiGCoE4YxUStnTQkMsjQR0Z+hxjbYw+1k4ZkLm7UD73O+wBGq+5RW0l0MgNRhC0URF21d60SEo2AVB5hWcgoQHQP1emq42tEYGUGMIXG6CLKyHAwW2KdoZUCabS6auJzGcfqghahxSIAnXhdu6hYGLHFuWEqXVzmvf6aUmrXCbRkMsnU1BRTU1NEUUS5XN5k/Q0NDe3Yq/msDvCBF9haBvufTbu0tMTdu3d54403evr9DspybKNer1Ov13uk5YWApCUZSVmsNgLySZOSF5Iy2m6qRcNdN3GytiToug9PD6X42v0S+YTFSt3HlIITg0kuT5c5P5rk1rJLytSkhOYb99cAODORQWnN4mqTW62h2wlLMp61+Le3WyMGpeDCoSwf3I7bsC6dGWKl6nN1pkwmKfgHP/gmQ2kTJQSWahIhsE2oehrfkOQtzVID6naKCUfRCBWPGiYZK67R84MQlKZiZEg7BkboUjAFbbdemw5kh0CFGIHbQ2LQ6oJw0vHYy6AJ/hYuq2lDMgNCIEMPoYItmxI8P8QlQS6ViAVIVbjJbRWhh2ckCJQgk3Va62xYzDCJRBJlmJ25E72LCCLDAcPaRFZSKyJpI0wb0UV2WsdnZKOi8X6rEgzD2NL6u337Np7ndYQ8t7P+DqqP9lXECyU8wzD2FMPTWnP//n1KpRLvv//+pi6N3UpEbYeVlRVu3bpFMpnclPE1pCTnCE4NONwregwlTe4Wm0xkY9HO2YrPZM7BkvCN2QqOKcnYkkO5BB8/WkMD43kHN4woWAaXp+NY12KlyWTOolQLma2tnx/p17m5EHYyuON5Bx0pvnprlYRtkLBijb2v34mb4k+MJok8j+mVJocHE/zk958lnzIwpCSKAlKGpikMFIqEKaiEBgVbM+aErEUWVc9gPKE5akOg4EFNsOYJRjMJ8jKEKCYYZSfBTCB0hIx8dOgioq6BRolMPKtCtd9vojeqlVjJuPcWHdfEKZ9IiM0uq5VAOykkgjQRDsYm2XUAZdhoO4mOIsIgIpPYTDIaEW9jmMgoYCsKiISJkhZSyk2cq4SMCX5DHE/pXje25zMHXIa10fprx/7u3buH4zhbWn+7mVjWz9LuAQc5yCcMQ65cuUIymeTdd9/d8uI5CJdWa82jR49YWlri/fff78QFN14oQggKSYvJnMILY8UUxzK43nJlM7bBVx7FSQYvVLwxlua3bq92Pl+sB+RM0SkvARjJJgkDRbEl526bkpNDST5+UGIkZ1NsRBzOCWaLddwgZr9/78QAN2bK3F6Nb/43D2e4fH8FKeE73zvK//PbD8fSUlJimRA2XQxb4EVgSJNCAlZdzVw1ZNI2GbM0fgQzTYlGMJ6EYznBbR8sCbVIkMjkMHWsl9ctfY4wUKk0wrQQURC/30VwQgi0YaEsB+EkEVphRH5nBkQHlgOtTgjsVDxmUUd0p2KFaXVihVoYBIaD0nH3C1qBFOhksscV1tKMuyhiysNQUSxE0OX+trOvgrhvOkJ0iXlCZNhIw0ZK0SPVvh3ZwcETXjc2TjHbyvobGhra8THUarUDr3R40XjhFt5uiKnRaPDJJ59w9OhRDh06dGDrboRSiuvX43GB77//fqeM4EnBXkPGPayNQPE5K8u9osvp4RS3lhus1D3OjKS5uVTnaCHB1x+VGUiZlBoh41mHctVjqpAAYkJ4bSzFh/fLnBhJx8Oxcw6m1nzUysweHkxzeBi+1kWaJwYEN+8/ZrkZWxpvH8nywe1YmOI//e7z/JH3xhEiFicVAoIwxJQSpCBtCRqRxAg1Q0lJw/VZ8iSGkIwl4UgrhFPxNY9qGtuUKNMha4sOiWhayQLDiV1KLWICC3qtdy3NuEzFMMHxMIMmhBtIrr2elUIbFsK0kCpECPVEPXTlpOPhOCrE3uLh6rkuliVoRALDSWBJgdygVaINCxF6PUTX/aAWMh6mrYSBNp1eoVjRGsuJYF00bGtorZ8Z4W3EVtbfysoKKysrCCFIJpPbxv7q9TpTU1Nbvveq4oXH8HY6uWx5eZnbt2/z+uuvP/Wps5+5Fr7v8/HHHzM6OtpTJP20NU3DYDLrUPcj3h7P8Gv3Vjkx4PD12Qo5x2Qia3NvqY4bKk4MpUlZPssll0ozpNoMGHAEw5kEH96P3dr7y3UunRjgyoMS5UZswiRtA88PuLu4Xmz81pEcX70xD8C5qSSB5/HB7SWStuT/8+e+maMFCynBMQ1CrbGloF73UAo8Jck6gtDTrPmSehTLHx3OSAIFjxsaD0nWloylJNkU1GpxvFFLK5Y+EhIRhQgddfpQddsSEgJtZ8C0QKtWQiGCMEKJ3pteSxNlp0G211MIaSL15pYwLWRr3wYIkIECHW1uHWutm8ykibQiuU2uQAuDyM5sIro2hFatchNz0/tKa7wwHuaktcYwjDixsQWxKaX23OK4H3Rbf/l8nmo1zuTfvn0b3/d7Mr/t4+4nLfaI/bi0bcn35eVl3n///W21uXaz7laoVqtcvnyZs2fPMjw83PPeTkg0aRuMZU0ergX83uODuGHElYUqNT9kMmtTb5WUrDVDIj+i0hrSbUnB8eEMv9tltb0xlWOl2OiQ3VjegSjiG3dXuXR6mNuLdQ7ljA7ZjeQSFBKSr8x6fPfFKf78F86TECGOEZOdFBCGoKKIQUdTDiSVAIQhGUhKckqz0owIhGTWhbGU4HBh/XdbrEckTUEmW0BFAUKFyGhD2xWiZenZMWFFQWxJhVs81IQRl36YNigdi3eqsFckrstXVEZseUGsVyfRoEPQMbF2D98JFYhEOk56aBUrRLfavboRaU3NizCdBLY04sHiG7szhIgtV8PcTLyARqKlxLRiZZEoijrXSRiGHe+gTSLP0qXdKaIoIpFIbGn93b17l0QiwbVr1yiVSnuO4RWLRb7v+76Phw8fcvfu3S8D36u1Lm21bUsP7zrwz7XW/8nev9nT8VK7tFEUceXKFWzb7riWB7HuVlhcXOTevXu89dZbWz7VnkZ47Yt9OGFRskKWmxGWhP/088eZW2vwd353huGMRRhpylWPwVRcmJqxJSlD8sH9EiM5h+WKx1uTWb56K86ynhrPYBqCh/MVqi3Jp3LdI2tEXH0YW4Mnx7Msr5RYKgb8w7/wrRwbS6N9H8eQWIbENKAZKLQQ+K6PlTHJCE3JU6w2FfUABpMSS8J4TtIMNbM1TSNQ2KZkNCUZy8Zko6MIocL4ZjeszlQuoRWoEEHUseZ6zo8w4rm+htEhMsNvwAYZps72CLQ0iJxsvB4qtg5hM/EYNkQBFS/ESSRxbKNFXHp9W2nGld+0yNOwQQiyXWaf63odlZNQ6Vhl2VzPzHZ71BoRk2jbA+hql4SY2NrkF0VR53o8qEL7/WBj0mJj7K/RaPBrv/Zr/O7v/i6/8zu/w3d/93fzx/7YH+Nzn/vcjvfRHuDzxS9+ESHEr7L1AJ82fhT4rT1/oV3ghbu0TyKmdrzu8OHDu44jGIaB7299I21Ed8b34sWLT2xz247wtNadC1lKydmRNAsPS5RdRT1QJE2Dv/pdp1mpuvyzr89xZTVgtR5wbjTB4lrA9Gocv5ssJBhMGHy1y9Iby9n89rXFTn3d+cks92cWOX90iEfL8NaxAoHX5K/9wDfz2tEhUgkT3/VIWaI1kEPE0kZKoPwwLkHxNfmEQdI2qHoRVV8zU1NUGwFRUjCcMjjWZd0preP4mzBjeXXTQqgAoXVcMrIJItaP65BhFGdoibpIp9dS1yKODSINQMezM4gQOnxiREzJmHAjDEwhydnb1KEJEUuwS6MzTGcj7GQKrSICDMzEulhnz3ESk7dGbOlCt7HRqtNa4/s+a2trDA0NEQRBnPl9guv7LKGU2lZ/MpVK8Rf+wl/g448/5kd+5EdYWlraUsZ9O/zCL/wCv/Ebv9H+508Dv8EWhCeEeI941sWXgPd3tZM94IW7tFs98VZXV7l58yYXLlygUCjsen87zdJGUdQZGvSkjG/3mhsJT2uNUqpTTNr9Pb/1aIF/catIzY8IDMFKw+XYQIIf/vfPslj1uDVf5ZOHa1x+FMdS0o7BWs2j2bLihIC3Dmf59U/mODuZ5/Z8jXeP5/ng2gxKa1bLDf6r73+bk2NZDg1nsE2JaUiaTZekAZGOjyVpSRxDEilNPQwIlcYVAg/IWpJs0iTb4ol7fixnfq+scMN48EzeMTiUi+vXBAoReZ1iW4iJKm6xMug010UBUgVPIMN1Symy4yLftnUoiRv2e7aVZkftOLYS7Th2Fw8+RACNeoN8cvODSguJMmyQEhBP5Cfd2o+WJpgO1hYbRpFifmmJWr3JwOAgAwMDO+5ykDKWhrp+/TpTU1MMDg52rL+2BQjx/fA8yG83ZSkjIyO89957u97HTgb4CCEk8BPAnyQWCH3meKlc2nYpyOLiIu+99x6JRGKbT+983a3gui4ff/xxJ47xNGwkvO3IDmKS/33H8/zL20XKKh60/bDk8qioODaU5PNnhvk9Jwf5M992jLlSk/lik393exU/ZbGw5nJ8OMnXbsWZ1lzS4k/93iOgFX/0W76FY8NZxgfTmIYgVKojI95oelgi7odFg2XIOKkgJabUjCQlfquTouopqr5G6wjLlCQtScaxGMqYbJzf1p4foTUIMxFP7tI6jtNpFRNglwS73vhZw4rJpCV/LnSEFq36uW1+p5iwLDSJ1ud013leP9+pVDKO59EmRSv+3vQ+bDeG6GKyNltW39ZE0/7umCZjE5PYpVIn1uU4DiMjIwwPD297rQZBwMcff8zhw4d7uoGAHtLrdn2fpfW3m8Lj7WJ4BzDA5z8G/rXWenY/8m27wUvj0kZRxLVr15BS7nlEYxtPs/DW1ta4du3aroZ8dxPe08iujYxj8vkjOX7pbpGFaoglJIOZBLPlgCuzVc6MZZjIOZw/ZHN6NMvnz46CjNd3gwitY7EBQwrQce7TMuOpWFprIt0id6UJggBbghCxNWeZcXypGUQESrNSrnNqyCEJdOe43UDRDCNqbojvR1xdDIg0mEKQTxiMZMxY7VkIlNZxHdwW51YDSBMtDbTSYDpxIkHHtYnx37us+Q3Xf5zwsFvEGCchhFYgrU72d8ssLCANkwgzzvDyZI+io1PXafrv/e3W1e26SB7ZE6fbGOtaWVnpDKseHBxkZGSEfD7fWbed9T927NiWUmVt19c0zY7r2231RVHUIb6DIr+Dai07gAE+3wx8XgjxHwMZwBZC1LTWX3zqwe0RL4WF17a2Dh06xJEjRw5k3SfF2x4/fsyjR4949913d6Wo0j7WdnKiLdb5tCfTeMZiOCjyIMxSSDus1FyGcwnSGZtbS3UWaz6jaZuhtEXGiclCa0EmEd+8SsejnKWM96XRcT2tITBlTG5eGJA0W4F1FQfqgzCiHqm4q8KLcCzJQi1EKUXCMnBMSdKUJGyThG2yXPU5O7x1o7huHUfT8yEKENLAtB0sy2zlBnTHzW13bgm1dXBeA7REMiMr1bLENGjVIsaN9XabiTHUUG96ZLKZjiWk25/dcp9xAkTLVkxxm99MI1pEt32MDuJY15EjRzhy5AhhGFIsFnn8+DE3btwgk8lQKBSYm5vj1KlTm7L+W6FNaIZhYFlWh/ja11z779uVvewEO80UR1G051kz7QE+X/ziF+EJA3y01p1ht0KIHwTef5ZkBy84hieEIAgCvvGNb/Daa68xMDBwIPvbyqXtlnt/2njGrdC28LqTE0+D53lcvnyZi4cP4dQcPpyvMV5IcONxmclCCidpUYs0MzNrjOfi8YuvHcowkIylw9uWnWpZeqYUBJFGozENiW1KKg0v7tONFH7YUtklHjRkGiaRUriBT0IKGl6EYUgqboAwJFppQq1RSlOt+TT9CEPERHp0OEWiPXGo1RGaNJ24oLhzUrfJWiNAGjHRtNxF0fpMxynVej3zuuUaMZTRjhECWmNKSd7pdSE3dkp0u6ux6kmr2X+LY+6Ul3QEAXfvXpmmyejoKKOjo2itWV1d5dq1a9i2zYMHD6hWqwwPD5PJZHYsHrBV4qO77GWv1t9OLbz9DvD53u/9Xv7+3//7EMfnvhdACPE+8Oe01n9mz4vvAy/UwpuensbzPD7/+c/vOV63FTZaeGEYduSj9iP3vrKyQjab3dGxVqtVrl27xpkzZxgcHGQSWKx63HhcYShtM1uqk3VMMimHQj7J43ITrxkQaMimLJTn89pUnsFk7Ko1vYBsMnavfKUIvIhmEJKxDYJIE2iNEgaRUp32NlsKEpZJ04WRzPZP6rvzmtOjGy28jYKXtJROWuQgBJFSBGFIGMZKLpZlIQWxS936zFYkI9ZXbO1JrBNUK8nQjrr1kOI2v52SZlx+0orJbdxyfUU6D4aY5J5uze0Gruty9+5d3nrrLQqFAr7vs7q6yoMHD6jX6+TzeYaHhxkaGtpV4gM2l73sxfrb6cQyeLKx8jR0DfCBroRE9wCfDfv7h8A/3NPOdoEXQnjt1i2lFKlU6kDJDnpjeO3ylmPHjnVnjXaMdkxlYmKC+fl5rl69Gs+YGP7/t3fm4VHV9/5/zZLJvm8sCRAISyBkUbBqVdRqaTEkaQWUeqvWBerFVr29Vv1pLV1ca2+tWpdWK61eCyaAIASsoq1XARUkG1kIkH2byWTPTGY75/dHPMckJGQymZlM4Lyeh0eTOTPznck57/P97DHExsYSHBx8xklhMBg4deoUS5cuHeL0vXXZTJ77vxpaem2oRDB0W4gJthERFkhgsD8OEfQ9/TS0deGvVWNWqTCbrUSH+hMfpGVxUAR+GhW9/Ta0GhUhflq0auiz2BFEEbtDQKtRERrgR2iAFq1azanWbpJjAhEEEatDwOYYOM7iEHA4RGwOAbtDRFSpOW20EKTTEB8umfrDzMlBaW3SJ9Zq1Gg1OvD/WlBNJhN+/mcK7ICZKImlGjRfByGGNlH6+r3Fr+o2VMMfkV9HM/BaTrgXvvbLqZwyWV3BZDJRXFxMSkqKXBGk0+mYPn0606dPRxAEurq6aGtro7q6Gj8/P2JiYoiJiRlX77mxdn8jJT1LnIvDeZzF6ybt8PkWhw4dcvv7SSZte3s75eXlTpWjjcTg4IROp2POnDnMmTMHq9VKW1sbp06dwmw2D3FW19fX09bWxoUXXjhiTt9PLpvNr/95ks5+B2FBfnSYbTR39hMdHkBMRAA9pn4cX5mCp5s6CAnwo9nYQ1tsGMeaetDYrVyYPI24YD+C/LX09tsHopkqgaAAP8L8NQTptAiCiLHPgtUhcMpoHmgRrwK+CrT4a1X4a9SEBfjRZbIwN36wc3pkU0Y841FJ/QZ2SQNCpMI/OAwBsDvsOL4aaqTz80OjUQ9+1kBiyVnMYol+iw1BFAkIChnIjVOpz8ilExkhCjvofWQ59WA0sLe3l5KSElJTU0dtq6RWq4mMjJTdN2azWe7IY7FYiIqKIiYmZkiJ11iMtvsbnvQs+Tud8eHZbDa3jl7wFby6w5Oio4sWLZIjXZ6YXKbRaDCbzVRVVbmc3nK24IROp2PGjBnMmDFDFtampiaKiorQarUkJyeP+nlUKhWPXDuPn2wvo9FiIzRAR2CQH21dZpoM3cxNiMLY3ktIiIY+B5hMdlSimsrGDvq6ewkM8Kexy0yfyYJarSZlZgQxQTqS48OYFh+Gv1ZDe5+Fjj4rXf0WQnVaVKiYERlERKB2yOwFiVqjeSB1ZPAWbuQvBeGrU2ako+TfiQJqUUCn1cJZfKV2x0ArfDncoRoo05IEVPo7CFoIGiPA9LWZ6j2BG0xPTw+lpaUsXbp0XPWngYGBJCYmkpiYKJ9Lra2tVFZWEhQURGxsLNHR0U6VVEoM3/0N/yeJ4dlM376+vnOu2zF4UfCkebSZmZlDvkgpNcVdgicIAhUVFdjtdpYtW+bS1n2w2I21Lo1GQ0REBPX19cyePZvIyEgMBgM1NTVynlZsbOyQE1ajVvO77EXc/XYJLWYbEYE6/IN0mM12jle3MS08gBZ9J9Ex4Zh7zWgD/ekwdhMRE4Optw99m4nwyHDsViv7ihpRadSEhQaj0miYFx3E3Kgg5kUFoNOomT8tQn5fu0PA0Guhy2THZLXhsAkDU8osNvosdoL8h54Ow6ViINXXOUf20F2gasD3p/rq/xGx2ez099vQ6XT4+/vL3/MZfjeVioBRxG7wDk7+eZR8Ok/S1dVFeXk5aWlpE+ofp9Fo5PNFFEX6+vpoa2ujpKQEQRCIjo4mJiaGsLAwlwIfDoeDEydOEB0dLVsvku91eNJzb2/vOdc4ALwkeKIoYrFYuOiii84QIHdOLrNarRQVFREdHU1AQIBLYufM3W8wJpOJkpISkpKS5DyriIgI5s+fj8lkQq/XU1JScobfL9hfyx++v4T7dpTR2mPB0dbHjGmhOBxqqlp6CAn1x97STkBQAG3NRqLjo+lo60BUawiNCKO/pweVWkN4TCQIAt0d3fhpVXyhb+MIKnpEP0S1hqgQf6JFC0nTIpkT5U9CZAhz4kKZP+1rk8tssRKoO/NUEIZo28CAhtHlbtAFKApfVWaM+OhAUMVfg5+//xmDrEd7ZWnnxqD/emv3djY6OzupqKggPT3drYOjVCoVISEhhISEMGfOHGw2G0ajkfr6enp6eggLCyMmJoaoqCinrh1pyJVarWbBggWyZTVa0vO5KniqMULPrselh2G1WkcMcxcVFTFv3rwJf7nSbIvk5GTi4uI4ePAgl156qdPPdzaZeDCdnZ2Ul5ezePHiMX2Ekt/PYDAM8fvZNYH851vFmFQqVDY7QToVQWHB2Exm7Dp/OvRGIsKCsZv6iI4Mpd9qQ6sCTWAQlv5+NA47bZ19+Ov86LapcDgEtCoHKgbmLnR09uEfHAYWE/12FaKlH7Vaiz8C8+JDuXPlQi5ZMvPsJqr0HY3wu9G+y+FTvkY8jqHJvgAWq5XGxiZsNht2h4OgoGAio6IIDQ11OWLoKdrb2zlx4gQZGRluD7ydDVEU6e7uxmAw0N7eLhf/x8bGEhQUdGaX6K9SskRRZOHChSN+j8OTnvPy8tiyZYu7fOw+84fzmknryUE+BoOBqqqqM2ZbOIsrYtfc3Ex9fT2ZmZlOnewj+f2am5vp6uriv5YH88fDfRjtAlZRQ7++E1GrQejtJzgqEqPBSFBkJPWGbtT+A9Fcu751oKOwfyAabQDtxi60Oj8CQwbmXth7eum3CoQE6OjrbMeuC0NlNaMSwWEXsApWLlkUxSVLBsrqRpIncYTfjiZjw78xYYRzfHgcVpa8r77vgYDWwECm2NhYeVdTW1srd9+NjY0lKipq0qOMRqORkydPkpmZOS7/mjtQqVSEh4fLN1mLxSKXu5nNZiIiIoiJiSEyMhK1Wk1VVRWCILBo0aJRz+3BgY/y8nKef/55/vKXv3jtM3kLr+3wbDbbiNUP5eXlxMfHO13iNRipV15bWxvp6elDssKd3eGNt3JC6q7S09NDamrqhJs5SnfrxuYWNu9rxmB2oAoMxNZnIjhIh8NuRRcehmg2QWAw/d3dBPgPjAnsbW8n2N8Pu1aHVqPF2tVBT3cf/gGBCNpANCqB/p5eHDYHGq0fWpWKfnM/foKF//5+Jjdcs3RCa3cnfX19lJSUsHDhwhET0KV0DmlX42wdqycwGAxUV1eTkZHhciWCpxAEgY6v6n07Ojqw2+34+/uTmprqlMldVlbGj370I/Ly8li0aJG7luUzO7xJF7yqqirCw8NHrDM8G4IgyLW3KSkpZ/jbDh48yCWXXHL2MqJxip3D4aCsrAydTif7QdyJKIr84u0iPi7Xo/X3wyYM5MfpVHasVhsWSz9R0eH09fQR4O+HWqPFaOzEX63CJmjQBkegFiz09/aiRsSuCkQQ7Kit/QM7bJuFQI3Ak3dewRXpSW5d+0To7u7m+PHjZ03nGI7JZMJgMNDW1obD4ZBNOk+bvq2trdTV1ZGRkeHTaRuiKHLq1ClMJhPh4eEYjcZR630lKisrueWWW3jrrbdITU1153LOP8Gz2+0jmq6nT58mMDBwXEnBFouFwsJCpk+fPmrt7eHDh1m+fPlZR9WNx4SVAiLTp0/3eJ//A8VN/DL/OA67Df9AP/osdrR+fqhVKvq6uggMjwKLaUDUtIHYrf1gNaP1D8Bus4CgAYcVu82BXeVHoGDG5nAQEyDyyv3XkZwQ69H1j4eOjg4qKytJS0tzOQ1CMn0NBoNHTd/m5mYaGxvJyMiYlDbt4+HUqVP09/ezePFi+fyW6n3b2tro6uoiJCSEsLAwAgMD6enp4aabbuLvf/87GRkZ7l6OzwjepP/VxuvD6+7upqSkZEgu39led/gJ74q/rre3l9LSUubPn3/W93QX30qbwTcXxvLQG0c4UNKKn84Pm7kbQaMhKFCHra8LdWAYWHuhvwc/VJgsVqwmCw5tMH4aEXNXNyqNDj+xD6ujn2syEnj67ut86kLV6/VUV1dP2A/m5+fHtGnTmDZt2hDTVxpV6A7Tt6GhAb1eT2Zm5qT7D8dCSohfsmTJkPN7eL1vT08PRUVF/OxnP8NgMLBmzRrUarVs8ZyLTPrZr9VqsdlGbhQ5nJaWFk6fPk1GRsaY+U7jbdg5GpIzODU11ath+gB/P/5wxyUcKmvkF298gbFfjcoBnf0iOsGCvc+IXdSgtfdiwx+Nfwg6oRvMbfTZ1QRiw9ZvIjE2kKfuyiVtwUyvrd0ZmpqaaGpq4oILLnCraTi8kkEyfY8fP+6y6VtXV4fRaCQ9Pd3nxe706dMjit1wVCoVYWFhJCUlodVqef311zEajTz++OPce++942rnPpXwmknrcDhG7G7c0tJCX18f8+bNG30RX/kjurq6SEtLc+oCKSwsZP78+bIwjtdfB1BfX09raytpaWmT7pze/UkFfy4opqXLhsncj90hEBwcNGDOigI9Zjt+WEEQ0OJg/swINq25lJWXLJ7UdY9EbW0t7e3tpKWleVVAXDF9a2pq6OrqYunSpZM+fGcsqqur6e3tJTU11elMgzVr1vDHP/6RK664wpNL85nt4qQLnsFgoKOjgwULFoz4PLvdTmlpKQEBAaPmEI1ESUkJc+bMITQ01KVIbGVlJXa7ncWLF/vUiW622Nj9SQXHqpqobmqnz9RPZ08ffogsSopnReZcLlsyDaPRiNlsJjIykri4OMLDwyf9c0g3LmkHMpnrGSvqK4qi3N1kstfqDDU1NXR3d5OamurUWltaWlizZg3PPPMMV199taeXpwieREdHBy0tLaSkpJzxmNlsprCwkFmzZjFz5vhMsuPHjzNz5kzCwsKGZJCPhd1up6SkhPDwcJKSknzalyEIAqWlpQQGBpKcnHzGWqV8P4PBQFdXF6GhoXJtprd9eaIoUl5ePjDkaBw3Lm8xPOoLA77B9PR0nxe72tpaurq6nBY7g8HA9ddfz2OPPcbKlSu9sMLzUPAEQRjRV9fd3U1tbS1Llw7NCevo6KCsrMzlxqAVFRXyYGFnTViz2UxxcTGzZ8+WZw/4KjabjeLiYuLi4khMTBzz+MHZ+W1tbaPW+XoCSZiDg4OZO3euz4ndYERRpKKiApPJhE6n87mE5+HU1tbS2dnptMltNBq5/vrr+eUvf8l1113nhRUCPiR4kx60GClKKzUaGG8bdglRFNFqtTQ0NAA4JZhdXV2UlZWRkpLi0qQ0byIJ8+D63bEYnJ2fnJws72hGqvN1pyBJzVdjYmLc0r7fk0hip1arueCCC+R6U09Efd1BXV0dHR0dpKWlOSV2nZ2drF27lv/3//6fN8XOp5j0HV5/fz/Hjx/nwgsvlH1nZrOZpUuXumR2De4C0dHRIZtz0l06Ojr6jJOjtbWVmpoa0tLS3FoA7gmkNkTuFObhdb6RkZHExsaOqyfbaK9bVFREQkKCS81XvYkoipSVleHv78+8efNGFf3JSngeTn19PUaj0Wmx6+7uZs2aNdxzzz2sXbvWCyscgs/s8LwmeNIg4uHY7XaOHj3KBRdcQHFxMeHh4Wc94cZ6j5GCE6Io0tnZiV6vp729neDgYOLi4oiOjqahoUE2CXwpR20kjEajXDM8kTZEZ8Ndfj+p0atUF+vLSCZ3SEgIc+fOdfp53kp4Hk5DQwMGg8Fp/2Jvby9r165lw4YN3HTTTWMe7wEUwRv8+08//RS1Ws3cuXNd9p2JoujUgB1RFOnt7aW1tZWGhgY0Go08Qs/bReDjoampicbGxjNqhj2Jq34/qS520aJFPu8eEARBDlLNmTNnQq/jjVpfSeycTekxmUysW7eOm2++mVtvvdVt6xgniuBJGI1Gjh49ysUXX0xYWJhLrzveZGKr1So7/GNiYjAYDBgMBkRRJDY2lri4OJ/p9io1SOjs7PR63tpwJHPOYDAgCIIsfoP9fq7UxU4WDodD9i86E/gZD54wfRsbG2ltbXU6AdpsNrN+/XrWrFnDnXfeOZnBIkXwYMDp2tzcjM1m47LLLnPpNccrdtLuY6RZoVarFb1ej8FgwGq1EhMTQ1xc3LhG67kTQRCorKxEFEUWLVrkU+kRg/1+JpOJqKgoAgICaGpqIj093WduGKPhcDgoLCxk2rRp4055Gi+S6dvW1kZPT49Lpm9TUxMtLS1Oi53FYuGmm25i1apVbNq0abIj4+ef4MHAHwEGLuTy8nIEQWDJkiUcPnx4XM06wTWxkxo2OlMmZrfbaWtrQ6/X09fXR1RUFHFxcXKai6dxOByUlJTI5T++nMrhcDiorq6moaEBnU5HWFjYpOX7OYPdbqewsJCZM2d6PZjiiunb1NREc3MzGRkZTomd1WrllltuYcWKFdx3332+cO5M+gIkvCp4VqsVi8VCUVERMTExzJkzB5VK5VJ34vGWiTU0NNDc3ExaWtq4fXWCINDe3o5er6erq4uwsDDi4uI85pyWopszZ85kxowZbn99dyPVxaanp6PVamW/n9FoRKfTeS3fzxlsNpuczB4fHz/ZyxnT9G1ubqapqclpsbPZbNx2220sX76cBx54wBfEDs5XwTMajRQXFzN//vwhkbtDhw7xjW98wymTzdngxODjq6qq6O/vZ8mSJRMWKFEU6erqQq/XYzQaCQ4Olu/Q7iiCl+aaeqszy0QZqy7WGb+ft7BarRQWFpKUlOSTkePhpq9Op8NisbBs2TKnAlV2u52NGzeyaNEiHn30Ubd8v7fddht79uwhLi6O0tLSMx4XRZF77rmHgoICgoKC2LJlCxdccMHww84/wRNFkc8//5zk5OQzzMkvvvjCqYaK4+1hJ5mFISEhLqe6nA0p4iuJn9R+x9XdjJT8PBUc/tJQGOlG4szNZyS/nzvy/ZxB6qGYnJw8JW4kLS0tVFdXExkZSWdn55imr8PhYNOmTSQmJvLb3/7Wbef6xx9/TEhICDfffPOIgldQUMDzzz9PQUEBn332Gffccw+fffbZ8MPOP8GD0bsef/nll6SkpIya9OuKv66/v5/i4mISEhK8ZhaazWY56DHeiK/BYOD06dNTIvnZHXWxDoeDjo4O2U3gyTrf/v5+CgsLWbBggUujBLyN1FU5MzNT/i5GM32lzcO9995LREQETz/9tNtvHjU1NWRlZY0oeBs3buTKK69k/fr1ACxcuJB//etfw32jPiN4PuFRPlsTUFfETkqNWLRokUt1uK4SGBjI7NmzmT17NlarFYPBQGVlJVarlejoaOLi4kZMS2hoaKClpcXtveE8gZS3FhoaOqFgikajISYmhpiYmCH5fjU1Nfj5+ckpQxPNYTObzRQVFU2JnEAYaIo6XOwAgoKC5HNLMn1Pnz7Nj370IyIiIoiLi+PZZ5/1eiS/sbFxSEpPQkICjY2NPltZ49OC50pwQuqiO9mpETqdjpkzZzJz5kzsdvuQ6VuDTbnTp09jMpmmRCddqS42NjbWrXlro9X5Sk07pfSg8fr9pBSkxYsXu5Tj6W30ej21tbVjtpCXOjzHxcXxne98h8bGRpKSklixYgUbNmxg48aNXlz11MInBE+r1Z7ROsqV4ITkQPe1nZJWqyU+Pp74+Hg54tvS0kJRURH+/v4kJydP9hLHxJt1scN3M21tbfJAGmf9fr29vZSUlEwJfygg724zMzOdHqz961//mu7ubrZt2ybfLEdK7vckM2fOpL6+Xv65oaHB43mNE8Grgjfa3Xn4Dm+8wQlBEKioqAAgIyPDpxJ0h6NWq4mIiKCuro6kpCQiIiLQ6/XyMCPJlPMlwZbqYufNm3dGsran8fPzY/r06UyfPl2+WbS2tlJZWTmq309qsJCWluaxmmN3Io19HI/YPfHEEzQ3N7Nly5YhloG3O3NnZ2fzwgsvcOONN/LZZ58RHh7us+Ys+MgOTxI8V/x1Ul84qf2Qj+QdjYoUTJk9e7acBxYREYEoivT19aHX6zl27NiEI77uoq+vj+LiYp9om6VWq8f0+/n7+3Pq1KlJd2k4S1tbmzzj1lmx+/3vf09VVRX/+7//63E3yPr16/nXv/5FW1sbCQkJ/OpXv5K7Hv34xz9m1apVFBQUkJycTFBQEK+//rpH1zNRvBqlHW1UY11dHSqVihkzZuBwOFCr1U4Jl5SzNnfu3HHPtZ0MJDPLmWDKRCK+7mIq1cWaTCbq6upoamoiKChIns41Gfl+zmI0Gjl58iSZmZlO7cxEUeT555/n888/Z9u2bT5lBYyBz/wBvCp4o7V5b2hooL+/n9mzZzu9s+vo6KCiomJKXIwwUNZWWVnJ0qVLxz39TIr46vX6MSO+7lzviRMnJjQv1pu0t7dTVVUl15pKZYHezvdzFlfE7pVXXuGjjz5i+/btkz5Uapwogie/wVfJuxUVFdhsNmJiYoiPjz/rnbmpqYmGhgbS0tImveusM7S0tFBXV0d6evqEzVMp4qvX68+I+LrrYtbr9dTU1Lhlvd5ACmqMJB6S389gMNDZ2Tmpcz0kJHEej9j99a9/Ze/evbzzzjtT4pwfhiJ40s+D/XVSRE6v12M2m+V0BGknI0296uvrIzU11efTOAZHjtPS0tx+gXmixrexsZHm5mbS09OnhMkkiXNGRsaY4jHY72c0GvHz85NL3bwlItLOeTzDx//+97+Tn5/Pu+++6/NJ6aNwfgqe1ObdmeCEw+GQxa+3t5fIyEh6e3sJCwtj/vz5PuuXkZDa1TscDlJSUjxuSg2u8W1vb3cp4ltTUyPPSPD1mwkM7Jzr6+uddvgPx2w2y3W+Ur6fVL3gifOro6ODysrKcYnd1q1beeONN9izZ8+UiDiPgs9crF4XPKvVOu5IrNlsliOXDodDnrUaGRnpk8LncDiGtAz39hoHR3zb2trQarVy0GOkC02qi7VYLD43h3c0pJZJUoeWiSJZFwaDQW4H5k5XQWdnJxUVFWRkZDi9m9yxYwd//vOf2bt375TwU58Fn7lIvSp4XV1dcgTWWbHr6enh+PHjch2kIAh0dHTQ2toqD+eRzDhfuFClbsrTpk0jISFhspcDfL2T0ev1csRX6lgi1cVqNBoWLFjgkzeQ4TQ0NKDX651uhjle3O33c0Xs3n33XZ577jn27t076elAbsBnTiqvCt5LL73ESy+9xFVXXUVubi7Lly8/q0hJo/FGG1ojDedpbW2lo6OD0NBQeTjPZJhkUt3mvHnzfLL9EAyN+FosFhwOB1FRUSxcuNAnbhhjUVdXR3t7O0uXLvXK33iifr+uri7Ky8vHJXb79+/n6aefZu/evVOis4sTnJ+CBwOi8M9//pP8/HwKCwu5/PLLyc3N5ZJLLpFPYFEUqa+vx2AwsHTpUqcjWd3d3bS2tsp96iQfljeicVLO2uLFiwkPD/f4+00UqetvYGAggiDIflKpq7Mvil91dTXd3d1OD532BOPx+0lil56e7nSw4cCBA/z617+moKDAZ2+aLnD+Ct5gLBYLBw4cIC8vjy+++IJLL72U6667jq1bt3L99dfzne98x6UTe/Bksra2NgICAuSqBU9EHtva2jh58uSUyVmT6mITExPlKXGSq0Cv19PZ2TmkTftkBzBEUZSbLDjbe88bnM3v19vbS1lZ2bjE7uOPP+bhhx9m7969Lk/vG87+/fu55557cDgc3HHHHTz44INDHt+yZQv333+/XP969913c8cdd7jlvQehCN5wbDYbe/fu5ac//SkxMTGkpaWRm5vLlVdeOeEkS6lJp+TAl7Lw3ZG82djYKLc3nwrJoFJvuJGGGElIEV/JjJvMGl8poGK1Wlm8eLHP+hgH+/2MRiM2m43k5GSmT5/ulIXx6aef8vOf/5y9e/e6rX+jw+FgwYIFvP/++yQkJLB8+XL+8Y9/sHjxYvmYLVu2cOTIEV544QW3vOco+MwfzSdqaWGgTvL3v/89f/jDH8jJyeGTTz4hPz+fX/ziF6Snp5OTk8O3vvUtl/KlQkJC5IipyWRCr9dTVFSEWq2Wd37jfV1p19HT08MFF1ww6bsgZ3C2LlalUhEREUFERATJycln1Ph6K3dNSu0BfFrs4Os6X39/fzo7O5k/fz49PT0cPXp0TL/fZ599xv3338+7777r1ma1Uodxabj4jTfeyK5du4YI3vmGz+zwADnqOhiHw8GhQ4fYvn07Bw4cYNGiReTm5vLtb397wuZjf38/er1ejl5KO7+xTBBp6ppGo3G546+3kdrHu1LaNpjBPixBEIb0qnMnUvRYq9VOibxL+LpLy/DGBSP5/cLCwoiKiqKwsJBNmzaxa9euCQ0CH4n8/Hz279/Pq6++CsAbb7zBZ599NmQ3t2XLFh566CFiY2NZsGABf/jDH9w+oxdlhzcyIzn7NRoNl112GZdddhmCIHD06FHy8vJ4+umnmTt3Ljk5OXznO99xKU8pICCAWbNmMWvWLHkmbXl5OXa7Xc5bG34h2+12SkpKiIyMlGt/fR0puz8jI2PCmfqBgYFDvrO2tjZ5SJLkwA8LC5vQ9yIIAmVlZQQEBHhkFokn6O3tlVtSDb8RD/7OJL/f3/72N15//XVsNhuPP/74pKUwrV69mvXr1+Pv788rr7zCLbfcwocffjgpa/EGPrXDGw+CIFBcXExeXh779+9nxowZ5OTksGrVqgnnLdlsNgwGA62trUMGcvv5+VFcXExiYqJP9/wajLfqYqXKGIPBQE9Pj8sRX0EQKC0tlVvITwWkLjjj6b9XVlbG7bffzt13382xY8f45JNPOHDggFsjs4cOHWLz5s289957ADzxxBMAPPTQQyMeL6UodXV1uW0NX+Ezd6wpK3iDEUWR48ePk5+fT0FBAVFRUeTk5JCVlTXhPCZpIHdTUxMdHR3ExcUxa9asCe9ivMFk1cUOj/g6mx8p3cSk3fNUQPKLjsdVUFFRwa233spbb71FamoqgDzGwJ3Y7XYWLFjAgQMHmDlzJsuXL+ett95iyZIl8jHNzc3yzXvnzp089dRTHD582K3rQBE8zyGKIidOnCA/P589e/YQFBRETk4Oq1evJi4uzqWTqrOzk/LyclJSUrBarbS2tsqdSqRdjK+Jn6/UxUr5kdIoy9Eivg6Hg6KiIrfPy/AkrojdyZMn+Y//+A/eeOMN0tPTPbzCgTGK9957Lw6Hg9tuu42HH36YRx99lGXLlpGdnc1DDz3E7t270Wq1REVF8dJLL7Fo0SJ3L8NnLo5zTvAGI4oi1dXVbN++nXfeeQc/Pz9Wr15NTk4O06dPd0qkWltbZZNwcIRNEAS5TVN3d7c8OSoyMnJS88R8uS5WqvGVHPgajUYuC6yoqGDatGk+PQ9hMK6IXU1NDevXr+e1115j2bJlHl6hT6EInrcRRZGGhga2b9/Ozp07cTgcZGVlkZubS2Ji4ojiV1dXh8FgIC0t7awmoSAIcomblLQrmXDeFBwpeqzVaqdEXWx/fz/Nzc3U1NSg0+mYMWOGRyK+7sZkMlFUVDSu5rP19fWsW7eOV155hYsvvtjDK/Q5fOZEPG8EbzCiKNLS0sKOHTvYsWMHJpOJ6667jpycHObOnYsgCBw+fJiwsLBxZ/ZLSbutra20t7cTEhJCfHy8xysWpA4tE50X601sNhuFhYXMnj2biIgIuR2YOyO+7sYVsWtqamLt2rU899xzXH755R5eoU/iM3/A81LwhmMwGNi5cyfbt2+nra0NtVrNhRdeyDPPPDOhHdpI/qv4+Hi31/fa7XaKioqIi4ubMv4vq9VKYWEhSUlJZ0Qm3RXxdTdSc4jxzLltaWlhzZo1PPPMM1x99dUeXqHPogieL9LZ2Ul2djazZ8+ms7OTxsZGVq5cyfe+970J+8Ok+l6pxE2n0xEfHz/h+l5JOGbNmuW2+ktPY7FY5PK2saLorkZ83Y0rYmcwGPj+97/PE088wbe//W0Pr9CnUQTPF3nzzTcJDQ0lJycHGKhOePfdd9mxYwenT5/m2muvJTc3l/T09AnvNKRyLYPB4HJ9r3QRnq0u1teQ1rxw4cIxJ7cNZ6Qds1Sy5cm0G2nNKSkpTnfCMRqNXH/99fzyl7/kuuuu89japgiK4E01ent7KSgoID8/n4qKCq6++mpycnLG7OnnDNJIRr1ej0qlksXvbLWqvjQv1lmksZrjEY6z0dvbe0bE1901vlKzhfGsubOzk+9///s8+OCD5Obmum0tUxhF8KYyZrOZ9957j/z8fIqKirjiiivIyckZ0tPPVfr7++UGnYIgjDiP1l11sd5EEuglS5Y4bRKOB6kuWqpXHa00cLyvWVhYyKJFi5y+qXR3d7NmzRruuece1q5d6/J7n2MogneuYLFY+OCDD8jLy+PIkSNceuml5Obm8s1vfnPCZpbUnbi1tRWbzUZsbCw6nY6GhoZx9VmbbKTSK28JtFQaKEV8pTm+44n4WiwWjh07Ni7Tu7e3l7Vr17Jx40Z+8IMfTOQjnGsogncuYrPZ+Oijj8jPz+fgwYMsX76c3NxcVqxYMeFeeTabjVOnTtHc3ExAQACxsbHEx8d7bMKWu5A6QY+nztSdOBwOOUFcivjGxsaeNUHcFbEzmUysW7eOm2++mVtvvdWNn+CcwGdOUK8IXl5eHps3b6a8vJzPP/981CzzsbqzTiXsdjv/93//R35+Ph9//DHp6enk5uZy9dVXu+RjamhooLW1lbS0NFQqFUajkdbWVkwmE1FRUcTHx/tczprU4txXOkFLEV+DwTDqDBQpgjx//nyioqKcel2z2cz69etZs2YNGzZs8ORHmKr4zEnpFcErLy9HrVazceNGnnnmmREFz5nurFMVh8PBwYMH5Z5+ixcvJjc3l2uvvdYpIaipqaGzs3PEwTUj7WDi4+Mnvb5XmsE6nuE13mR4xDcgIICoqCiamprkCXnOYLFYuOmmm1i1ahWbNm1y23c+1s3fYrFw8803c/ToUaKjo9m2bZvb++m5EZ8RPK/0w0tJSRnzmHO5O6tGo+Hyyy/n8ssvRxAEjhw5Ql5eHk8++STJyclkZ2eP2NNPFEWqqqqwWq2kpaWNaIJJ0cm4uDi5zXhzczMVFRWEh4cTHx/v9fpeo9HIyZMnxzVw2tuoVCrCw8MJDw9n/vz5dHZ2UlxcjFarpbq6mt7e3jEj5VarlVtvvZVrrrnGrWLncDjYtGnTkJt/dnb2kGvhtddeIzIykpMnT7J161YeeOABtm3b5pb3P5fxmQagjY2NQ6oEEhIS+OyzzyZxRZ5BrVZz0UUXcdFFF/HUU09RVFREXl4ef/zjH0lISCA7O5tVq1YRFBTEtm3buOiii1iyZIlTF5PUZjwmJgZRFOWE3RMnTsj1vVFRUR5N2DUYDFRXV5OZmTklZnzAgHCdOHGCJUuWEB0dLUfKjx8/Lkd8pclkEjabjdtvv51LLrmE++67z627aWdu/rt27WLz5s0ArFmzhrvvvtsjLabONdwmeNdccw0tLS1n/P6xxx6TE3kVhqJWq8nMzCQzM5PHHnuM0tJS8vPzWb16Nd3d3WRmZvLd737XpZNYpVIRFRVFVFSUXN+r1+s5efIkwcHBcombO8VPr9dTW1tLZmam14f9uIpUzzt37ly56iMgIIDExEQSExPliO+pU6cwm82cOnWKadOm8eabb5Kens4DDzzgdpFx5uY/+BitVkt4eDhGo3HKJKBPFm4TvA8++GBCz585cyb19fXyzw0NDVOmVZA7UKlULF26lNmzZ3Pw4EFWr16NVqtl3bp1hIaGkp2dzerVq4mNjR33BTZ4KI8oivT09KDX66murnbbRLLm5mYaGxvJyMiYUmJ37NgxkpKSRhUKPz8/ZsyYwYwZM3A4HLS0tPCb3/yG2tpaoqOjOXDgAFddddWUGOKkAD7TLG358uVUVVVRXV2N1Wpl69atZGdnT/ayvE59fT0bNmxg8+bNPPLIIxw6dIiXX34Zs9nMD37wA7Kysnj55Zdpbm5mjIDTiKhUKsLCwkhOTubiiy9m3rx5mM1mvvzyS44dO0ZjYyNWq3Vcr9nU1ERTU9OUFTtn26qrVCo+/PBDVqxYQV1dHddffz379+93+9qcufkPPsZut9PV1TXh7t7nA16J0u7cuZOf/OQnGAwGIiIiyMjI4L333qOpqYk77riDgoICYOTurApfI4oidXV17Nixg507dyIIAqtXryY3N5eEhIQJm1bSCEu9Xj8kGHK2wEN9fT0Gg4H09PQps8sZ3JYqLi7OqecIgsD999+Pn58fzz77rEeDQM60Zv/Tn/5ESUkJL7/8Mlu3bmXHjh28/fbbHlvTBPEZx6KSeDxFEUWR5uZmuaef2Wwe0tNvouI3eIQlIJdqDa7uqK2tldvI+1Jn5bNht9s5duwYs2bNIj4+3qnnCILAww8/jMVi4cUXX/TKZx2rNXt/fz8//OEPOXbsGFFRUWzdulUOcvggiuApuBe9Xs/OnTvZsWMHHR0dfPe73yU3N9ctnY8tFossflLU0mq1YrFYSE1NnVJiV1hYSGJiotNiJ4oimzdvxmg08pe//GXK7GJ9DEXwFDyH0Whk165d7Nixg+bmZrmnX0pKyoTFyWKxUFZWRk9PD/7+/sTExBAfH09wcLBPp0RIYpeQkOB030BRFHniiSeora1ly5Ytiti5js+cGOeN4LW3t3PDDTdQU1PDnDlzePvtt0esk9RoNCxduhSAWbNmsXv3bm8v1a10dnbKPf1qamq45pprXO7pJyVC2+12UlJScDgccpG+2WwmOjqa+Ph4QkNDfUr8HA4HhYWFzJgxw+l5wqIo8vvf/56ysjLefPNNt3ao9iaiKHL55Zfz8MMP893vfhcYKPV87bXXPBJwGQWfORnOG8H7+c9/TlRUFA8++CBPPvkkHR0dPPXUU2ccFxISQm9v7ySs0PP09PTIPf0qKyv51re+RU5ODsuWLRtT/ERRpLKyEoCFCxeeIWhSW3a9Xi+PsIyPjyc8PHxSxc9VsXv++ef5/PPP2bZt25SJPI9GaWkpa9eu5dixY9jtdjIzM9m/fz/z5s3z1hIUwfM2Cxcu5F//+hfTp0+nubmZK6+8Ur6AB3MuC95gzGYz+/btY/v27RQXF7NixQpycnK4+OKLzzDdRFGkrKwMnU5HcnLymAI2fITlZM2kkMRu+vTpzJgxw6nniKLIK6+8wkcffcT27dunTLXIWPz85z8nODiYvr4+QkND+cUvfuHNt1cEz9tERETQ2dkJDJzUkZGR8s+D0Wq1ZGRkoNVqz5uOtRaLhffff5+8vDyOHj3KpZdeyve+9z2++c1vIggCe/bsIT093aXo7/CZFOHh4XKJmyfFTxrsHR8f73QCuyiK/PWvf6WgoICdO3f6ZNMDV+nr6+OCCy5Ap9Nx5MgRb9c4+4zgTU3HxCicrbxtMCqVatQLt7a2lpkzZ3L69Gmuvvpqli5d6s2t/6Tg7+9PVlYWWVlZWK1Wuaffz372MzQaDcuWLSMrK8sl01StVhMdHU10dDSiKNLZ2Yler6eqqspjA3lcETuAN954g927d7N79+5zSuwAgoODueGGGwgJCfHZhg7e4JwSvLOVt8XHx9Pc3CybtKMlnEoXyNy5c7nyyis5duzYOS94g9HpdKxcuZIVK1awbt06EhMTEUWRyy67jMzMTHJzc7nqqqtcEgSVSkVkZCSRkZFD2jOdPn2aoKAgucRtIgECQRAoLi4mLi5uXGK3detWtm3bxp49e6ZMJ+nxolarp0wKkac4bz59dnY2f/vb3wD429/+NmJDg46ODiwWCwBtbW18+umn50R7Klc4duwYWVlZ/OlPf+LFF1+kqKiIO++8k48//pgVK1Zw2223sWvXLkwmk0uvL7Vnmj9/Pt/4xjdISkqit7eXI0eOUFhYSFNTEzabbVyvKQgCRUVFxMTEkJCQ4PTztm/fzpYtW9i9e/ekdGVW8B7njQ/PaDSybt066urqmD17Nm+//TZRUVEcOXKEl19+mVdffZWDBw+yceNG1Go1giBw7733cvvtt0/20n0OQRD4/PPPyc/P5/333yc5OZnc3FxWrlzplpkVfX19tLa20tbW5vQIS2lnFx0dPa5h5Lt37+b5559n7969U2b6m6ts3ryZkJAQ/vu//9vbb+0zPrzzRvAUPIMgCBQWFpKXl8f+/ftJTEwkJyeHVatWuWUUo1TfazAYUKvVconbYJNaEARKSkqIjIxk1qxZTr/2vn37+N3vfkdBQYHTHY4VXEIRPIVzD1EUKS0tJS8vj4KCAmJjY8nJySErK8stgjK4vlcURbkx58mTJ4mIiGD27NlOv9YHH3zAb37zG3mdnuB8TXYfAUXwFM5tRFGkoqKC/Px89uzZQ3h4ONnZ2WRlZbnU0284VquV1tZWTp8+jVqtJiEhwek5tP/+97955JFHKCgocLqm1hWUZHcZRfDOJ86xgSzjRhRFTp06xfbt29m1axf+/v6sXr2anJwcpk2b5pL4CYJAaWkpoaGhJCQkyPN7LRaLbPaONMLy008/5YEHHmDPnj1OJyO7ipLsLqMI3vmCM9PYXnzxRYqLi+XeZjt37jxnB7KIokhtba3c0w8gKytrXD39JNM5JCSEpKSkIY/Z7Xa5xM1kMhEdHU1ISAjx8fF88cUX3Hfffbz77rvjCmy4ipLsLqMI3vnCoUOH2Lx5M++99x4ATzzxBAAPPfSQfMzKlSvZvHkzl1xyCXa7nWnTpmEwGHyqAN8TSD39tm/fzo4dO+jv7ycrK4ucnBySkpJG/PyiKHL8+HGCgoLG7P8mjbB87bXXePPNN7Hb7fzP//wP119/vdvy0c6W7H7LLbcMEbjIyEg6OjrOOLaxsXFIsvuBAwfOtdxPnzmRz5s8vMlipIEsjY2Nox4zeCDLuY5KpWLGjBn85Cc/4cMPP+Sdd94hOjqa//qv/+Kqq67i6aefprKyUm5l73A4KC0tJTAw0Klml1LX5lWrVhEWFsajjz7Ke++9R0ZGBnV1dW75DB988AGlpaVn/MvJyZGT3YFxJ7sreAZF8BR8ApVKRXx8PD/+8Y/55z//yb59+0hMTOSRRx7hiiuu4Le//S1r167l8OHD4+rse/z4cTZu3Mi2bdu48847efXVV/nyyy+9YtIqye6+hyJ4HkYZyOIa0dHR3H777ezdu5f333+fgwcP0tLSwuuvv86vfvUrCgsLEQThrK9RUVHB7bffzltvvcWiRYvk32u1Wq+4Cx588EHef/995s+fzwcffCAHq44cOcIdd9wBQHl5OcuWLSM9PZ2rrrqKBx98UBE8D6L48DzMOTiQxetIKR1PPvkkPT097N27lx07dnDixAmuvvpqcnNzufDCC4f45aqqqvjhD3/IG2+8QXp6+iSuXgEf8uEpgucFzrGBLF6nr6+PoKCgM3ZlJpNJ7ulXUlLCihUryM3NJT4+nptuuonXX3+dCy+8cJJWrTAIRfAUFNxJf38/77//Pm+//Tbvvvsu+/fv5+KLL57sZSkMoAiegoKnsNlsU74t+zmGIngKCgrnDT4jeEqU9jxi//79LFy4kOTkZJ588skzHt+yZQuxsbFkZGSQkZHBq6++OgmrVFDwHOdUx2OF0XE4HGzatGlIiVt2dvYZKRA33HADL7zwwiStUkHBsyg7vPOEzz//nOTkZObOnYtOp+PGG29k165dk70sBQWvogieG6mvrycpKYn29nZgIIs+KSmJmpqayV0YzpW4wUC787S0NNasWTMkYVpB4VxAETw3kpiYyF133SVn1D/44INs2LBhyrR6Wr16NTU1NRQXF3Pttddyyy23TPaSFBTciiJ4bua+++7j8OHDPPvss3zyySeTMT9gRJwpcYuOjpZH+N1xxx0cPXrUq2tUUPA0iuC5GT8/P373u99x33338eyzz/pMPtjy5cupqqqiuroaq9XK1q1byc7OHnKM1NkDBobbpKSkeHuZk05eXh5LlixBrVZz5MiRUY8bK+Kt4JsogucB9u3bx/Tp0yktLZ3spchotVpeeOEFVq5cSUpKCuvWrWPJkiU8+uij8gyF5557jiVLlpCens5zzz3Hli1bJnfRk0Bqaio7duzgiiuuGPUYKeK9b98+ysrK+Mc//kFZWZkXV6ngMqIonu2fwjg5duyYuHjxYrG2tlZMTEwUm5qaJntJCi6wYsUK8YsvvhjxsYMHD4rf/va35Z8ff/xx8fHHH/fW0qYiY+mM1/4pOzw3Iooid911F88++yyzZs3i/vvv9xkfnoL7cDbireB7KILnRv7yl78wa9Ysrr32WgD+8z//k/Lycv79739P8soUBnPNNdeQmpp6xj8lL/HcR6m0cCMbNmxgw4YN8s8ajYYvv/xyElekMBIffPDBhJ7vTMRbwTdRdngKXue2224jLi6O1NTUER8XRZGf/vSnJCcnk5aW5nM3DWci3gq+iSJ4Cl7n1ltvZf/+/aM+vm/fPqqqqqiqquLPf/4zd911l9fWtnPnThISEjh06BDXXXcdK1euBKCpqYlVq1YBo0e8FXwfpT2UwqRQU1NDVlbWiKk7Gzdu5Morr2T9+vXA0IHWClMSn2kPNZbgKSh4BJVKNQfYI4riGXatSqXaAzwpiuInX/18AHhAFMXRM4EVFJxAMWkVFBTOGxTBU/BFGoHBg2MTvvqdgsKEUARPwRfZDdysGuBioEsUxeaxnqSgMBZKHp6C11GpVP8ArgRiVCpVA/BLwA9AFMWXgQJgFXASMAE/mpyVKpxrKEELBQWF8wbFpFVQUDhvUARPQUHhvEERPAUFhfMGRfAUFBTOGxTBU1BQOG9QBE9BQeG8QRE8BQWF84b/D8x9/4WjQ2lQAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABqjUlEQVR4nO29e7QlV33f+f2dR533fd9+v/REDxACGmGHcZxggUWShYiNHexkLDv2YmViMpPx2DGEjOMh8RqcZBaZmeXMjOJgEzsJYJIMyliYADaxHRBWC4TQA0mtbrW6W7e77/u8n7Xnj6pdp+659di79q46R7r1WatX33tet06dOvu3f6/vjxhjSElJSUk5uGSmfQApKSkpKdMlNQQpKSkpB5zUEKSkpKQccFJDkJKSknLASQ1BSkpKygEnN+0DiMLKygo7c+bMtA8jJSUl5TXFE088scEYW528/TVpCM6cOYNz585N+zBSUlJSXlMQ0SWv29PQUEpKSsoBJzUEKSkpKQec1BCkpKSkHHBSQ5CSkpJywEkNQUpKSsoBR4shIKJPEdENInra534iov+DiM4T0VNE9FbXfQ8R0Yv2v4d0HE9KSkpKiji6PILfBvBAwP3vBXCb/e9DAP4vACCiJQD/EMA7ANwH4B8S0aKmY0pJSUlJEUCLIWCM/TGArYCHPAjgXzOLxwAsENFRAD8M4MuMsS3G2DaALyPYoGjnRr2Lzz1+GcORGevfOX+jid957BK6g1Gsf0cXpsnw/377Kp6/1ojl9Rlj+Ny5y3hpvan9tdcbPfzON16e+XPNGMN/+s6r+MKTV5GkHPy3X9nG156/ofU1e8MR/u03X8GNRlfr68rAGMMfPL2G353B7xlj1vfpmVd3p30oniTVUHYcwGXX71fs2/xu3wcRfQiWN4FTp05pO7D/6fe+gz95cQPlQhZ/5Z5j2l7XTbM3xAcffgwbzR5euNbAP3r/G2P5Ozr5D9++il/8ve+gYmTx+D+4H2VD76Xy9Zc28fc+/xTeeHwO/9/f+QGtr/1Ln/8Ovvb8OtZ2u/h7D9yh9bV18ruPXcL//IVnAFjXyF9/x+nY/2Z3MMJf/RdfBwB8/SPvwrGFkpbX/Z1vXMI//v3n8PjLx/HJv3avlteU5Tf/5CJ+7dHnAABfee46fuun3w4imsqxTPKNlzbxdz/7JJYrBh7/2P3IZGbjuDivmWQxY+xhxthZxtjZ1dV9HdKRGI5MfPOC5cj8l+fXtbymF49+dw0bzR5uXqng9564jEZ3ENvf0sXnzln2udUf4Y9f0H9u/uv5DQDA01fraPeH2l633R/iT1+0Xvv3v7um7XV10x2M8MmvvIj7blrCfWeW8H9+9XzsXikAPHVlvCP9+kub2l73D79neRhfe/5Got4NZ7PZw//25edx/52H8ff/0h342vPr+Mpzer0eFf7gmWsAgM1WH9+LyctWISlDcBXASdfvJ+zb/G5P5qB2OujbX744P5z/8vw6js0X8b/+yJvQHZjOIjirdPojfPuVbfzMO8+glM/iGxoXDI475KQz/PTk5R0MTYbvv3kZlzbb2Gz2tL22Tr72/A1stfr48F+8FT/9zjO4Vu/iiUvbsf/d56+Pz7WuMAVjDN+9ar3WdnuA6/Xkz/lnHr+M7sDER957B/7mO2/CqaUy/uWfXEj8OPx48vIOjtve19NXZy88lJQheATAT9nVQ98HYJcxtgbgSwDeQ0SLdpL4PfZtiXBhowUAuPvYHF7ebMX2d564tI23nVnCW04topjP4LELQemU6fPk5R0MRgw/cNsK7jkx73zJdfLCjQbuOFIDALyy1db2ut9bsxa6v/F9VpjlqRn80gHAF5++hqWKgT93yzL+/O2ryGfJ2VXHyQvXGqgVcnjD4Rouazrvu50BGt0h3nPXYQDAc2t1La8rwxefXsNbTi3g1kNV5LIZfOBtJ/BnF7fw6k4n8WOZxDQZXrzexP13HoKRzeClDf15MVV0lY/+OwDfAPAGIrpCRD9LRH+LiP6W/ZBHAVwAcB7AvwTwtwGAMbYF4B8BeNz+93H7tkR42TYE77x1BY3uMJaQzdpuB9fqXbz11AKMXAZvO72Ix1+ebUNw/oa1mN51dB63H67hxetNre4+YwzXd3s4e8YqEHt1R1+C8dJmC9VCDvfdtARg/BnPEowxfOOlTfw3t64gl82gWsjhLScX8WcJXBeXt9s4tVzGqeWyNgPMX+cHbrdCtle29Rl2Ea5st/H01ToeuPuIc9v73mzl+x6dgfDgq7sddAYj3H6khjMrZbx0Y/auSS0ZQMbYT4TczwD8vM99nwLwKR3HIcuNRg/5LOHuY3MAgLXdLmrFvNa/8cJ1y/rfddT6G288Po9P/elFDEYm8tnZTNGcv9FEtZDD4bkCbj9SQ6M3xLV6F0fn9SQWd9oD9EcmblqpolbMYW1X367t0lYbp5fLWKkaqBZyuLSZ7KIkwsWNFm40evi+m5ed2+49tYDf/vrL6A9NGLn4rovr9R6OzRdxaqmMP31xA4wx5YQqP8dvO7UII5vBlYR34dzD/sE3jHOHZ1YquGW1gj95cQM/9wM3J3o8k1zdts7HqaUyTi1VEjeUIszmSpQQG40elisFnFi0FrirMVzAF+3yyJtXqwCAO47UMBgxXJzBnSrn/HoTt6xWQEQ4vVQGAFze0ndubjSsGPKhWgHH5ktaPYJXNts4s2wd+5mV8kye5z+7aC1c77h5ybntzScW0B+a+N61eMMqN+pdHJor4vBcAZ3BCK2+epnlZXthO71cxtGFotbPU4QnLm2hVszh9kO1Pbe/89YV/NnFLfSH8Sfhg7hWt87HEfu88+t/ljjYhqDZw0rNwKFaEYBVf66bCxst1Ao5rFQNAMAbDluewSxWDnBeutHCLYcsw3XcMZL6djG81vxQrYBDcwVsaEroMsZwZbuDE0vWMZ9eruBSjLmfqDzzah21Qg43r1Sc2+6yvdK4+jYAoD80sdnq48hcEUuVAgBoSaZvNPqoGFlUCjkcnS9iLWGP4NzL23jrqcV9JZl/7pYVdAYjPHVlJ9HjmeS6bQgOzxdxeK6IrVYfveFs9TkccEPQx0q1gKWKtUhvt/ra/8bFjRZusnfXAHDLoQqyGcLzMe/8otLpj3Ct3nUWqWN2OIi7tzrgVSWH5opYKBvYaes577sdK+TEDfvxhRLWdrtTKWcM4tm1Ou48NrcnJHNysQQjm8H5GBrsOOv2on94roBle2Oy0VQ/95utHparlmFZrRWxGcP3yI/dzgAv3mji7On9ggRvPb0AwCp+mCbXdnsoG1nU7HArEM+mU4UDbgh6WKkWUDayMHIZbGlakNxcWG/t2fkVclmcXirjwvrs7VQBK7EFwGk0KhlZLFcMrWGzdVdoaKmcx5amhYO/7mqt4Lx+b2ii3tXXp6DKyGR4bq3u5Iw4uWwm9kQi35kemitgxfYIdJz7rVbf2UwtVwxtHp4IvELpTSfm9913qFbEsfkivnNlupVj1+tdHJkvgoicTco0SmyDOLCGgDGGTdsjICIslQ3tHsFwZGJtt4MTi+U9t+us2NDNmh3fdSeGjy+WcEWjR7Dd7qOQy6BSyGGhbKDeHWpppuI7Xh6GOzRnfelu1KcnezDJpc0W2v2REwpyc+uhaiySG5wte/e/XClgyT5HWkJDzb5zzpcrBhrdYWKhjxfsvog7juw/nwDw5pMLUw8Nre12cMS+Fg/ZHsEsXZPAATYE9e4Q/ZHpXMCLFQNbLb3loxvNPkwGHF0o7rn91FIZr2y2Zy5kAbg9gvExH6oVtbqy9c4A8yWrOovvJHc76ueehzlW7TDFYdszmKXd17P2DnbSIwCAW1aruLTZii25uWOf44VyHsv2edcRxtlq9cYeQVWfpyHC9641MFcch1wmuefEAi5ttmMJ+4pyvd5zDAH3VpP0mkQ4uIbA/lLM2QvSYjmPbc2hIV4WyS8CzqmlMhq9IXbasyc1cW3XTmy5jnmlamiJJXN2OwPnvC+Urf91nPvJ0BB/D9MUQpvkhWsNZAi47XB1330nl8owGbSW07rhxnahZKCYz6JayCkvSIwxbLX6jgFYdjyNZBbeF641cMeROd8S2Dcen35xhlWUYp2fhZJ1fmbtu39gDUHDjhvPFa1WisWK/tAQj8kemd9vCACr5n3WWNvtYLliLRSclWoBW60eTFOPB1Pv7vcItjV8MTaaVl8If23uhs+SR3Bho4WTS2UUctl9951Y0J+Yd7Pb7oMIqNnX/EI5r+yJ1btDDEbM8TB0ehphMMbw/PUG3nCk5vuY2w9b971wfTqGoNMfoTc0nQ2PkcugYmS1XO86ObCGoG53Ec/ZDWRLZUP7xbu2O64fdnN62Uoez2Jp46s73X2hrJWqAZPp2bUDtkfADXDZWjh0hBLW7b4QvjssGznUCjnHIM8CFzdauMlVPODmeIz9LIAVGpov5Z0yy1oxj3pHLZG+ay9o3PhyzyAJjaf1Rg+N7hC3HtrvXXEO1QqYL+WnZgj4d4Zf5wC0Vsrp4sAaAscjsC/g+VIeje5Aa9z+Wr0LI5txdr2ck3aduy6tF52s7Xb2dRA7X25NhrLeGToLB/+/riVHYPWFuFmtFZwk8rRhzGokPLPsbQiOzpdAFJ8h2HXlZgDLG64ryqo4G6qJz1NHzicM7lGfXi77PoaIcPvh6gwYgvF5XyjnnXzNrHBgDQFfeLibXC3mYDKgraHTknNtd1w25qZs5LBUMfDq7uzsVDnXdrv7PJgV2xBsaEoYu3ME1YJ1/ps99RLPnfZgz84LsEJP00wUullv9NDuj3DzqrchMHIZHKoVYgsN7bQHWHAbglJe2QBPetbc01P1NETg0hZ+hpVz++EaXtCslyUKzwUsuK7LxbKhPR+pysE1BBMXMDcIDY015+uNnpO4nOTIXNFJzM4KveEI9e5w3zHzyiodO2vTZGh0B855r9rnvanhvNddBoazUDZmJh7L1W79QkOA1QQXa2jItSDNFfPK1zt/Pv/+5LJWDDwRj2CzhWyGnJCaH7cfrmG3M5iKtIN3aCjvhNRmhQNrCPgFzBciLjanU4F0q9V3kmeTHJ0vOjmEWYHH6XnlB2fFifuq72Ja/SFMNg4h5LMZFPMZLR7BZOgDAJYq+ZnxCC4KGIJjMRqC3XZ/j0dQ0xEa6uzNEfCfVV9XhEubbRxbKIaKN95m5xDO30he/plvQiZDQ6lHMCPUOwOUjaxzEdXsEEVDw4LE2Wj29y2qnCPzRVyLqUwwKpuuhiM386U8shnCZkt9R7XrlO2OhW+rhbzyeWeMoe7yNDiLFQNb7f5M9Gxc3GjByGUc2Q4vji+UsLYTjyzGvhxBKY9mb6hUDTbpEfDXTcojCAsLAZYSqfX45HNyO/YmZN5lCBbLBnY7evORqhxYQ9DoDvcsGrpDQ6bJsN3u70sUc47OF7HdHszUkG1eU746kXDNZKySTB1fbh47np/YmaqGhjqDEQYjts8jWCwb6A9NdGbgPL+80cLppXLgvNrVWgH9kal9ITVN5pksZkxt88N3/jzXA+jJPYhwaavtlGIHcWSuCCOXiXX4lB/bbWvD6S4Xrtn5SB3Kr7o4sIag3h3s2cXw0JCOWDV//ZHJHJXHSY7Yu8JZyhP4eQQAbEOgJ3wDYM/ch2ohpxwa2vUIUQBWWTCQXKdrEFe2OzgZsnBxWQzdomTtwQgm2+uJ8XyKSji00R2iYmSRc4Vn5orxewS7nQF22oPAiiFOJmPJqU9jSNFOu7+vgKFa0LvW6EDXhLIHiOh5IjpPRB/xuP+TRPSk/e8FItpx3Tdy3feIjuMRod7dm1isOh6BnguYd+Ku+ISGjtpNZrOUJ+ChH69w1lwpr6X2udXbH0qoFtQ9Au5puBc6wAoNAcC2ZvmQKFzZbjuzL/zg8hi6E5v8vFfcO3f7M1BZtL0S9FYpdryLHB9BeXwh3BAAXJI8+dDQdrvvNJNxaprXGh0oTygjoiyA3wDwbgBXADxORI8wxp7lj2GM/Y+ux/8dAG9xvUSHMXav6nHI0ugO94RtdIeG+A7ULzTEu42v1WcnT7DZ7MPIZfa4+Zz5Uh67OgxB3zq/ZcNlCIo5ZVE7P4+AJ+niUJaVodEdoN4dOgPM/XBEyTTLYnCPy/3Z8p1pqxc9RNHoDvcYdcAyxnGHhrgMx2Tzox9nlsv40/PrME0WGJrTzbZHSbOz6dSYj1RFh0dwH4DzjLELjLE+gM8AeDDg8T8B4N9p+LtKNHvDPV+KiqH3w9myd9e+hmBu9jyCjWYfKxXDU7dlQVOOgPdpVAqumGkhh2ZP7bV9DUGFa7tM1xDwSqCwUkdeuqs7NOR4BC4DzD8Dbpyj4JWgny9Zyf+RJkkSL/j35ui8mCE4vVJBd2AmXkJa96hk44Upr7fQ0HEAl12/X7Fv2wcRnQZwE4A/dN1cJKJzRPQYEb3f748Q0Yfsx51bX19XPuh2b4SyMV6MshlCtZDT5q7xLlyveDtguehzxdxs5QhcA0YmmS/p6YbkC9KkR6AeGtrbF8KZlRzBlS0eygg2BLVCDsV8Bjc06yM1PUJD/Oe2bo8ghlLsSdZ2ushmxvr+YZyxcwlJJ4wnN5yAu1T99WUIZPgggM8zxtxX3mnG2FkAPwngnxPRLV5PZIw9zBg7yxg7u7q66vUQKdr94Z7FCLDCQ7o+HJ549fMIAGv3N0tytJsB5a7zdiWIqvCc4xG4jDBPFquU0/l5BHOlPIjimT4ng6hHQESxyGLw8I97UeIboZaCF9zoDvYk/oFkZCbWdrs4VCsgKxjm4WWmSSeM2/0RyoW9AoNOE6WiF6wTHYbgKoCTrt9P2Ld58UFMhIUYY1ft/y8A+Br25g9io93f6xEAepKWnK1WH7ViDkbO/xSv1gozNbJus9nz9WAWynmYDGgqhBEAa9Ep5DJ7qkyqxRwGI4aegg7/uBppr3HP2qWv0+4uvrrTQSGXcZLBQRyqFbV7BONk8V4DDKiFhlr90R4vw/ob+mRD/LhW7wiHhQArhJTNkNYBS2EwxtDq7/cI+O+vN4/gcQC3EdFNRGTAWuz3Vf8Q0R0AFgF8w3XbIhEV7J9XALwTwLOTz9VNf2hiaLL9hqCoXsbI2fYoG5tkVfPAFxUYY9ho9X2rnHhliGprfKs/3Ldw1DR8MerdAaqF3B4Dw7GkFKZrCK5st3F8oeSrm+9mtVrQnizmua9q0e0R2KEhhXr2js+GClBLQoexttPdJ44YRC6bwZG5olNtlATt/giMYd/1/ro0BIyxIYAPA/gSgOcAfI4x9gwRfZyI3ud66AcBfIbt9f/vBHCOiL4D4I8AfMJdbRQXbY/KFcBKpLUVd7wcL7mDSVars+MRNHtD9IdmYGgIUHf3J3MzwPhz6CgsSEHne66Um/rc4qvbndCwEGelpl8fqeVRNWTkMshnKfLmh+94KxOfp5OEjskjYIxhbbcr5REA1tS9KwkaAu5pTZ6fbIZQMbIzZQiUy0cBgDH2KIBHJ277lYnff9XjeV8H8CYdxyAD3wFNLkglI6stZi9iCFZqBlr9kWe+ImnGOQ3/ZDGgbgishWPve+WfQ3sQ/YvR7O53wTlzxWQ6XYO4utPBnR7jKb1YstUpRyYTjoGH0eoNkSGglJ9ctHNoR1ywuwMTjAFlnx1vXKGh3c4AncFo38CnMI4vlHDu0nYsx+QF94gmPQLAShi/3nIErzkcQzAZ2zSy2mSoRT0CANhoTL/rlVcELZa9j5k3xSh7BB7JsxI3BArn3go57Z/6BSQnguZHpz/CRrMf2kzGWawYYExvsrXZswzwZGiqYuQiSx2Me0L2GxcgPo9gXDoqHhoCrET9td1urGWtbrya+Dg6w9A6OKCGwL6A85MLkr7QkFfH5SROzXhz+iWkflU3HH676qzVVm+/R8B3qSqhoWZvf9KSM6dhEpcKohVDHF5pprPktdXbn5sBrEU86oLdcTzrZJPFvORa1iM4tlDC0GSJTazz6t3gWKXqqSGYKmOPYGIno8kjYGy/wJcXcTUPRSHMEPDacFV3ttUb7du560hatjzqtTlWjmB6HoHTBSu4gx3PcdZpCPafd8BatFU9gn05AqcsNZ5kMU+kH54Lr8Byw3s4kkoYO+fH47zXUo9g+vgli8u2IVCtlfdTwpyEh4ZeC4agbGRBpN4N6ZUjGIeGor9222fHC1hGrN0fYTCKXp6qwjWf2dV+8GozHfMfOF6NTYC1SEXNEfCFfjLEmrNnTKiUpQbBvy8rAqW4brghiGvewyRNj94NTimfVfKAdXNADYF3sphf0N2h2gcUtqhylioGiIB1jV/4qDiduT7HTESoGjllCQ6vHAH/HNRCQ/urVzj8PU0rYcxDEaKhjHg8Ar/QUPSdadsnRwDoUZT1Y6Np9egU896ftx/HEjYE3MBOGkqAe2KpRzBVeEv9viSXJpfWS3Pfi1w2g+WKMRMeQb0zQCGXCfxy6ZCC8MoRlBWTxVYZY0COwFYknVYJ6bV6F/OlvPDCFUeOoOljCKqFXOTz7rehAuyFLiZDsN7oCTXmTVIp5LBQzsc2E3oSR+jPI0dQMlKPYOr4hYZKGurZAXGPALDc21kwBCI5jariLmY4MtEbmh7n3fYIIg6P6Q1NjEwWGBoCpukR9ITDQgBQzGdRNrJaZTG8OlwBHg5V8wj8kqGxGYJmDys+s8DDOL5QSixH4JeLBKxNZ5wNd7IcSEPQ8tnJOB6BossmYwji0JWJgpAhUNRiag/2K48CgJHNIJuhyAuSl8SyGyc0NKWE8fV6F4clK1wWy4bmqiH/ZHHUEM44R+D9unFVxWxE9AgAKzz06k5yVUNW097+ZbZk5NAZqOcjdXEgDUGnP0KGgMKEDpCOenZA0hBUC9iYEY8grNxVNe7b9mmwISKU89ErtoLqtQG3RzCl0NBuF0ckK1yW7FnLurCSxfs/31I+i+7AjLQg+ZWPAureYxDrzZ5TcSfLkbkirmuW7/DDL0EPjDedszBCFTighqBld/Lua67hsrwJegQrtkcw7UHWoqEhlRwBNyJeMWWVmOnYI/BLFvMcQfIewXBkYqMpFxoCLEOgKzTUH5roD03P88M3P1EE//hCP9mtDPAcgf5FrjsYodEd+mpihXF4roCdhGaFt/veXhignhfTzYE0BF5CWcD4gla9gHc7AxDtV8L0YqliDVef9iBrYUOg4BHwhd5r4Sgp9HAEtfIDY4M8jRzBerMHk41nEYui0yNwYvk+ZYxAtJ1puz9CKZ/1lMGoFrKxVA1xCZioHsFh+3PQre7qRdOjMIIz7p2ZjcqhA2kIvCSogfEXpaOgeQNYC06tkBMaiedUiEy5hFQ0R6Dy5eZluSUfIxxXaKiUzyKXoal4BLI9BJyFcl7bnOWg6h4VQ2CVpHrveCtGPMni8SxwNUNwLYHuYr+SXSD1CGYCP5G3sqby0d3OAPM+mj2TLNuGgA+OnwYjk6HRHYbmCGqKA2SCPIKykY1sgHmIwi8eS0SYK01HZkK2h4AzX8qj2RtiqKEJji82XuWrRYUejk5/5GnUAVvMTkNz5iS8wi5yjsD+HJKQmQgqaS5rCkPr4oAaAm+PQEdjE2BPbfJIzHnBR0NOc5Qi1+oX8QgYi76L4XFZrwWpbESvZ28F5B44c8XpyExwj+CwpEfghLM0VN7w8+65+bE/iygxc68ucY6OoTde8NBQZI+glqAh6A1981apRzADtPojz24//kVRvXhbvZHv7nSSsUcwPUMgmtzmVSdRw0OdAEOgliz2b+XnzJWmI0V9rd5DPkvO5yyKLrVXYHze/XIz7sfI4LehAtwKpHoXOu4R+M3NCGOuZM2ETsoQ+MnL64o+6OJAGoJOf7hPeRSwBkYUchllj6DVH3rWVnsRRxepLKKGgMeDo9aH812nVzjBCg3FkyMArBLSOGfo+nG93sWhWlEoX+RG59xfvuv0Ou9FBeXXoBg4v1Z0J4w3mj3Ml/Io5OTkJThEhMNzRVxLIFkcJIToDGNSzEfqQoshIKIHiOh5IjpPRB/xuP+niWidiJ60//2c676HiOhF+99DOo4njJbHlCyODg0Qv3Z+L8pGFoVc5jVhCHgVVNQkYHdgxbuLHnOcy0pVQ/6NO5xqTOWMYVzb7UqrZAJ6DUFgtZaGqiEvxuMq9S50641e5NJRzuG5YuwewVj2xC+ZPlsegfJYLCLKAvgNAO8GcAXA40T0iMfIyc8yxj488dwlAP8QwFkADMAT9nNjHSPUG46cJNkkpXzWaXyKSrs38hVAm4TIChvomowWhaRDQ95VQzmlPoKwUNy0BoFcr3dxx9Ga9PO0GgJ71+l53o3oOYJ2QDJUV3PmJFutPpZ9puiJcniuiKeu7Og5IB+47IlfaKikKR+pCx0ewX0AzjPGLjDG+gA+A+BBwef+MIAvM8a27MX/ywAe0HBMgXT6IxR9XMuSkVVWHw1ymb1YquqVE5BF3BCoDd12ksUe555r3kSpSAoqY+RYg0CSDQ0xxnCt3pVOFANjWYxdDb0Enb7liQWVj0ZZsNv9oW/VUFyhj+12H4sVsUIMP47MFXC93o21idNrRrQbXflIXegwBMcBXHb9fsW+bZIfJaKniOjzRHRS8rkgog8R0TkiOre+vq50wN2hiWLe+63zlvuojAd6SxiCSuE1YQh4aEjFIzByGc94ecnIwmRRO1xHoeebDwJJsoPbmkc9imQI9OYIrM/LM0mvkCPoBISG4qqK2WoNnLxaVA7PFdEdmLGWE4c1OerKR+oiqWTxfwJwhjF2D6xd/6dlX4Ax9jBj7Cxj7Ozq6mrkAxmMLJfNTxK4mFf7cLoDEyYLTlxOslwxtA4hkWW3M4BhDxMJwhlBGHFn3Q1YOPjn0YtghNv9cA+sWsjBZMlqu/AKl0MRat4LuSyK+YwWQzAuH/XqI7A+8yjnpTs0fT9PFU/DD8YYdtp9Z3BPVLhhjlNziG+WgkLEszSTQIchuArgpOv3E/ZtDoyxTcYYD4L/JoC3iT5XN+Nadu+3XsxHr14B3M1N4lUNS5Xphob4fOVJ7aVJuJsb1SPoDvw9MX57lLBc0M6UU+XeTIIzCVSbn+ZLeiqdOoMRchnyTKYb2QwyJJ8jGG+ovD9PXT05bhq9IYYm0+IRAOMejzgIkvXgqHTT60aHIXgcwG1EdBMRGQA+COAR9wOI6Kjr1/cBeM7++UsA3kNEi0S0COA99m2xwcM+QTsZFUGqcXOTTGjIQGcwmpqbWO8MMV8KP16rMoci6yJ1BgEeQS560rIzMEOHvjj5jQQTxny27rQNQVB1DxFFGpsY1BMC6JlDPQkX4VtQ9Ai4h3YjRtXfpkBJszUmdDYMgXLVEGNsSEQfhrWAZwF8ijH2DBF9HMA5xtgjAP57InofgCGALQA/bT93i4j+ESxjAgAfZ4xtqR5TEHyhKfgZAkPNEIhcAJO4ZSZOGOXIfzsqIjpDnLIRvbqnMxgFhOSilzF2B/5SB5zaND2CiF2wugxB2PkpRejhCOoSt27PgMjq2dEF95qXFJPF3DDHWak3zhEEnfecM6Nj2igbAgBgjD0K4NGJ237F9fNHAXzU57mfAvApHcchQm8YcgHn1EJDfAcUVsXixi0zcWJxOoZAtDa7bGQV+giCDIEdGoqYI/BqEHSjWvoahfVGD9kMRY5pz5fyuKphiEo7QBMIiBYO5bkcv89TdcaEF3yGs2qOoFLIoZTPxjoHpBUwvc05DiPrzDWeNgeuszioqQlQnyUaxSNYmrLMhMhQGk7ZyEbexXQDQkP89kihoZCFDlAvfY0Cb36S7SrmzJcMLbIYYTmUKOHQsFwbYO14dcqrczVW1RwBAKzUjFgnA4aVjwL2pup1lCN4TRHu0qqVjzpTuCRyBMtTlqKWCQ1VCrnIu5igZHFBwRB0BXIEqqWvUVCZpAXoTRaHhoai5ggCpB7KRlZraMjxCDQYgtVqIebQkJ0rDAkNJTEgR4QDZwjCklylfBZ9uyIiCmPdG4mqoer09IZMk6HeFTcEpXz0XUzQghQ1NDQcmeiP/MsYOVXF0tcorCvM1gX0SVGLeATyOQK76CLAwKjIhnix1eojlyHUJLxtP1aqBWw04vu+tfoj5LMUqIlUzGVSQzAtnNCQX0OZwRekiLo3Idr4XtQKOeSzNJXQUKM3BGNiYzUByyOInCzuhyeLe5Llo92hf9esm4pi6WsU1hs9HKrJN5Nx5p0Rm2rH3Bn4a2sBPFksZ2zEQkNq+bZJttt9LJSN0DJnEfiI2LgQURfQfX5UOICGIDw0BERvPIpSPkpEdi9B8npDPAYtmiMoGdnITTC9oUDVkKSRcbpmQwyBkcugkMskVj46Mhk2W3210JAmKeogAwzYOYKIoaGgHW8cHoFqxRBntVrAdruvZfCPF0FjKjlRynbj4uAaAp8LWEWWF7BcQiObgeGTjPZjqVKYSnexqLwEx6p0iO4R6E4Wd/vBfSFuasVcYuWj2+0+RiZTMgR8uJGqRlKoRxApNOQvIDh+3ejDhrzYbg2UK4Y4K7UCGIsvHNvu+SuPcgr5LHpDU/sUtygcPENghxJ4a/0kpYghCk6rJz6LwM1yxZhKaEjWEFiTxOQXU8ZYoCTBuLNYbocWNHRlkmohOQVS1a5iYJzgVq10CmrkAyxvSnbBDisfBeJJFuuoGAKAVTsvF1dTWUtA9mS81sTjlchw4AxBTyBZDIwVG2URcQm9mJbMhLwhiObuD0YsUJIgamcxNwRhOQLAlqJOyCPQYwj0eATtvr/sOhCtfHRcNeS/hOgODVnKo5o8gmq8TWVioaHoOk+6OXCGQDg0FPHDEXEJvXitGIJKIYehydCPuHP3M8CZDMHIZqSrhoKUNSepFnKJ5QhUu4qBsUegkiwe2Z9VOR+sedMZjKSUWcNybYB6T44b02TYbg+wpCk0NO4unl5oSGVMqG4OoCEwkSEgn/WuPCgpqDECYi6hF8sVA83eMHJIKiqyhmCsKim3OIV5YgBQyMuX04nEqjnVQj45j6A5G6Gh8TCg4OqekcnQl0icdgVDQ21JA+NHozvEyGTOLGdVuEewHlNoSGRKYTFiXiwODqAhsCoo/ErQVD+cVtTQkB2z5N2TSbHbGSCXIaHQCjDuj5DtJRCJ5RejhChkk8UJegRlIxtpU8AZ9z4oGIKAMZWcQk6+h6MzsIoisgFd02UjJ21g/Nhqc50hPR6BIzMRU2ioLTCTRLUwRScHzhAECZ8BalIHgCU2FSk0VJ5OUxnvKhatzXYmT0l6BEFjKjkqsWqhHEHCyWIVbwAActkMykZWKUfgGIKARYl/Jj2Jc98djFAImV/heI8aFDZ1dhVzVmvxdRdb64BYsjj1CKZAd2AGJrjUy0ejhYb4TmdahkAUvuDKDt0Oa+Tj98nmCDoyOYKEk8Uq+QFOrZjTExoK8sScRL34ue8Nw2dAOFPKNCx0XIJaV44AAFaqRiyhof7Q6nYPm0kyjj6kVUOJ0w1oagJ0eATRQkPL1bEUdZLUJQTngOizVrlhDTr3xbz8vGgRT4NTLeTQH5mJ5GFUdYY4VoJbwSMQ8JiiJC3DmtT2vK6GElK+QdLVRwDYMhMxeAQ8fxbWVFpSLEzRyYEzBL3ByHcWAeD+UkSz0iIuoRf8At9O2COoR/QIZD2mboj8N2BLgMvmHiRzBEAyMwl0hIYAq4RUxSMQqaoa6zzJhIb8BQQ5FY3DaXjllMy1GoYVGtL/fWsKKI8C6oUpOtFiCIjoASJ6nojOE9FHPO7/BSJ61h5e/1UiOu26b0RET9r/Hpl8rm66A9Op3/WCJ86ifDjcJQyaU+qHpaEy+6GhqMnirkjSMp+J1FBm5IKTlhzVUZui9IYj7HYG2kJDKuWjIlVVPDQkc813ZUJDGgzBbmcAorEx18FKtYCtVh8DzTITYYPrOa+rqiEiygL4DQDvBXAXgJ8gorsmHvZtAGft4fWfB/BPXPd1GGP32v/ep3o8YQQNRwHGo/uifDgic0r9yGYIC6V84t3F8jkCxWRxSFhOJmHJj0PEGwCSm0nAd5mH5tQNwVwxr5Qs5otwUGiIN5vJeQTBnjXgDg1p8Ag6A1QLucizHbxYqY0HQumEh03DFAZeV4YAwH0AzjPGLjDG+gA+A+BB9wMYY3/EGGvbvz4Ga0j9VAjLEQA8aSn/4fBdcpSqIcBKGPPqiCRgjKHeHSacLNZcPhoin+CmmtBMAh1dxRxVfSSR8tEoyWKROdE65xbLblhE4DITuvMEIkNpALeKwevDEBwHcNn1+xX7Nj9+FsAXXb8XiegcET1GRO/3exIRfch+3Ln19fXIBysS24yqCtiKMJ3MzXLCwnPNntWkMycwuJ4z/nLr9wgiVQ0NTOEeCC7iFneOYNxVHF2CmqNaNSQkDhfBI+gNRoHVd4A7NKR+vmVzWSIsVWLyCPg6INpHMAMegb6AmwBE9DcAnAXwg66bTzPGrhLRzQD+kIi+yxh7afK5jLGHATwMAGfPno3cqtgdjAKnKgGWqxzlwxG9APxYrORxcaMV6blRkO0qBiw551yGpHd5jiRBQIdrlNm5ItUrnNeiR1At5NEZjDAYmchn5fdtbRGPIFKyOHw8qE4JhTg8grhKtkUG1wNWODiKrEoc6PAIrgI46fr9hH3bHojofgAfA/A+xpjjizHGrtr/XwDwNQBv0XBMvgjFNiPmCESTRH4sVQqJJoujGAIgmphYdzACEWAELGbRQkNDodJRwJUjSMgQ8JJgFVQrncI0noBoZYwdgQ2V7mTxXFGvIeAjYnVXDrUkcoVRw9C60WEIHgdwGxHdREQGgA8C2FP9Q0RvAfD/wDICN1y3LxJRwf55BcA7ATyr4Zh8EQkNRZ1b3IwwptLNUiWP7fYgMX3yXcmhNJxKIed4P6LwWQRBHcxFW59dRpsmbAyjm6TKR9ebXSxVjEg7+ElU9YY6/REKIVVVURqbhL5HOd5ZrH6+4/AI5kt5ZDOkfSCUaPkooFeYTwXlK5UxNgTwYQBfAvAcgM8xxp4hoo8TEa8C+qcAqgB+b6JM9E4A54joOwD+CMAnGGMxGwKBRpgIIQrAVTUUMTS0VClgZM8QToJ6RI+gZIuJySCapAfk9Nk7A1PYIyjYYa2mQoOWCLq6ioGxFHXUayJscD0QrWS6OwiWtgYsRdlSXo8Udb07cCa26SKTISyW89q98HZvhAyNz2sQUZoo40BLjoAx9iiARydu+xXXz/f7PO/rAN6k4xhEGI5MDE0WuoMs5rORLg71ZDHvLrZms8ZN1NBQxchJ7/I6/fAB8+6ZBKJx/65E1RARoaqYfBVhvdHDSk3P5zenmNfo9Ecoh5wfIkIxnxEu3TVNht7QDA0NAWMFUhV6wxG6A1O7RwBYeQLdBRpceVREv2tWxlUeqM5iZzpZWNWQETFHoFg+ygW1kuoujmoIrLnFUTyC8JAcILczbUv0EQC28FzsoSF9HkFVMTTUFti5A3L5md4wvBSYoyP0ETWEKUIcc0BavaFQWAiIViARBwfLEAgkzgBr6lK0ZPEQRGJyB164PYIk2O0MkM2Q8EXLqUT4cncFqnvG1SsSoaF+eOjDTRLDaTYafUfvXhXVKWVdwRyKTDjUKUkNMewALyxQO988hDmnsauYsxxDgUa7Hzwj2o3VRPn6qBp6zRA2nYxTilw+OkLFEHMJvUhagdSqxJA/3nIhJy86JxDCiSL415XIEQDxD7Bv9YboDEZO16oqqsli0UVJpkBCpBKJUzLUB9hH9VxFWIphVnhTyiPIpB5B0vALXURHPWofQdSwEDANQyDXVcwpR4hrisT9ZVvuhyNL20k6NBSjR8C7VPV5BNwQRE8WiyzYhZz4giTqWQPRrpVJ6h39gnOcpYqB3c5Aq95QS2A6GSfqplM3B8wQCIaG7N2R7Ii9ZsRZBO6/WzaiJaqjELUkr2xk5ctHBSQJCpKhIZ7zkTIExXxChkBPsriQy8LIZZTKR0U8Apm8mMhsCY6OAfZxegS810OntEurPwqVoOYU02Rx8sgYAkCujBGw6qWjlo5yFsvJDbHflZxFwCkZOeldjOURiCWLRcvpHIll2RxBjKGh9Yb12enyCACgVoiuQCqqxVTMiRsCmdBQuSB/rUwSd7IY0OuFW8lisWvS6p1JDUGiODuZkPpengSTtdRRx1S6Wa4mZwgaCh7BYMSk3GmRMk+nfFTwvHftWQRh5ZFurLnF8fURbGgYWj+JpTcUXx8BwD0Csc+zJxkaUk0Wx+oRcL0hjSWkUqGh1CNIHlGPIKpGSktgYHUYcZSz+aESGgLkpAOEGvkMOY9AZjoZp1rIoTswtWvQc7gh0DVkHbAqh6KGs6yqIb1SByJDhjglDaGhemeAspHV0qk9yXgyoM7QkKQhGIykw9C6OViGYCi2cETVCZfZCfixlFBoiDGmYAj4TAK9E61ky0dFFE0n4dUcsjkOUTaaPSyW81oXLZXeB8sjEOhwzcmUj4rnZsqa+gji8AYA/aGh4chEd2AKbwiL+QxMBgxGqSFIjHFoSMwQyHsE6qGhpDyCdn+EocmUPALRElLGmJjERE7OAIuMYZxEtUErDJ09BBwrnCV/vAPBTnrAyrMIG2Bn/rRYsnhoMvQl821u4hCc4yzakwF1eQSyTaWzIkV9wAyB2AUcdYB91MH1bpaqBjqDUexxQ5W4q+zkqf7IBGPiSXrhqiGBweyT1GIeV7nR7Gk3BFFlMWSSujLJYrnQULT5FW7i9Aj4ZEBdwnOyUwqjzIKIgwNpCMRH7InvYkyTWc07GkJDALAV86QylUoM2aHkPKkbJsIlK37mDK6XyRHEPJNgo9nT1kzGqRWiJYudOdFCyWKJHIHAtDmODinqencYS8UQR6cXLqs3FnXTqZsDZQh6glpDsiEKAI6wlmjZmB9OzDLmSWU6PALRXZ7oDjKTIRg5cfEzlRxBXN3FG82+th4CTtUODckmFEWG0nCKOSuEI5JEF/WsAU2GIEaPANA7GbDZk1sH0tDQFBAZjgLASa7JfDiqyqOcJUdvSK9G+iQqhkD2y92VWLBlhgJ1IuQInE7dGDyC7mCEZm8YQ44gD5PJLxYyhlKmQEL0e+T+2yqhTqvfJb5hijo9Aq7KK9pQNitziw+UIej0ralKYdo6Uay06phKDjcEcQ+xT9YQiIcSZOYWdyLkCKoxzi0ezyrWnCOI6MU4OQIRrSEnVi3mEYh8j4DoM645w5GJZi+aFIooS1V9ekMyQ2mA1COYCiJSyICrs1jKEKiNqeTwBpe4h9jXFXIE4/JRwdCQRChBZlAHzxFEqRqKo6nMkZfQNIuAw70Y2e7irlRoSHxusWiTGuAKI0Zc6HiSPN7QkIHtdh8jDZMBZcZUAq5hTFNWINViCIjoASJ6nojOE9FHPO4vENFn7fu/SURnXPd91L79eSL6YR3H40dXQO8GiDbD1bkAJHanXtSKOWQzlIhHQDSuopEhamhId/VKZzCCETKGcZJyPguieDwCPvs2jvJRQD7BLRMakqle6Q7M0O58TlmywmySOLuKOUsVA4wBOxq+c86GUNZQvtZDQ0SUBfAbAN4L4C4AP0FEd0087GcBbDPGbgXwSQC/bj/3Llgzju8G8ACAf2G/XiyITrNy3DWJqiFdOQJrfF78vQS8NjsjsYhy+DkUNgSCSXr+GPF6drmhNIB1fqtGPDMJdCuPcqKGs2Q6r3mBhMjmR2aCnGqyOClDAOhpKjvIVUP3ATjPGLvAGOsD+AyAByce8yCAT9s/fx7AD5EVYHwQwGcYYz3G2EUA5+3Xi4XuwAwtHQWs2mIjm5GaJao6uN7NUiUfe2hIpTY7k7FGGwpXDfGyXYHRhgUJCfDOQHwAiJtqTDMJeI5gWXfVUCGaFHVHIjRUks0RCBqCcSl2tPMdp+AcxwnH6jAE/ZHUcCoZocVzL2/hv/vdJ/DqTkfpGL3QYQiOA7js+v2KfZvnY+xh97sAlgWfCwAgog8R0TkiOre+vh7pQA/PFXDLakXoscV8Rsqdbff15AgAa4eSRGhIZZdVlhg4IhMasiY2iRoCuVkEnLhmEmw0e5gr5oQMngxRK52kQnJ58RyBiFwIpyzZczLJa9EjKOezwp52UaJq6PJ2G198+pq0KrII8dVkaYYx9jCAhwHg7NmzkbI6v/ZX3yT8WNm5xbpCQ4C1Q3nuWl35dYJQNwTiGjJdmRCFVGhIfGfqphpRsiGMOJrJAFeOIMbQUCGm0JBsGHGSejd+Q6BTeE5Wb0wmNCQzB0IWHa94FcBJ1+8n7Ns8H0NEOQDzADYFnzsVZIdK8ySRjCSyH4uVfCI5AlVDIF0+KpBglKoaGgyluoo5cc0kiENnCBhvLqSTxX3x8y6TLBadegZYYVaVcYxJeASLZX1NnK3+SGoGeD5LyGZIOCQHhGulRUGHIXgcwG1EdBMRGbCSv49MPOYRAA/ZP38AwB8yq03yEQAftKuKbgJwG4A/03BMysg0NgFW1VAxn0FOg+rkUqWA3c4Aw5ikkgGrfFQl7loycsIlgbFVDUkMCXcTVcQtjI1mT3sPAQDksxkU8xn5HMFgBCMrdk3KNpTJhOSsMGL0HIGRzYTKk6hg5DKoFXNawrGt3hBliTwhEaEoOCaUh4TCRu1GQfkV7Zj/hwF8CcBzAD7HGHuGiD5ORO+zH/avACwT0XkAvwDgI/ZznwHwOQDPAvgDAD/PGJv+lAZwj0Cuaki1mYyzzMvZOvEMUGGMoR5xXjGnnM86XZRhxNdQJlYOPImKrHMQ682ednkJTpSZBCJT4TjjEIXIztSUWoxK+egzCfiGRaR5TYVlTUPsmxHWAdG5xXF6BFpWLsbYowAenbjtV1w/dwH8mM9zfw3Ar+k4Dp2U8lnhSVmAnlkEnEXeXdyKJ9TQHVhD31UMQaWQxas7YoaqOxw5LnAYMiE52Z0pp1rQP7e4Oxih0dUvL8GpRQhndaRm54oni3sCkuJuVGYSWBuW+FOZixVDiwJpuz/E4VpR6jlFwehDd2DCyGYilXyHcaA6i2Uo5mXLR6OFKbxYruifmuRmp2O97kJZLTQks2CL7mKK+Sz6QxOmQJdnpx/RENihIZG/IQr/rOJIFgPREtwyHcAyfQSy571sZB2dflnilKB2s1wxsNVS98BbPXkFYnFDMIolLASkhsCXkuQupt0fSiWJgnCSVzEZAh0JOJlZtKL9G4BL3kOgRK7dj5Ys5t3UooN1RNhoxNNMxomS4JZJ6nLlV6HQ0FC8fBTg36XoOYI4ewg4S5o8gqbE4HqO6Nzi3tDUXprMSQ2BD/JVQ0PlWQQcXs4WlyHYaVuGYEEpWZxFuyd2fnoSsWrZevZIVUMxzCQYdxXHlSOQz2tYoTPxr3gxFz6TYDAyMTKZVJxapudkkqQ8gkVbgVR1dnA7So4gLzYdTuZ7JEtqCHwQddc4VtmYHmudlEegstMqG1m0BYdudyRi+aKdlsORleeI2lAG6NUbikteghMlr9Hpi4eGALHeGZneBPfrRs4RdJMLDQ1GTGlzYJoMrQjDqQqC5bUi416jkhoCH0StNEdn1ZCRy6BWyMVnCLhHoJAjqBRyGJkMfcFBJqIXsOgAe65fFDVHAOidScAF51ZjyhHUivJTymQMMCDmBYtO+XNTjlg1ZJos9qE0nCVbZkLlOxd1OJVoqXp3YMZWRpsaAh9K9pdC1FXUWTUEWBrpsYWG7GSxyhdMZqCGjCSB6HQ4np9QyRHo9AjWGz1UC7nYdmxcFkMmdCGTIwDEejh6Es2BHKv5UP5cN/tDmAyxDa53o6NAox1RXUBUxUC2WkuG1BD4UMxnMDIZBqPwLx5jlkuoQ3COE6cC6W5ngGyGlJLbMqqSMi4tH5ASujPtq3sEunMEceUHAMsjMJmcVINsdU/RCPeCnWE3Eq8rU2HmhnuuSeUIAKtkOyqO8KRkZKCYE+0jkEvSy5AaAh9kVAF7QyuBJlqzLcKyxvF5k+y0LXdbpUlHZm6x5dLKlTHGEavmxJUjiCs/AEQzXjLlowCEOlxlusQ5ZSOLwUhsHrIbrjOURNWQDo8g6nAq0RyKTBm2LKkh8MHRXhH4gLjgnK7yUUDvHNVJdjsDpYohYLzrEdmhRqkaCpvYFGVwPadm6/vrzhHEaggiSFHLegQlI1z5lXsMsn0EgLzwXBI6QxwdCqTj6WRy16SlryWWa0v7CBJGpsHGEZzT1FAGjA2BajmbFzpqs6VCQ1LJ4vhzBPyLqt0j0Dyi0g2Pk4v2EpgmQ28oJ8EhEqIYe2JyfQSA/JSyeoKGoGxkYeQyaoYgamgon0HfjioE0RuaqUeQNCXBWDUw3gno9gj6IzNyR2YQu52BUsUQIPfl7g7FyzxFQ3JdBY8gl82glM9qm1s8GJnYaQ9mKjTEz59UaEhA50lmyBCnEnGA/bjMOX6JCSJSDsc2oyaLBTc/Mo2ZsqSGwAcZES6+E9DVUAa4XNUYJpXxHIEKMgNHZMTPRMtHucRyFI8A0DuTYDOmWcVuZPMaMtPJOCLiZzKzJdyvC8x2aAhQD8fy9ye7IRSVAE8byqYAj8WJ7HhbzgWgNzQEAJsa2t4n0ZEj4KGhMJkGxphUGaPo7kglRwBEE3HzI+5mMsCdIxA0BBHOT0GgfDRqsth9TKLUO0Pl6jYZlhQVSMcbQskcgWAYujscpRITSSMzOUjndDIONwS6R1aaJtPSrVkWDA31RyYYE184nNF9YYZAIUcA6PUI1m1DsJpEjkBY+ttesCV37mFJepkhQxyVZPFcMRe7BDVnqWJMp3xUwCPgpexRNz5hpIbAB5mJTVGTREE4HoHm0FCjOwRjwHxZbdESDQ3xhUO0I5I/Lo56djc6ZxLELTgHyCe4OxH6LIq5LPqj4KRlJImJfM4+JvkcQRKloxwdoaFiPiMkt+5GJAw99sTS0FCilAR3psBryyPQ0VUMWBckUfiXuye5YBMRCrlMaBljlIXOjc4B9hsJ5AhkE9xRQkO8Eiho8xNlOIoTRhQUKeQkJTjHWSobaPaG6EnIz7uxlEflj5cv7kFrjUrfjAhKhoCIlojoy0T0ov3/osdj7iWibxDRM0T0FBH9Ndd9v01EF4noSfvfvSrHoxPREAUwzhHoLB+tFnIwshntMwl4Ak41R0BEKOXDdeZlppNxRAT/2oMhCjn53RenWtSbIyjls1o3Al7UJI45SpmnyDXfGYxg5OSGozihIdkcQUKCc5ylKu8ujlZN1uzKS1ADYnItcU4nA9Q9go8A+Cpj7DYAX7V/n6QN4KcYY3cDeADAPyeiBdf9v8QYu9f+96Ti8WijKFk1lMuQVkEoIrKG2GsODe1oEJzjiMgL8zJGGZdWqIxRUllzkppWjyDeHgJOtZgTzhHwRUW2jwAI9gh6A1MqPwC4S41nOzS0rFigEVVvTKR3xgmxzmho6EEAn7Z//jSA908+gDH2AmPsRfvnVwHcALCq+HdjRzZZXDay2pNaS5WC9tCQzpK8ssDAkSj1/qV8NrSPoN0foayQOOPJYh0Ne3HLS3BqEnkNft5lZE/GSUt/Iywrbe0+Btlkcb0zSERwjqMq/95UNARBnphK34wIqobgMGNszf75GoDDQQ8movsAGABect38a3bI6JNE5PttIqIPEdE5Ijq3vr6ueNjh5LOEDImXj8ZR4qZroLabHW4ItHgE4fLCUUNDYee9MxhJVcRMUi3kMTKZlNS4HxuNeOUlOFUJKeooOYJiTiBHEEEBM2tPP5PpLGaMJZ4jUB0I1Yo4pVCkMCVK2a4MoYaAiL5CRE97/HvQ/Thmba18t1dEdBTA7wD4GcYY//Z9FMAdAN4OYAnAL/s9nzH2MGPsLGPs7Opq/A4Fj4GLJovjiA8vxqA3pLNtX6YBSSY0VBDQXrEGs6t5BADQ0NBdnJxHID6cJmpDGRC8IHX60YTPRDYNbroDE4MRSzZHoDiTwMoRRDAEQlVD8hsqGUKPmjF2v999RHSdiI4yxtbshf6Gz+PmAPw+gI8xxh5zvTb3JnpE9FsAflHq6GNGVCc8ylQiEeJQIN1p91HKZ7U0plSMnFMx5Qc3FDJ/T2RkouzQlUncMwkO1SK/DIYjE1vtPlZjlKDmVCXGVTrltZqTxd2hGckTkx1Ok3RXMf9bRCqhoVGkDaFIheKsh4YeAfCQ/fNDAL4w+QAiMgD8RwD/mjH2+Yn7jtr/E6z8wtOKx6OVgqBOeCvCwGoRFssGGt0h+gLKhKLokJfglIRCQxGSlvlwFUzZoSuTyHbq+mEJAwIrMU0mc1MtiCeLu4MRMgQYWZmZxWL17LLJYoB7j+LnOkmdIU42Q0pzQKKuA7zIJCh01ongWcug+qqfAPBuInoRwP327yCis0T0m/ZjfhzAnwfw0x5lov+GiL4L4LsAVgD8Y8Xj0YqwR9Abap1FwHHK2TQmjHUIznHKAqEhZ6KV5qohXaEh1cqh9QTkJThzdoLbDFGpBMYS1DIFDLzUNGxnGqVaS3aA/TQ8AiB6U9nItKRUongEGbviMKhAIu4cgdLqxRjbBPBDHrefA/Bz9s+/C+B3fZ7/LpW/Hzeic4ujJonCWLUXl/VGD4fnilpec0djSZ5QsngofwGLVA2phoai6Pt7sW53FR9KwiMo5sCYVY8fdr21IyzYBYHy0ajDUUS8RzfTNARRCjT4hiLqOlAysoGzT3jOLB1VOQWKebFKh1ZPbXfqBx+EznedOtA5DLyUzzlzWv2IEtsUaijrj1BS8MJk9f394IYgrqH1bnjXqkieoNuXD51xwxEUlpOdesapCE7h4kzNEEQMDakOpwqbBdHtz3Zo6HVNUaJqKG6PQBfb7T6WFHWGOJVCFu3BKLAWP67y0a7k9K1J+AJTVzQENxyPQI/HFsQ4nBXuxUTxmMTq2aPNzbVCQ/I5gsQNQTWa8JyqzEwpZF701MtHDzIlgZ3pcGSiNzRjyRHwbtUNTR4BYwzbrYEzqFuVkpEFY9bkJD+6gxHyWZKSgijkM4Hlo4wxtAd6cgR8wYnKeqOHWiEXmwaMm5p9zCLGK8rOvSgg+NftR5NCFp3Ly+GfSy3BhjLAqtTbbveF8jBuGqoeQcimszscIZsh5CWS/zKkhiAAkWQx19qRnVMqQtnIoVrIafMIWv0R+iMTSxVNOYJ8uLxwdyA/Xq+Yy6I/NH2/jIMRw8hkSotvNkOoFXJOX0VU1hu9RMJCwN6S1zDaEUJDuWwG+SyFLkjRksVZKa2hemeAWjEXWUsqKotlAyYbN16KouoRWAUSQf0b4lP+opAaggBEZrjGMbjezWqtoM0QcJd3UVNoqCwwgrAzGEmP1+MLmJ+nEUVHx4u5Ul7ZENxodBMzBDKVTp3+CJUIC3YxYDjNcGQ1eUVOFkuojybdVcyJ2l2sug6ERR+sju74luvUEAQg4s7GMabSzWpVnyHY0m0ICuEeQZTxeqV8sNQBN86qCfq5Uh51DVVDiRkCCY+g1Y9W0lwM8IJ5uE5G0ZRTzufQH5kYjsR6YqZlCJwRsZKGoNmLNqaSE6Zi0B3EN50MSA1BIEUBqYM4xlS6WakZ2nIEvB9BV45AZPJUFG2asAH2qmMqOfOlnHKO4Eajl0iiGBjHy0WMV9Q+i6AeDpWEpawU9bQMwVh4Tu4717Q/k6gh4rACid7AjDUPlRqCAIr5DPrD4IlNjkcQQ7IY0OsRcEOwpCtZnBcIDUWo7nGqV3y+GG3FMZWcuWIe9U70qqFWb4h2f4RDcwl7BAKhIa6IK0tQaEglJDeWop5tQzAODUnmCJxcYfRkcaDqa4yD64HUEAQiIkWdRI6g3h0KdTiHwS9uXeWjInOLI1Wv5IOrV3TprswrhoZ46ehqAl3FgJXgLhtZodBQZxBN/ypISLAXoTmQIzu3+DXnEfSGyGejzyQpGcHJ4qiNfKKkhiAAETXGVp97BPF8SDz+rCM8tN3qW9UyRT1GqyKQI4gSoiiEhIb439ORI1AJDTldxQl5BIDYlLL+0ErqRpnXEOwRyA+u54wNgZgHNi1DUMxnUTGy0t3FXIE46kyS0IayiI18oqSGIABugYM+INUkURhOd7GG8NBWu4/Fcl5qzGAQJYGqoXaU0FCI1IGuqqH5Uh7t/ggDwQTmJDcaXQDJdBVzRGYt8/MTxSMoGll0/DyxIR9/GSU0xAfYh3sE3cEI/aGZ6HQyN1GayprdISoK4WFequ7XnNkZmGmyeFoURTyCGAbXu+FiZhsaRlZut/raKoYAsT6CKKGhsdSBT/mopkHec7xBK6JXcKOeXFcxp1rMhyqQci81WvloxldiQkuyWMAQTKurmLNUKUh7BE1FdYFiPguTAX2fTUmU6jsZUkMQwHiotP+OsdUbgij+0JAWj6DV11YxBIwXYt2hoWJY+aim0BCf0hZVZmK92UMuQ1hIcMGyxlUGGy7+eUTbuYcni6PkZmRCQ1M3BOW8fB9Bf6jUVOpUyvmsNV1FkcUwUkMQgLMgBShhNrpDVI3oscEwliv6DIFOnSHA0lEPG+epFBqKuXyUC89FzRPcqFs9BLpCbSKI5AjajkcQITQUEKseK2DKLxs1Lpgn0FQ2dUNQKciHhnojVBXkMEoCJdNx6QwBqSEIpBRSxgjEN6aSY+QyWCznsd7sKr/WlkadIcAa51kxck4oYhLGmB0akjs/xRBPTGXH68YRnotoCNabvUTkp92I5AhUkumBfQQKuRm+Ww6baAcAu+3pGoLlqiVFHSSmOEmzO1DqJXJmQfisNVHF/kRRemUiWiKiLxPRi/b/iz6PG7mG0jziuv0mIvomEZ0nos/a08xmBhE1RlWXUITVWgEbDbUcAWPM8gg06Qxxgrqv+YIi30cQHBqKMn3Li7mSeIOWFzfqyclLcETGVXKPIHqy2M8jiG4IZOQxpu0RLJYN9Iam1PyEVm+klCwOKkxhjFkaTzPsEXwEwFcZY7cB+Kr9uxcdxti99r/3uW7/dQCfZIzdCmAbwM8qHo9WRMpHVV1CEVaqBeWZBPXuECOTaU0WA8HDadoRS2vDOovb/RHKGsJxfKGJGhraaPawmmCiGLC6i5v94CllrZ6CRxAg+KdSrVXIZZHPktD8h2kbguUIMhPN3tAxdlEIKkzpj0wwBmnNLhlUDcGDAD5t//xpWHOHhbDnFL8LAJ9jLPX8JCgKNJSpuoQi6BCe4zFPXV3FnFLACMKo1T2FEDlkXfFSniOI0l08HJnYbPUT9whqBWtKmV84DlBLpjubHw8j7MyWiNg0VS3kxEJDzrziaeUI5AzByGRo9obO9RSFoAH2PIE8yzmCw4yxNfvnawAO+zyuSETniOgxInq/fdsygB3GGL8yrgA47veHiOhD9mucW19fVzxsMUoC5ZGqLqEIh2oFXK93pWKWk+jWGeJUAoaSR60yISIU8/5ljKrzijnFvCW7HMUj2LSH1ieeIxAIsYybHKMki/2NcHdozZbIRQzJVYvh+Q3AMgS1QvIS1JwlSQVSHqpTadQM2nQ6/RsxGoLQIyeirwA44nHXx9y/MMYYEfmtVKcZY1eJ6GYAf2gPrN+VOVDG2MMAHgaAs2fPRl8RJRCpfVatHxbh8FwRvaFpD56PtpA7OkOaQ0MlI+vr7qslLYPLGHV8KYgosszEuIcg+WQxYC8+896PUT3vgPeC1OmryRxUDDFDUNc4VzsK/Dsi2kvArx+VYx7L2XgYYKd/I75kcegKxhi73+8+IrpOREcZY2tEdBTADZ/XuGr/f4GIvgbgLQD+PYAFIsrZXsEJAFcjvIfYKOQyyGYosPa51VeLDYpwdL4EALhW70Y2BJtNvRLUnLKRdRbFSVTKPIPKGNuDkRNTVWWuGE1mYhpdxYDYlLJ2f4gMIZLujSMO52MIVCq1agKJbmB68hIc7hGIlpA6hkBhHQiqUOwoNPKJompiHgHwkP3zQwC+MPkAIlokooL98wqAdwJ4lllxjj8C8IGg508TIkvkq+VT+8wYs1rLY/YIjsxbi83abvQSUt6ZzMdf6qJs5NAOCw3FUMYYRUfHi6jDaa7bxu/wXNLJ4vDQULtvhSujJNMLAfIe7cFI6VoXKX0Fpm8IaoUc8lkS9wjsHJNKjqDIy0e9zrumBsogVA3BJwC8m4heBHC//TuI6CwR/ab9mDsBnCOi78Ba+D/BGHvWvu+XAfwCEZ2HlTP4V4rHo52gBFdvaGJoskRCQwBwXckQ9FAxstrlsoPKR8cXcIRYdcCgjiiyFX5ENQTXdjvIUPIeQZU3ZgV5BL2RMzRIlqBKuU5/qBSSq0gki6dpCIgIi2VDWIG0oSE0FBaSA+KTugcEQkNBMMY2AfyQx+3nAPyc/fPXAbzJ5/kXANyncgxxE1QeGbcENedQrQgiNY9gvdHDSgyLViXg/KiEhiqFnK+BafWHOGWUpV/Ti/lSHq9stqSfd63exUq1ENswcT/GyWJ/49UejCIvGkHJ4lZPLUlfK+ZCdZKA6RsCwKocEp1JUNeQLA4KDY1nnsyuR/C6p1Lw75xtxiw4xzFyGSxXrMqhqGw0e46AnU54+ah33Xn0ATKWAfZJQvdGqGraHS2W89KDygHgWr2Ho/PJhoWA8WITVI/fjjiUBgjembYVPbGKIeERlKdrCJar4h4B9yhVQkP5bAZGNuM5wU2XyGIQqSEIwcoRBBuCuPsIAODofBHXlA2B/sbtckDduUpsM8wTixr6mGSxbGC3MxCepcu5tttJPD8AjPWDAg2BQnltcLJYTWq5WrQ2DUET/7qDEXpDc+oegRUaEssR8M9CtWikXMii7bHWvBZyBK97rByB34KkNp5OhsNzRVxTDA3FEc8OKrFVqXYo+2gYMcasSi1N53ypYoAx+e7ia7tdHJmCR5DNECpGNiRZPJTWd+KMZ0HsN4wqBgYQG7VZn3JXMWe5Im4I6t0BykZWOUxoldcGbajiW2dSQxBC2cj5hiiSyhEAVuVQVI9gMDKx3R7EEhoqBwwc6fRHTgmu/Ot6J6F7QxMm0/el4A12vM9ChHZ/iHp3OBVDANgyEwEeQbM3RC3q7NyQ6hWV8AT/ngSFh3ZmxBAsVawRsSJDi+qdgVJYiFMpeIdDOzFPQQRSQxBKpZB1BlNP0kjQEBydL2GnPYg0u5jvbOIxBLaqpMcFrLJwVHw8sXFeRs+XYqksP6yce2ZHphAaAqwQRCMgWazS5Mi9N6+u7nY/eu4BEOuKjksKRRYuzijSS9DoDrWMf7W8YI9kcd/q6I6zMCE1BCGUAxJccU8nc8Pj0VHCQ1ynKJ5kcXBoKGq9f8kuH51MQrd5OE6bR2B94WUExrhnNjVDUAieSdDsRm9ydFQwJz5P02ToDkwlT0wkNMQ9s4UpJ4uX7DkgWwKeYr2rpxO64pMj0NVJH0RqCEKoFPyrYpI0BLxCJUoJKVcujSVHENQRqeQReCcttXsEEUJDjkcwtdCQf2PWyGRo9UeRPYJ8lpDN0L7kP/8ctOQIAozYtj2LYPoege0pCoyIbXSHSl3FHD+PoN2Pv2k1NQQhVAKqKJxqgQQ9giglpBu2R7Aag0fAL1Avj8BKWkZbOPjOczLk5Ezf0nTOF8vyksOORzBNQ+CzmPLzFTVUQUQo5vZ3dbc0xKlFQkP8c9AthSILNwQi3cX17gA1DTkCv+ZV1dyMCKkhCKEckOBq9axOyyRUEo8oeARxyUsA7tCQ9wVczkdbkPiCM+lptDRXUBTzWZSNrNRowmu7XdSKuVirOIIICg01NWxOSh7DacZyIdFfl4fzwnIEpXw2Vl0dEWSkqC2RPB0egXeyWLVaS4TUEITAewS8kzjxu2zj48ihVsjh2m5H+rnrjR7KMchLAMHloyrT2xyPYCJh3NIcGgLsmnHJ0NA0msk41ULedzF1elsUQhWF3H7lV/75VhQWJEcnKSQ0tDjl/ABgNRoSWf03QTDG7GSxjhyBd4FEuz+MvKESJTUEIYwXpP0Xb7071LITEOXYQglXd+Q9guuNbmzNT/wC9TQEvegiZWUfT8MxBBqN2lLFkPIIrtfjO58i8ByBV95KR7iyZHgZguhd4pyKQPnodruvfWZGFHJZq5vfT1mX0+wNMTQZFjQki8u2JzbZcNfpR9eOEiU1BCHwBcdrodNVPyzKicUSrmy3pZ93fbeLw3PxiKM5nageLq1KGSPf8U+ed2dnqtETW6wY2GqLl4+u7XanVjEEuHbWPufc/ZgoeCm/6mhqymczKOYzgfMfttv9qecHOIdqBUdu3I8d+7rRccx8rZkMy6WhoRmAW2J/jyA5Q3ByqYyr2x3pSWVru11npoFujJylkeLVEdlSMARlxwDvPe+6q4YAYKmcF/YIBiMTG83p6AxxgqpvxjkCBSXM3P5mPl0yB/Ol4PkP263Z8AgA4NBcATdCRsTqLHf185ja/RFKaWhoujjdkB67r0ZnoKVsTJQTiyU0ekMpOQTTZLgRY2gIsFUlJ3Z5I5NZuvjKoaH9IYpchmBobK5ZlAgNXdvtwmTA8cV4DKsIQdU3XJVUJUdQMrL7y0eTMgQzkiMAuEcQZghsj0CD8ar4bDpVG/lESA1BCM6C5LHj1dVIIsoJe/G5si2eMN5q9zEYsVh3sJYhmIjl99Vi1ePy0clkseUmRxm64sdS2UCjN0R/GC4nwM/9iUU9MthR4InJSeNr3aaeI7CSxX7lo2obn4WS4WsIhiNrHOushIYOzxWx2ewFiuTttPWVu5Z9wtBpaGgGqPjUszPGUO8ME84RWIuPTJ6ANz/F6RHMecz9VW22Gxvg/cli3X0bixKlgvzcH1+YnkfAdXh2PPIaY0Xc6OfIq4xRZdqcm7lSHrsd72QxNxCz5BGYDNgMqBzadvoeNISGjP0ewchk6A3VOrpFUDIERLRERF8mohft/xc9HvMXiehJ178uEb3fvu+3ieii6757VY4nDvxyBL2hif7ITLRq6KRjCMQ9Am4IEvcIFMsYeUu95+5IsyHgA+jDEoMAcHWnAyLg6ML0cgRcH2nbyxB0rTCCSm9Ltbi/sUlrjsCnVJfH22clR7Basz7joPAQ/wx0iOSVPZozdXR0i6DqEXwEwFcZY7cB+Kr9+x4YY3/EGLuXMXYvgHcBaAP4z66H/BK/nzH2pOLxaKeQy8LIZfZNVtIxjEKWuZLVS3B5S8IjSKALtlbI7wtTjEMU0S7gTIY8d6bN3lCplt2LQ7a3FFYqCFhG+FCt4Mz2nQYLFe4R7F9QVSq1ODWPhrVmb4hiPqMsfBaUI9jWWIGjg0Nz4RuEnXYfc8UcchpyVvy6dud+uEc8653FDwL4tP3zpwG8P+TxHwDwRcaYfA3kFJkr5p0B1Zy6hjmlshARTiyVpT2CbIZiEZzjzJVy+85PS4M4XNlDn73Z09O842bsEYQbgqvbnanmBwBroc5lyDOU1ehFF5zjVAs5y+N15Uwa3YFSJRJnoZxHqz/ylHfemhHlUY5zXQRsELbbA20ezFiuZfxd0jEGUwRVQ3CYMbZm/3wNwOGQx38QwL+buO3XiOgpIvokEfmuVkT0ISI6R0Tn1tfXFQ5ZnrlSbl8MnMc5k6waAngvgYQhqHexWi3EKoNRK+73CHSM8fQSV6t3Btq/FNxIioSGruy0p5ofAKwNwULZ8AwNNbrRZxFwuCFxh4d0CavxEIqXV+DoDM2IIVgV2CBst/tY0OTBVDy66fn3Ku7IQ6ghIKKvENHTHv8edD+OWcXtvul1IjoKa4j9l1w3fxTAHQDeDmAJwC/7PZ8x9jBj7Cxj7Ozq6mrYYWvF8ggmQx/JewSAZQgub7eFewmubLdjL3WcK1q7PPe4x5aGxqa5Ym7fea939TfxGbkMlipGqEcwMhnWdrpO9dY0WSznPUND1rxftYXJSy66oSBt7SbIEGw4cumzYQgKuSwWyvnADYJV5aTnevTS7dLRIChC6Kszxu73u4+IrhPRUcbYmr3Q3wh4qR8H8B8ZY84V4PImekT0WwB+UfC4E2XOI67JXbYkcwQAcNNKBe3+CDcaPaFKoMtbHdx301Ksx1Rz1bXz3ZEej8A79xBHgv5QLVxO4Hq9i6HJptpDwPGbqbvb7uP0klroin+e7jyBFZKL1xCsN3uYK+ammn+ZJOy62G73cctqVcvf8mrO1DUPOQzV0NAjAB6yf34IwBcCHvsTmAgL2cYDZBWFvx/A04rHEwtzxRwak4aAJ4sTrBoCgJtXrIvuwnor9LGDkYm13Q5Oxrxw+S0cgFoZ42Q10mBkot0fac8RAFYYYD0kNHR1xwrJTTs0BFgDdbzKR3c6A+UuV54LcHsEza6est35coBH0IxnrrYKh2rFQE9xs9nXmtOYbM7kP8dxzbtRNQSfAPBuInoRwP327yCis0T0m/xBRHQGwEkA/2Xi+f+GiL4L4LsAVgD8Y8XjiQWvOvl6QrG7SW5arQAALmw0Qx/76k4HJgNOKO4Qw5jz2OU1ulYHcCEX/RKbNASNbnx5mbAvPDDuIZh2shiwPILJYTqmybDbGSgLoI07l/cuSDoWI8cj8DBiG41+rEUNUTg8V/SdCtjqDdHuj7Qar8mqqkZCyWKlV2eMbQL4IY/bzwH4OdfvLwM47vG4d6n8/aTgVUOMMaejdbczgJHLJK6bfnSuiGI+I+QRXN6ydrAnY164vDyC3c4A86W8UgfwXHGvAR57YfqN76G5AtYbPZgmQ8YnsX5xo40MASeXZsEjsAyB+5psdIdgDNpyBHuMsKZGvnEz3P6w1nqzh7uOzSn/DZ0cXyzheqOLwcjcVzrLJap1DnyqlfJO2BkYfwY61Xa9SDuLBZgr5dAfmei5yum2mn2nsSdJMhnCmeUKLm4IGAJ7B3tqOWaPwN4pTi7aqk02tWIebVcSuhFjXuZQrYChyQJHVr680cKxhdJMxLAXy3kMRmyPBMdOxxZAUz7ve6tXTJOh2dNTNbRQsnT+vdReNxq9WKboqXB8oQjGvGeF81ngcXsE1UIu9uFXqSEQwFnoXB/QdltvbFCGW1aruLAeHhp6ZauNfJZil0yec7RvJjwCxVi1OwkNjA1NHG4yP0dBE+AubrRw00pF+9+OAk/Ku8XyeDmpeo5gb2ioPRiBMT0Jy1w2g6WysW/gS3cwQqM3nLkcwfEFaxPF80Nu1p0qJ33HPJmPbPYGiYzCTQ2BADwU4d7xbramZwhuXq3g8nYnVCTt8lYbxxZKse8meMLcvZPZ1eIRWK/Lm9XiDA3xuL/XFx6wtKVeniFDMJaZGBuCHUcSWe26tET9xpLWOqSt3SxXDadUlLMe41xtFXiF2FWP3p31ZjIeQdz5ASA1BEJwl9gdu5umbvpNKxWMTIZLm8HhoYsbLZxejn/hmivmkc3Qnt2pDkMwaYDj7OYOU3bdbPXR6A1xJoHzKcKiLTOxNXHOAXWPgIisuci2J9bQ7ImtVAv7hsJzDyGOudoqcI2uV308ggzp7YTmhSm8Tyg1BDOElxu+2epjeUqG4PbDNQDA9641fB9jmgwvrTdx2yE9Nc5BZDKExXJ+z5dbp0fAQ05xVlAslPOoBug4vWznZHjV1rTh4YiNptsjsA2BBkM5VxzvTBuKAoKTrFQL+0JD1+1a/UO16Yn5eVHMZ7FSLXh6ihvNHpYqerv250tW7oeLzVmSIfFXJqaGQAC+4G/aX7r+0ESjO5yaONZth6vIZQjPrdV9H3N1p4PuwMStCRgCwNoVbbWsL7NpMjS6GjyCCd39nfYAGQKqMVRQEFGgfMcFbghmxCPgC+b1+jinwb0DHR6Tu09hV6PCJmCFhjabez0CvuOe5uQ3P44vFD0NwbXdrqNHpAt+zTtGOAZJFS9SQyAA333xmCCPxS5NqRW+kMvi1kNVPBtgCM7byeRkDYF1Xpr9IUymvnA4pYb2l4LnZfzKO1UJmgl9/kYTRi4zE/ISgCVHMFfM4YbLEKw3e1iuGMoKocDezmX+vy4PeKVaQLM3RNc1m3dtt4OCLfUxaxxfLHkagqs7He1d5vya53mx7XYy1YmpIRCgZGRRMbKOO8tDINMoH+XcdWwOz74aYAiu24ZAU/t7GMuVcdx3p6VnB7lc3TswZqvVi3WhOLHoPxP6ubU6bjtU1SI3rItDc0UnpAJYMWtdicvFsuFseHTPCeBaQuuuhPGrO10cWyhpnTyni5NLZVzZ6uyZVMYYs5Vo9RoCd+HFyGTY6ehTNw1idq7qGWelVnDc2bFK4vQmKd11dA43Gr19sVbO+RtNLFeMxBLabo9AVzVF2cihmM84E6I2m30sV+KrKuEzob1UPZ+/1sAdR2ar2enwXGGPIJpeQ5B3Ps/NVh/5LCmrmnK8VD1f3e3g2BSH/QRxy2oV/ZG5x1vc7QzQ6o+0y424G+6shkF9nlgQqSEQZLkyrn3mX744xz+GcddRa1F6+uqu5/3fvbqbaJfmUsXATnuA4cjU2mizXNlrgOMMx/Ew2ovX9ybht1p93Gj0cMeRWmx/OwqHazF6BBUD9e4Qw5FpVciVDW27da9S3Vd3Ojg2Pxtht0lusQsEXnL17oxnV+s9Zh6G3mz1E53PkBoCQVaq4wVpLYHxj2Hcc3IB2QzhiUvb++7rDkZ44XoD95yYT+x4eBhnuz0YewQaasJXqoYTctpo9rAS45eCV2O9cGNvs973rlkhuDuOzpYhWLU9AsYYGGNY1yjaxgshdjoDywBrPO98F8132P2hiRuNHo7OgJifF15Cj9wQ8IYzXTizMeq91BDMIsuukre1nS7mS/nYB0oHUS3kcNfROTz+8ta++55bq2NoMrzp+EJix8Mv1s1WD+uNHkhTffVSxcBmq4fByES9O8RSjKGho/NF1Aq5fR7BU1csr+vOo7MVGjoyV8RgxLDR7KPeGaI/NLU1ZPGQIg9R6KyQqxRyWKoYjhaWNV8DyvLZcbFYMbBUMSY8Ai5AqNd4GbkMFst5rDe7qSGYRVarBrbafQxHJtZ2uzNR5nb2zCKevLyzr8P426/sAECiHsFR261/daeD9YZVvaIjsbpse2JO5UqMoSEiwq2Hq3h+oj/jW5e2cXq5PHPKmKdtDalXtlqOrpSuhYl7XjcavVi66E+6KrT4TvvmGenR8OLmlQpeujH2CF68Hl8ObtWegbCpuVoriNQQCHJisQzGrLjm2m4n1mHworzjpiV0Bya+/cre8NDXX9rAmeUyjiXoanNFzstbliHQtWjy5iPe6BV3QvHuY3N4+uquI3THGMO3XtnB204txvp3o8C7nF/eaGuXyOZhmrWdLtZ2utqvd16hBcDRzbo5oQq3KNx5dA7PrtWdyqEXbjRw2+F4jvdQrYj1Zg/r9S4ylMzoztQQCHLG1pi5uNHCle1OoousH++8dQX5LOErz113bhuMTDx2YQvvvHUl0WNZrRZQyGVwectalHSdn5NLJQxGzMmFxD0L4O1nltDqj5yu7Zc329ho9vDW07NnCE4slpEh4OXNFl7Z0qs0y0X4nlurozMYab/eTy6VcXm7jf7QxEvrTaxUDW0Na3Fw78kFNHtDnL/RBGMM5683cduheHJG3CO4vN3B0fmSlr6QMFJDIMgZ+wv2xKVt7HYGidXnB1Er5vH9t6zgPz973al9/+aFLTR7Q/zAbcnOdeadua9stfHyZkubJs8pO278jQubAOKfDvb2M9ZYT557+cPvWdNXf/D2ZM+nCFaDWxkX1lt46UYLSxVDm0R3ychisZzHOdsA6z7vdx+bw2DE8ML1Br57tT5z+ZdJ3nJqAQDw7Ve2cWGjhUZvGFtV3onFEtZ2O7iw3kysgVHJEBDRjxHRM0RkEtHZgMc9QETPE9F5IvqI6/abiOib9u2fJaLZayu0Wa0VUDGy+PKz1u6bV5hMm/ffewyXNtv4kxc3AAD/4VtXUCvm8BfekPzCdXq5gscubKI7MLVp8nBD8LXn17FcMZRmIItwbKGE08tlfPU5ywB88btruO1QFSdnNJH5xuNzeOrqDp5+dRd3a16YTi1X8OTlHQD6k6I8f/XNi1t44XoD955c0Pr6urlppYKlioGvv7SJxy9amwS+adDNrYeqMBnwnSu7ic3HVvUIngbwIwD+2O8BRJQF8BsA3gvgLgA/QUR32Xf/OoBPMsZuBbAN4GcVjyc2iAh3HZtzQgZ3zkgp4V++5yhWqgX87199ES9eb+CR77yKH33ricQnpwHAm08sOAqtb9BkKE8slh2tlaT6Ih689zj+60sb+P2n1nDu0jZ+/OzJRP5uFN5ychGXtzp45tU63nhcb3HAm45b5ztD+qVKTi2VsVQx8IkvPoeRyfB9Ny9rfX3dEBF++O4j+Mpz1/Hvv3UFxxdKTn+Bbm5xRRvuTKiJUckQMMaeY4w9H/Kw+wCcZ4xdYIz1AXwGwIP2wPp3Afi8/bhPwxpgP7P8hTccAmC5tcszUkFSyGXx0ffegScubePdn/xjVAo5/O2/eMtUjuX7bxl/mXVVLGUzhPvsnZf79ePkJ+87hXI+i5//t9/CStWYaUPwrjsPOT/f7/pZB2+1E+Q3r1a1byyICO978zEMRgyrtQLecVM8u2ud/PjZE2j3R3j85W382NkTsclhvMHVuPiOm5M5L0kUwh8HcNn1+xUA7wCwDGCHMTZ03b5vrjGHiD4E4EMAcOrUqXiONISf+v7TWG/08KNvPTGVv+/Hj7z1OBiAJy5t4ae+/8zUpHzffmYRv/Du23HX0TmtC8ff/8t34vRyBX/9vtPaXjOII/NF/NbP3If/8K0r+OvvOK08aS1Oblmt4p9+4B7sdgZ422m9i8ZfuecYvnetgb/0pqNaX5fzP/zQbSjkMnjP3YdnSsPJj7ecWsQ/+7E348J6E3/rB+PbbOWzGfzmT53FhY0m7jmxENvfcUNeAlt7HkD0FQBHPO76GGPsC/ZjvgbgF+2h9ZPP/wCABxhjP2f//t/CMgS/CuAxOywEIjoJ4IuMsTeGHfTZs2fZuXP7/lRKSkpKSgBE9ARjbF8+N9QjYIzdr/i3rwJw+9Yn7Ns2ASwQUc72CvjtKSkpKSkJkoQ/9jiA2+wKIQPABwE8wixX5I8AfMB+3EMAvpDA8aSkpKSkuFAtH/2rRHQFwPcD+H0i+pJ9+zEiehQA7N3+hwF8CcBzAD7HGHvGfolfBvALRHQeVs7gX6kcT0pKSkqKPKE5glkkzRGkpKSkyOOXI5j9VH1KSkpKSqykhiAlJSXlgJMagpSUlJQDTmoIUlJSUg44r8lkMRGtA7gU8ekrADY0Hs5rgfQ9HwzS9/z6R/X9nmaM7VOkfE0aAhWI6JxX1vz1TPqeDwbpe379E9f7TUNDKSkpKQec1BCkpKSkHHAOoiF4eNoHMAXS93wwSN/z659Y3u+ByxGkpKSkpOzlIHoEKSkpKSkuUkOQkpKScsB5XRkCInqAiJ4novNE9BGP+wtE9Fn7/m8S0RnXfR+1b3+eiH440QOPSNT3S0TvJqIniOi79v/vSvzgI6LyGdv3nyKiJhH9YmIHrYjidX0PEX2DiJ6xP+/pjK+TROHazhPRp+33+hwRfTTxg4+IwHv+80T0LSIa2gO/3Pc9REQv2v8ekv7jjLHXxT8AWQAvAbgZgAHgOwDumnjM3wbwf9s/fxDAZ+2f77IfXwBwk/062Wm/pxjf71sAHLN/fiOAq9N+P3G/Z9f9nwfwe7Am6k39PcX8OecAPAXgzfbvy7N+XWt4zz8J4DP2z2UALwM4M+33pOk9nwFwD4B/DeADrtuXAFyw/1+0f16U+fuvJ4/gPgDnGWMXGGN9AJ8B8ODEYx4E8Gn7588D+CGyJlA/COvi6THGLgI4b7/eLBP5/TLGvs0Ye9W+/RkAJSIqJHLUaqh8xiCi9wO4COs9v1ZQec/vAfAUY+w7AMAY22SMjRI6bhVU3jMDUCGiHIASgD6AejKHrUToe2aMvcwYewqAOfHcHwbwZcbYFmNsG8CXATwg88dfT4bgOIDLrt+v2Ld5PoZZA3N2Ye2SRJ47a6i8Xzc/CuBbjLFeTMepk8jvmYiqsAYh/S8JHKdOVD7n2wEwIvqSHVL4ewkcrw5U3vPnAbQArAF4BcA/Y4xtxX3AGlBZg5TXr9CZxSmvX4jobgC/Dmvn+HrnVwF8kjHWtB2Eg0AOwH8D4O0A2gC+ag8m+ep0DytW7gMwAnAMVpjkT4joK4yxC9M9rNnm9eQRXAVw0vX7Cfs2z8fYruM8gE3B584aKu8XRHQCwH8E8FOMsZdiP1o9qLzndwD4J0T0MoC/C+DvE9GHYz5eHai85ysA/pgxtsEYawN4FMBbYz9idVTe808C+APG2IAxdgPAfwXwWtAiUlmD1NevaSdJNCZbcrCSJDdhnGy5e+IxP4+9CabP2T/fjb3J4guY8aSa4vtdsB//I9N+H0m954nH/CpeO8lilc95EcC3YCVNcwC+AuAvT/s9xfyefxnAb9k/VwA8C+Ceab8nHe/Z9djfxv5k8UX78160f16S+vvTPgGaT+ZfAvACrOz7x+zbPg7gffbPRVgVI+cB/BmAm13P/Zj9vOcBvHfa7yXO9wvgH8CKoz7p+ndo2u8n7s/Y9RqvGUOg+p4B/A1YyfGnAfyTab+XuN8zgKp9+zO2Efilab8Xje/57bC8vBYs7+cZ13P/pn0uzgP4Gdm/nUpMpKSkpBxwXk85gpSUlJSUCKSGICUlJeWAkxqClJSUlANOaghSUlJSDjipIUhJSUk54KSGICUlJeWAkxqClJSUlAPO/w9JVvrQ1ZoCtQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
@@ -137,39 +150,21 @@
}
],
"source": [
- "from scipy import special\n",
- "\n",
- "def drumhead_height(n, k, distance, angle, t):\n",
- " kth_zero = special.jn_zeros(n, k)[-1]\n",
- " return np.cos(t) * np.cos(n*angle) * special.jn(n, distance*kth_zero)\n",
- "\n",
- "theta = np.r_[0:2*np.pi:50j]\n",
- "radius = np.r_[0:1:50j]\n",
- "x = np.array([r * np.cos(theta) for r in radius])\n",
- "y = np.array([r * np.sin(theta) for r in radius])\n",
- "z = np.array([drumhead_height(1, 1, r, theta, 0.5) for r in radius])\n",
- "\n",
- "import matplotlib.pyplot as plt\n",
- "fig = plt.figure()\n",
- "ax = fig.add_axes(rect=(0, 0.05, 0.95, 0.95), projection='3d')\n",
- "ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap='RdBu_r', vmin=-0.5, vmax=0.5)\n",
- "ax.set_xlabel('X')\n",
- "ax.set_ylabel('Y')\n",
- "ax.set_xticks(np.arange(-1, 1.1, 0.5))\n",
- "ax.set_yticks(np.arange(-1, 1.1, 0.5))\n",
- "ax.set_zlabel('Z')\n",
"\n",
+ "x = np.linspace(0,0.1,2000)\n",
+ "y = np.sin(100 * 2.0*np.pi*x+1.5*np.sin(30 * 2.0*np.pi*x))\n",
+ "plt.plot(x, y, '-')\n",
"plt.show()"
]
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABqdUlEQVR4nO29abQtZ3ke+Lx7Hs987nx179WAhACZ4SLHxrHbTBZxB+GEJJAVW4ntxUrHpDvtdhoI3babhF62O73ISi93EmJjkzjL4OA4yCs4GDAENxjQFUgCSUi6kq505zOfs8eqPXz9o+qrXWef2lXfVLW3dOpZ6657zp5O7dq1v/d7n+d9n5cYY0iRIkWKFIcXmWkfQIoUKVKkmC7SQJAiRYoUhxxpIEiRIkWKQ440EKRIkSLFIUcaCFKkSJHikCM37QNQwcrKCjt79uy0DyNFihQpXlJ4+OGHNxhjq+O3vyQDwdmzZ3HhwoVpH0aKFClSvKRARC8E3Z5SQylSpEhxyJEGghQpUqQ45EgDQYoUKVIccqSBIEWKFCkOOdJAkCJFihSHHEYCARF9gojWiOh7E+4nIvqXRHSRiB4jotf77nuAiJ5x/z1g4nhSpEiRIoU4TGUEvwvgvpD73wHgDvff+wD8KwAgoiUAvwLgBwHcC+BXiGjR0DGlSJEiRQoBGAkEjLGvAtgKecj9AP4dc/ANAAtEdBzATwD4AmNsizG2DeALCA8oxnF1p4P//J2riNuO+/s39vDJr19Cxx7E+ndMYThk+MzDV/Dk9b1YXp8xhs8+chWXt9rGX3u9Yb0kzjVjDP/5O1cTuf78ePTyDr781JrR1+z2BvjUt17EXrdn9HVlwBjD5x+/gd/92vPo9mbrs+ef9RPX4vk+6SKphrKTAC77fr/i3jbp9gMgovfBySZwyy23GDuwD/7hY/jzZzaQz2bwk/ccN/a6fjS6Pbz349/AdruHp2828NGfek0sf8ckPvXQZfyTP/ou6sUcvvnht6BSMHupfO3iJv6nTz2C24/U8MVf/DGjr/2//MdH8dWn13Fjr4sP3HeX0dc2id/75ov43/+zw6Y2uj389A+djf1vWv0B7v/NrwEAvvbBN+PkQtnI6/7O1y7h1//r9/H1ZzfxL9/7OiOvKYt/++fP4f/83PcBAH/+zAZ+64HzIKKpHMs4/vyZDfyjTz+CxUoeD/9vb0MmMxvHxfGSEYsZYx9njJ1njJ1fXT3QIa36mvjOizsAgK8Y3iH58fnHb2K73cNtq1X8p29fRdvux/a3TOEPv30FANCw+vjq0+vGX/9bl5wE8uJaE03L3PnY6/bwtYsbAID/8th1Y69rGlZ/gI994Wn88G3LOH9mEf/qK8+iNxjG/ne//cKO9zM/TybAM4yvPrOeaHbDsdG08M//9Gm87e6j+Cd/5S586ftr+PzjNxM/jkng36Htdg/fv9GY8tEcRFKB4CqA077fT7m3Tbo9Edzcs7xFKM4P58vfX8NqvYh/ev+r0ekN8JWnzC+sJtHtDfDYlR387JvOoZDL4OEXto3/jYtrDd/PTWOv+8S1PQyGDD906zJe3Gpjp20be22T+OITa9hq2fj7P3YbfvZHzuHabhcPXQpjV83AT/WZov0YY3ji2h7yWcJOu4cr2x0jryuDTz90GXZ/iA/cdxd+9k3ncGa5gk987fnEj2MSHr2yg+VqAQDw+LXdKR/NQSQVCB4E8DNu9dBfArDLGLsO4PMA3k5Ei65I/Hb3tkTw9E1nMbrzaB2XNlux/Z1vPr+Jv3z7Cu49t4RyPotvPR//F14Hj17eQW/A8Kbbl3HPyflYAsHTN5u4dbUKALi0Ye7cP+MGlZ96ncMwPj6jnOwXn7yJpWoBb7p9BT/6ilXkMoSvPm1uhz4Jz200MV/O41Un5vDcupnzvt3uoWn18WOvOAIAseg+UfjjR6/hjWcXcfuRGnLZDP7WG0/jW89v4cXN5I9lHIMhw3ev7uIn7zmOXIZiXWtUYap89PcB/AWAO4noChH9HBH9fSL6++5DPgfgOQAXAfxbAP8AABhjWwD+KYCH3H8fcW9LBM+uO4vGm25fQaPbR8sgRcGx1uhio2nj1Sfnkctm8AOn41lYTeJ77uL5A6cX8OqT83j6ZtNouj8YMlzaaOFHbl8BANzc6xp77WduNlAv5vCWVzqL0iyKc8Mhw1efXseP3rGCbIZQK+bw+jOL+Itn4w8EN3a7OLFQxunFCq7tmNm584X/h29bBgC8mHAguLzVxvdvNPD2u495t73j1Y7e95Wn46N8RbHW6KLbG+LOY3WcXqrg0sb0g9M4TFUNvZcxdpwxlmeMnWKM/TZj7F8zxv61ez9jjP0CY+w2xthrGGMXfM/9BGPsdvff75g4HlHc3LOQzxJefXIOAHDD4ILEwReiu084f+P1tyziiet7sPqzVdXgx3PrTSxU8liuFnBmuYKm1cdmyxzFstWy0R8y3LZaQ7WQxc09y9hrX1xr4rYjNSzXipgv5/HC1uztvp7fbGGzZeOHb1vxbnvd6QU8eb0Bux+vTnB9t4vj8yUcmSsaC8CcCrr33BJyGUo8EHzTzbB/9BUj7fDcShVnliszQcPy83NyoYyzyxU8bzADNoWXjFgcBzabFparRRyfdyonbu6aDwRPudrDK485geDOY3V3Rzx7uwKOZ9ebuHWlCiLC2WWHvnnBYDq70XQW/pVaEUfnSrjZMHfer+92cWrR+TxPL5WnwldH4RG3QOG1tyx4t73m1DzswdCjK+PCjd0ujs2XcHSuhL1u30iZ5eVt51o+s1zBycVy4oHg4Re2MFfK4Y4jtX23//idR/D1Zzemvum66l6DpxbLOLNcnQp1FoVDHQg2mhZW6gUcmy8BcBYR07i83cZCJY/5Sh4AcLt7sZoUSE3jufUWblt1jvPMcgUAjAauUSAoYLVexJqhnSljzFno5pzP89RCZTYDweUdVAtZ7xwDwKtPzAOIV0js9gbYbNk4PlfCar0IwOm50MWN3S5qxRzqpTyOz5ewZjDDE8HDL2zj9WcWD5Rk/qVbl9HtDadOD151KbgTC2Ws1otoWGYCsEkc8kBgY6VW9BaOOKihK9sdnF6seL/ftloDEfDM2uyVkAFAxx5grWHh7IqTCZxarIDILO/rBYK6mxEYWjj2On10egMvsJ9aLOPKdnsq5YxhePTKDu45tYCsb+E6vVRBPkt4LkbagC/Qx+ZLOOIGgjUD2dhWy8ZyzamIWakVvc83Cex2enj6ZhNvuOWgIcHr3IyLl4hPC1e2O1iqFlAp5LBaMxeATeKQBwILK7UiyoUsKoUstg3y4ByXt9oeVQEApXwWpxbLM5sRXN91di/H3cW0kMtguVo0smBwbDSc87xaL2K1XjT2peCBnAeCk4tldHtDo/qGLvqDIb5/vYF7Ts3vuz2bIZxZruJ5Q5U8QdhyS2k5JQfASBDeatlYqk4nEPAS2HtOLxy47+hcCScXyvjO5Z3EjicI6w3LC7wrdec8JXmORHBoAwFjDJtN20uRF8p5bLfNtsczxnBlu7MvEADA7au1GQ4EzmLKdRMAODpXNCrobjQtFHIZ1Is5LJTz6PQGRkRSLxC4ixxf7GZp93Vpsw174FSQjOPcSjVWIZH3VMxX8lhxd6abBhakzZbt1cgvVwvY6/YT4+W5pnJXwPkEHB3m21Ou0ttsWd46s1qbvWsSOMSBoGH1YQ+G3gW8UClgt2N257jRtGH1hzjlo4YA4NbVGi5ttmaOsgDglRSeWCh5tzn0jbmMgC8cRIQFVzvZ7egHYa41HKk7x84Xu1naffGF6xVHDy5ct65W8cJmG4NhPNcFP8fz5Tzmy+bO+1bL8jKCZfecbyWUhX3/RgPz5by34x7HPSfncXWng13DmzwZbDQtb53hGcH6DF2TwCEOBHvuF2Cu5HwhFip57Bi+WK641RTjGcHpGaQsOHhGwOkVwHxGsNfpeQvRnLcg6Z+LbXfHu1h1XnOlNntp+NM3GyDCPqGY49aVKuzB0KsyMQ1+fS+U8yjkMijns9qBgDHmUkMu9eGe881mMtf20zcauPNofaKnEM+8vn9jeoLxZtP2AuRyNdUIZgqNrtM8Vi85ZmoLlby3kJiCVz88Fgh4hjCLFS3XdztYqRVQzGW9247OlbDZsox54ex1e14AMLkz3W73kHMbtABHjAZGmsQs4JmbTdyyVEG5kD1wHy/VfT6mzlMeCOZ9515389Ow+ugN2Iga4mJoAsGXMYanbjYCaTaOVx53yran5e/Ttvto2wMvOy3kMpgr5YxvOnWRBgIvIygYWYz84HTK8bmxQLDk/M4zhlnCtZ3uPn0AcKgWxszt8nY7fV8mVnBv0z/3O20bC5WCtzusF3Mo5DIzlYY/s9bAHUeCFy6+YbhuqON3HDsdG/ViDrms87VfqOS1zzsvsFh0AwGniJLweFprWGh0+15JdhCO1ItYqOSnlhHw7wyvqgIcjWbWPLAOcSBwvgBeRuDujkzy9htNG4VsBnPl/RbO3Pp3VjOC4z5aCACWXKrFFO+71+l554TvTk3skLZbPSy6mgMAEBFWa0VszEgaPhwyvLDZ9jyWxnF0rgQi4FoM/SwAsNvuef0sgEPL7WgGgr2Os6Gac79H/H9+e5zgJc281yUIRIS7jtWnlhFwWpJnTACwUDa/6dTFoQ0EfIAGpygWKnn0h8yoJfJ6w8JyrXCAv6yX8lio5GcyI7i5Z+3TB4DRrt3ULmav2xtlBEapIRuLlcK+21bqxZnJCG42urD6Q9yyFLxw5bMZHKkXY8wIep44DzhBeE/zvDcsvqHar/novq4IXnAN5SadT45XHK3jGcN+WaLgG5xFXyCYL+tnYqZxaAPBuEZgcmfKsdEclY2N49RiOTZRUBV2f4jdTs/jMzl4ur9lIBAM3WB7UCw2QQ3tX+gAYLVWwEZCwmUUeHc21wKCcHy+HEuHO+BSZ2WzC9L49yifzaBS0BehRfDiVhsZwoGqvHHculJF0+pP5TrwV2pxzFf0MzHTSAOBewHXis4H1TI4NGa9YR1YVDlOLsyeDw6nfvx8JgBvcTXRZ9Ho9sHYKABw983YMoKEG5zC8KJrgBdGZRyfL+HabnwZgZ8aWjAhFnc5NeSjnEr5REZWvrjZwvH5Mgq58GXsnFuhNQ2zt8BAYCATM41DGwj2uj0UchmvOqbmBgSTVtRO53Ih8L5jhmvzTWDEZ+4PXnwXaaLz2qPkSiPdpFrMom3pNSAxxpyMoLo/I1ipFbHVsjGMqTZfBpc228hnCSdCxkMeny/j+k43Fhpjt93btyDNuc18OtVg41qb87q5xDSCKFoIcDICAHh+I/kmzqBAEIceqYtDGwga3f6+xahWzHq3m8BwyLDZsidSQ0fnHffHWRqwzvsaxoMX7wI2UV7Lvxhzvi9GtZhDUzMTa9sD2IPhgYxgsVrAYMiMfa46eGGzhdOLlX0eQ+M4sVBCpzcwTq0wxhyNYOy8A3qbH35ea77vUlIc+ItbndDsiuPEQhmFbCZWH6dJ2O30UC1kkc+Oltr5sqNHtmfou3+oA0Hdl8561JDmzpRju21jMGQTqaGjde71MjtZwabPHnocC9W8kYyAi/H1oj8I57QzMa+ZbEwj4AvfjuGucRW8sNnGLRELFy/dNa0TNK0+BkO2b2dadXsZWhoLUtPqo5TP7FvokqCGWlYfG00LpwUyAsfHqRKrj9Mk7IxlYcCIap0lncDUhLL7iOgpIrpIRB8MuP9jRPSI++9pItrx3Tfw3fegieMRwV6nty+drboZQdMy8+FwYWpiRjA3e4HAo4YC6KylSsGIRtB2d/5VXyCoFnLa1JDXNVsJ1jem3cDDmFM6GiYUA8CRuXg6Tz0u33hG0Nu3oeJ/I+5A4J+BIIK4fZwmYbfT23fOgVGFVSMBHUUUueiHhIOIsgB+E8DbAFwB8BARPcgYe4I/hjH2P/se/w8BvM73Eh3G2Gt1j0MWzgU8evt1NyNoGsoINkJ214Bj2wDEY32tis2mjUIu43Xm+rFQKRihhnjGxQMv//najt558Nsn+OGVvk5598Xn+kbtYOPyR+KLfXUsEwOgVTK91+3v+x4BXAyNl4q7ssWHvQgGgtUqvvLUOgZDFkrNmcZe52Alm4kAbBomMoJ7AVxkjD3HGLMBfArA/SGPfy+A3zfwd7XQ6Pa9xR/wZQSGuGRegbNUDRaLj7q1+kkP8QjDRtPGSvVg3wPgvA8zgcA5v5WCPxvLaVdrNboHtQfAnxFMlxriZn7jvlPj4PqM6YyAL/a1fQHYjEZwICMo5bDX7cUq0F93N1AnxnpeJuHcsuPjZGpOsyh2OwepIR6AZ0G34jARCE4CuOz7/Yp72wEQ0RkA5wD8me/mEhFdIKJvENG7Jv0RInqf+7gL6+v6c0gbYzuZXDaDUj5jrHyU70DHdwMc9WIO5Xx2tjKCluX584xjoZLHdkt/V8356H3UkAGNoGHtLwfmWIihP0QFfErVyZCKIcBZJEr5TAwZgXveCwfpUF1qaG7snM+V82AM2gUAYbix20EuQ563URR4JpZ0yXZYIDClR5pA0mLxewB8hjHmPwNnGGPnAfxtAP+CiG4LeiJj7OOMsfOMsfOrq6tBD5FCELdZK+aMRekdNyPwN/D4QUSuq+fsBAK/Xe44FisFNK2+tvFc28sIfDvTQlb7S+H1hRT3f6ZxNAqq4JpvXGEYiAgrNXPDejiaodSQ+rlvdPsHqMQkuouv73ZxpF4Upnl4JpZ0N/9Oxz4YCEr8vM+ORmAiEFwFcNr3+yn3tiC8B2O0EGPsqvv/cwC+gv36QSwYDhla9mBfmgyYqV7h2HHLxsKaXY7OJT/fNQx+u9xx8J22bqBs2n0UcvurTKrFHDq9gZYPP6f0qmOfaS7rlL5Ou2ro2k4HpXzmQFVTEFbrReNdsC2PGtqfiQEjAV8FzQCNgDeXxVlCenOve8AKJQzH58sgSjYjsPoDdHvDAwUMtYJ+ADYNE4HgIQB3ENE5IirAWewPVP8Q0V0AFgH8he+2RSIquj+vAHgTgCfGn2saXXd6Urmw/wKuFnPGvIa2XSfMMBydK80MNcQntgVVDAGjL7dupUPbGhzYQXqpss6CZPVQzmc9Z00/5iv5qQ4mARxX1xML5Ym++X7E0Q3dmlCtBeiJxYFVQwkYz13fPeiSG4ZCLoNjc6VEA0FQzwxgXo80Ae1AwBjrA3g/gM8DeBLAHzDGHieijxDRO30PfQ+AT7H97XSvBHCBiB4F8GUAv+avNooLbftg5QrgLEimAsFugO/NODg1NAsdhnxi20o13oygZff30UKAb2eqSVGM70w54pg1IYurO51IfYAjTmrIf45K+QwypK4RDNzMevy8m8g0wsAYw41duYwAcOihJKmhcWdWjlzWGQpk0s5GF9rlowDAGPscgM+N3fbLY7//asDzvg7gNSaOQQa8m7ec378g1Us57TJGjnGnxyAcqZdg9YfY6/T3ecBMA1vN8ConvuvTrQ9vWf19giUw0gu0dqZWf193qx8L5cLUy0ev7XTw43ceEXrsar2IrbaN/mAYmOGooNntI5shFH1UJRG5Qr1aAG4G0E3AKBCYdPL1Y6/rDHvhs6lFcWqxgm89vxXLMQUhiI7jqBrUI03gUHYW80hciZsamiAUc/D5pRut6esEQZ4ofvD5AbrpftseBGZigF71SrPb39et7Me0qSGrP8Baw4oUijlWawUwZnburxOAsweoKZ0suBNQAcZfE0BsFgq8wEIlI7ix10Xf0KS9KATRcRz1kjk90gQOZSDgF+g4RWFSLBahhrzmoRkYnOIFggnHbEojaFn9A1+MqgGNoNHthWQE06WGbu46n++JBbGFi3vXm+jk5mgGaDOAXunuaEO1/3tUMVCWGgZuvzE+QCkKpxbLGAxZbDbf4wgq2eWoFrOxZUwqOJSBwKOGAgJBw8CH4xl8iQaCGfDLj8oITGkEbXsQGIABvbrqptU/UDrKMVfOu/bX09FiRHsIOLhxnsngFRSAAb0seBLFakKEDsMN16b7qAI1BIzsKeLGyE7l4Hxqk3qkCRzKQOCJxQHUkN0fatfKN1yDr3EnzHHwCp3NlwA1ZKobshmwIPHAoEsNTcoI6qUc+kOGbi8ZSmAcoj0EHN78B5PUkB0cCGrFrDKF055ADWUzhHJe/XWjcMPNsGQDAQ/EpnTAKAT1bnDUirmXV9XQSxE8Uo9nBHxB0r2AOR89aVHlWKoUQDRj1NCEY85lM6gWstpicdseHAjAJjxvGtbBxiYOU0K3KnggEOW0l2KhhoLPT6WgTw2Nf4+AeKmPjaaFhUo+ciDNOPj5T6qJs20FB0rApaFnqGrokAaCYI2AX9DdXjxOmOPIZTNYqhSwYXDnp4q9jjOop5Q/+KXmqJfyRjSCSjG4fFR1QeLjL8fL9DjmPFprSoFgt4uVWiH03PoRFzUUFAiMiMWBHHh8Yqgz8EnMWsKPUj6LhUoe12OaADcOfl7HqTPApeTSjGC6mBQITGUEQVO4JmG5VpiZjCAqg6mX9Ere+oMhrP7Q66zk4F8UVeqm3RuAMUykhua8jGA6X7ybe10pGqOUz6KUzxg1ymtZgwkaQVZ5wZ70PQKc4BCXl07Y5L8oHJsr4UZCYnHb7qOczwbaYNRKqUYwdXQmlI/yBUm3EWY0vi+6N2BWZurudg6ah42j7rpKqoIbzlXGFqSMW9/eUczE+M6qNkEsrnudrtPJCGQDAeBkBSapoUa3d8BSBXCueeUAHEENxZURhFmhROHYfHLd/C07OPgCjs2EZUCPNIVDGQja9gC5DB3gGLnlhC41xHeekzpd/ViuFb0RkdPEXjc6I+DVN6poTyg3BJzFRPW888A7MSMo89LXaWUEllogMHRdMMbc/o2D56ecz6LTGyhVVE0qugAc6iOuzuL1poVVxUBwfD65jMCp1AqmA2dtJsGhDQRBu5hRRmDGCXNOKCN4KVFDuoFgMpVQzmeV5zfzTCNoxwuYK31VQW8wxGbL8gYRiWKxaq73oTdg6A9Z4HkvubdZffmdadvqg8ixqhiHyeZMP7q9ARrdvgY1VMZG04bVj9/wrWUdLIzg4J+FahZsGoc0EBz0uwF8H452IAjfofqxUiuiZQ+mPsReXCNQpyv4jj9INOU7UxV4FEV+9qqG1hsWGJMvdVyoFIxZZ3dCznslr37Nt+0BKvmD3cqAGWvxIPDsWZ0acp6XhOtvWEZQNqRHmsIhDQTBkbpsKEo3uk47v4hXOt/ZTFsn2A0Ysj0O3SaYsEBQ1AgE/HWDsjzAWZQyNJ2qIV6qKJ0RGDTK4+dnXBMD9K75dm9wwMGXw8TUuSBsRoyAjcIx17E0CZ2gPaF3AxixD9PeAHIcykDQiZ0aOmjNOwlxzaiVwXDI0LD6kYGgWsih2xsqe7VwUTKonK6czyhrBO0JHa4cRKRNa6mCB4IjdXmNYLfT05rRwOGdn8LBrzsPykqBwArOrAFeNWS+m3s0C1yNGuK2FEnoBM0Ag0UOHpTTjGCKCLJCBsxRQ3udyZbI4+CBYHOKNhOO/cJB3/Rx8DS3rblzD+KUywV1jaAToj1w6Ja+quKmS0HIGqQtVgoYMjOVTpOsIPy3KVNDkwJBMYchUy8JnoSNhvM9Uc0IOEWXRCAIMljkMMU+mMKhDARORnBwodbZHfnRsHrCgWB5BqihqK5iDt1KhzCuWkcjCKOcOOZK+amUj97c6yKXISxFNBeOY7Hq2kwYoIdCz7tGE2VYIODCvWl6iDv1qgaCuVIOlUI2EeO5ptUPpOMAfwB+GVUNEdF9RPQUEV0kog8G3P93iWidiB5x//28774HiOgZ998DJo4nCo5GEMBT55xBHfpicV+aGppmCWlSgSCMGippicWzmxHc2HNm62YEZ+tyLFTM2UyMMqbg8lFAkRoK4cD53zJdHrnRsFEtZCfqQVEgIhybL8VuM8FLdifZnphqXjUF7cE0RJQF8JsA3gbgCoCHiOjBgEljn2aMvX/suUsAfgXAeQAMwMPuc7d1jysMbXsQuBgRESqFnJHy0VuWKkKPLeWzqBVzxidSyUA4EHjmcHo792IQNZTPoqtKDQlkBPVSPvHB5YBTnXJEsmIIGNlMmOgu5udnUgAG1KmhSTvzuIbTbDQt5YohjmNzpdhtJqz+EIMhO2CnwjFrgcBERnAvgIuMsecYYzaATwG4X/C5PwHgC4yxLXfx/wKA+wwcUyi6vYFXPz0OZ2eq31kcxbf7sVQtTNUvP2oWAYd+RhBOUahmBB17gGIuE1qlNVeelkbQlZ6kBTgzFAAzA+C9QBAgFmtVDYVSQ/GIoTr2EhzH5kqedhMXwqaTAeZ8zUzBRCA4CeCy7/cr7m3j+OtE9BgRfYaITks+1yi6vQFKucmRWlssDpmfG4SlasHoNCpZiGcEfICMZpmnYY2g0wuuAvNjrpSfSh+BYy8hv4PlGwkTugbPtCZpM4CGWDyJ+uAD2g1nBJtNW1kf4FidK2K9acU6n4JnzVEawcspIxDBHwM4yxi7B86u/5OyL0BE7yOiC0R0YX19Xetguv1hYOUKAG0fdas/gN0fCnUVc7xkAoHm5Klub4hshpAPmMNbcj1vhgrlkpOoPj/qrsmXyuuromMPsNftK1FDnj+SgSymPcFbC9DTCDp232tIG4eJ8aNB2GhaWKlrBoJaEXZ/GKsJIRfJJ3W757IZFLKZl1UguArgtO/3U+5tHhhjm4wxnov9FoA3iD7X9xofZ4ydZ4ydX11dVT7Y3sDh7iYtHDoUBTCyMZDNCEwOIZHFbqeHfJYiF1PduQGd3gClCR7yfEevYnUgmhEwBjQTrNIYNZPJB4J8NoNKIWumfDSsf0ORGmKMhZ53TiO2DXYXD4YMW20bK1U9amjVDSRx6nI8AE7KCABeMv3yqRp6CMAdRHSOiAoA3gPgQf8DiOi479d3AnjS/fnzAN5ORItEtAjg7e5tsSGq1FCXGlINBJste2qjFLm9RJBVgB8Vj/dV1wgmLRx6O1OxjABI1m9ItauYwxSdxc9pMSAI89tkhXp7MMSQTf4e8cICk9TQTtsGY6PBParggWCtEV/lEKdPJ1VVAc5aMysZgXbVEGOsT0Tvh7OAZwF8gjH2OBF9BMAFxtiDAP5HInongD6ALQB/133uFhH9UzjBBAA+whjb0j2mMPASxjBqSMfjxbOgnmCJHITFSgFWf4hObxC6g4gLex0xcZvTAE3lqqEhihO0mdFMArVAEFY6Coz8hpzPR2xkpC64jYGKWAw4AvdeR38h7fYGKOUzgSWsRKSkz4y+R5M2VHqbhiDwUtpFzUBwJMGMYFJDGaCni5mGkVWHMfY5AJ8bu+2XfT9/CMCHJjz3EwA+YeI4RDAqYZxMDeko+SoZwbJ7YW82bVSWkg8EIoZzgDM3oFLIoq1RNTQpIyhpVK90eoPI883vT3IqFF9oZO0lOExlBI7JYgRFIR0Iwm09CrkMchkyutDxUtqoyX9RWK05n0cigSCSGpqNQHDoOou5/WwYNaSTrskMpeFYrJofTSgD0UAA6JmJ8Z1pEHSqV0QygtoUqKH1hoVCNoO5slpwnysboobsYSh15liAy2kzYXYh3usapj54QYVsl/Y45so5FLIZrMfYzT/KCF4a1NChCwT8gp8oWmqmazJDaTg45zmtyiGpQFDIqlND/cllu1rUUE9AI3C/kI0EB4GsNy2s1ouR2sskzJXMUkOTUFIw/BNp4tOZMRGE0Sxw8U1WEIgIq/VivBmBpxGEnJ9CTtm3yzQOXSDoRmQE5UJO6+JtvtwDQTGnTA1Ncn0FRs1Oqo1Nk+yQOXiGljQ1pNP8ZCwjiKiqUqOGJlcicZje8fKMWVcjAICVuAOB1XemIAaUSnOU8xnlbnrTOHyBIGInU85nYQ/UrZZFUsJx8FR3GoFgOGRCYyo5dCZPhYnF/HaVINwVyAhG1FByTWXrDcurUFEBN8rTrSZr231UJgztAdR27vzxQXYh3usasGvxY6tto5DNBPqEyeJIzIGAjwYNywYrhRzami4GpnAIA0F41ZDuCLmWPUAhlwlsmpqEuXIO2QxNJRA0LMeCWoYaUv1yh2oEGvXsbbsfaJ/gR7WQBZH5TtcwbDQ1A0HZsXJW7eTm6PSGEy1VADXDP55ZR2UEunYtfuy0elioRJc5i2C1XozV8deZRRAesFKxeIqIqnbwFiTFD6htR18A4yAiZ1j5FMRi3rAk2gldLea0vIYmnndFjYDXs0eV3RIRasXk/IYGQ4atlq08ZB0YfSa6TWVde4By2M49L18pF2ZbwWHCrsWP7bbtmfHpYrVWxGbLVs78oxDmzMpR0XQxMIlDGwjCqCFAIyOw1HoBlqdkM8HtJURN8qoFDWqoP4w+75JfjK4dXs/ux1yCU8o2WxaGDFp2CDxL09UJovpTlDQCgYxA165lHNtt25vToIvVehGMxUfHNq3JPkwc/LxPq5HUj8MXCFwLg0ncpq49bNjA6jAsVvNTDQRSYrHGJLFoakhuh8Y51qjyUQBuRpCMRsD5Z62MwDOe0wtebXtgvLqnIxCAde1axrHd7pnLCLzu4njoobbVn+gzxFEuZMGYmq2KaRy6QGBFZAQl3UAgkBIGYVrGc7KBoFbMomXLz6JljKHbn0wNcasD2YUjbAzjOGol9WxGFhvu6FFdsRgwQA1FiOlxNJQB5quGdtq2djMZh+c3FJNO0LKjmQHeqT8L9NChCwQeNTTJhlqjnh3g089egoFAsDa7UsyBMfmL1x4Mwdjkjm5udSB73keD2aMDQT3BQMAzAh3LZN6IpkMNjczhDGsEfYGqobxeKbYfjDFst3tYMkUNuZ/LekxzCVqCYjFg1oZDFYcuEHR6A2QIyGeDKw90B0a0rL4QTTGOpUoBO50eBgnaJANq1BAgP4tWhMtXqaIQ2ZlyJCkWe9TQlDMC23XbDdUI8ln0Bgw9CeG0aw9AFGxkx1ExyIHvdfsYDJlxaiiujEBELOa9L7NQOXToAkG35wiWk0rQtMViDWqIMTMTqWSw1+khmyHhSifVcZWi4qLseZfLCJITizeaFiqFrNK1wGFiJoFoAAbkNj/d/hCl3OTvEX/dwZDBNlCZY8pniKOUz6Jeim9EbNMSqxoC1NcakziEgSBcONOZ4Qo4/utqYjFvKkt2drGoBTVHRTGdFfGmKeUz8hqBREbgDLBPTizWnaSVc5undDICkfNTUliQwoR/Dh3/qHF4PkOGqCEAsdlMDIYM3d4wkiKepbnFhzAQDCf6DAGjL4UyNWT3lTUCANhqJZsRyNhLAOrprIg3TUlhgH1HIiOoFXOw+kPYCVRp6HYVc+jaTITNK+ZQ2fyIdHObXOhGPkNmMgIAWKnG01TGadOoDWFJs2fJJA5fIOhPHlwP6A3z5jsBlT6CpSlmBKI9BIB657WIN005n/UoJFHw4xDRZTwr6gQE442mpVU6yuHYTKgfL8/cyhEWE8DoMxJBJyKzBvxiqP5C5/kMGQwEy7V4CjT4VLZIamiGBtgfukBghQyuB0aupLK2vID4TiAI08oI9mQzAsWSt9EciPCdqcxiBEiWj/JRmwnoBOua9hIcc+WcVkbgiemhFhOZfY8Ve93JzYEcFYNiKB9Ko2tB7QefDGgaTUust4WvQy8bjYCI7iOip4joIhF9MOD+XySiJ4joMSL6EhGd8d03IKJH3H8Pjj/XNJwLePLb5kOllVwwBXcCQeA7naRtJmSpoYpiOitGDanbIYuKxQDQsOINtlZ/gJ12T1sjAPSH0/ANjYhGIBcIojUCXd8uP7ZbNjIk5+obheVaEdtt23ilXtsbXB/dWQy8TAIBEWUB/CaAdwC4G8B7iejusYd9B8B5xtg9AD4D4Dd893UYY691/71T93iiECUWA2oLEjDKCFTKR0v5LKqFLDab0wgE4l+u0QhCufNjCYiWRYWqoY7tlAOH2f1yJDW3eNNAMxlHXXMmgZhYLN/MFzZtjsNknfxOx8Z8OR84blMVy26lnunNV1NgcD2gX5hiEiYygnsBXGSMPccYswF8CsD9/gcwxr7MGGu7v34DwCkDf1cJ3b5IIFAbVykyni4Mi9VkjecYY9jr9hWpIdmqIYEyxnwWlqzFhNvBKVL1lNS4Si5AmggEut3QnkYQ4T4KKGgEIRQrYLZqaK8jd52KYLkWj/07ZwYiMwLNwhSTMBEITgK47Pv9invbJPwcgD/x/V4iogtE9A0ietekJxHR+9zHXVhfX1c+2ChqCFD3SGlpUEOAs0OJg7OchKblNOnIVQ3pUUNRO1MVakjEcA4YfTHjpoZGXcX6fHatmNcKXGIagXOfJSHUi2TWJquGZIsaRMB1OdOVQx4zEKEV5rOErOG5zqpIdFI6Ef0dAOcB/Jjv5jOMsatEdCuAPyOi7zLGnh1/LmPs4wA+DgDnz59XJvU6tthORmUX09YQiwEnI0iSGpLtKgZGQ8llR+wJ9RHk5DOxjsAsAo5aQhmBia5ijnopB3swhNUfTBzqEwYRMV1NI4gWiz1qyMBCJ6tliYBrOKYzgpZgRsBtVVQKU0zDREZwFcBp3++n3Nv2gYjeCuDDAN7JGPNCMGPsqvv/cwC+AuB1Bo5pIqz+YKLfDYfKoA5gNEBEpXwUSN5vSCUQAKpWENHUED/vMpYEnd4gdPqWH55lQ0LUkAmxmC8msp3cHNzNNUy34pVyMtSQmFjsHLuJcYx73fgyAtObr5Zg1RCgvtaYholA8BCAO4joHBEVALwHwL7qHyJ6HYB/AycIrPluXySiovvzCoA3AXjCwDFNhBA1pKsRKGYES5XpBALZL5jjKim3mPKLPcybplzIYsiA3kAmEIRP3/Kj6GYzcfcRrDcs1Es5YcoqDLolrx33cwo77yqdxSINZaqlxkGQLXMWwWKlACIYp2NHRSPRG5RyQa0wxTS0AwFjrA/g/QA+D+BJAH/AGHuciD5CRLwK6P8CUAPwH8fKRF8J4AIRPQrgywB+jTEWcyAQuIAL8vXsgNq8Yj8WqwV0eoPEqgj2FDOCisIsWsvdQYaJunyxkmkq69h9z7MlCkTkOJDGTQ0Z6iEAfLOWFXWNjnu9h513WWqIO5pGBbpshlDIZbTn8jLGHI1AcIqeKLIZZzLgpmmNwOqjnM8iK1DhpEpDm4YRjYAx9jkAnxu77Zd9P791wvO+DuA1Jo5BBP3BEP0hi+Y2FdM1vjiKLkzjWOZNZW0bJwtlpdeQgTI1pDLIRKhsd7QgiX7pO70BjtTFj7+WgN/QRkNvRKUfdd2MQKDMM5shFLIZ4c1Pb8AwZGK9GybGVXZ6A/QGckUNoohjMmDLHVwvAtW1xjQOVWcxn04WRQ0V8xmli7dl9x36QWJwvR/ceG47IXpINRBUFKqqRDIxLxBIiGdtO3qh86NezMdPDTUtrRGVftQ0bTE69lCo67ooUbElQvNxmJjLy/so4ggESzEUaMhMKXw5aQQvGUTNK+bQ0Qh0bId5RpBUCelup4cMyfc9lBUmTwlVmfBAIFPGaEcHGD9qpVzsYvF6w4zPEODTCFQDQa8vFChleme85kCB11UpLBjHSMsyX+S4Uiti07C/V8sSH07l0NBpIEgUUdPJOJSpIUULao5pZARzCt2aKul+pzeI3EGqeN60BTINP+rFeDWCjj1A0+qb1wiUxWKx8yOz+ekIfo8AR0/S3fGqZq4iiMNvSCYjmBWN4JAFgvDB9Ry8oUx2spKqBTVH8hmBWrdmpZCTFgBFLAmUOlztgZSlR72Ui7WhzGRXMeBQWYBORiAWCJxmPrHzLlIKzFFWqDAbh2pRgwiWawXstHvoGxiewyEynYwj1QimAFFqqJTPgjHAkvStb0suSuOYK+WRzVCiGYHKl6uksIuxesPIHaSs581wyGD1oyknP2oxVw2t8WYyQ9RQKZ9BNkMa5aNiGkpJwgJcZMYBh4kdb5wZgb9AwxSalviGsJRSQ8lDRiMAIO17IzKeLgyZDGGxkk9UI1DLCOQ1go5AA5JsGaPMLAKOeskRi03M0Q2Cya5iwCl5rRXV/YaEM4Kc+IItSrECatfKODyNwHD5KOA4kAJmu4vbtjhFnFJDU4CX0kZy1Wr2sG0JkWgSnO7iZIbT7Cn6t6gMJZejhmR3phIZQTGH3oBJZ3uiME0NAc4xK2sEAucdcKuGBM+JpxEIisXGAkFMGgFgtru4afWF3QU4NRTXxkQUhywQiC0cPOWVDQQtux9pNBWFxUoB2wkNp1HNCMoFhzqTsiToR3s8SQcCiaE0HHMxW1HzjIAvMCZQL+XQVG0os8WoM8f5Va5qSDQj0KU+9ro91Is5oQYtWXBjQFNZOGMMbXsQ6TPEodJNHwcOVyDoy1FDsilbS4IbnITlWsF4OVsQeLemEjWkYEXdsYfRHk+SnjdKGYEXCOIJthtNC4uVPPKKvSRB0KKG7L6w500cmZhKF/o44nAe5ViqOpmbqe5iqz/EYMiEN4Sq7INpHK5A4FFDYjtT+YxAvKNwEpIynmvZA2kLag6V4TSWoLUHIJ4ReJ3cUtSQXhVOFDaalhGzOT9UBW5uBRFf1ZCgWNwbYKgxBUyVwhTBQjmPDJmjhrjNjHBGMCMzCQ5ZIIi2QgbUPpzeYAi7P0RVo2oIcIzndjo94+PzxqFTiSG7YAN8IFCENpOTKx/lGZtM1VDcU8o2mrb5QFDMoaEQuOzBUNgKQqbDVYaS864ViSbBcThDaeJxzM9kyGgvwWhzIkoN8RnpaSBIDKMB6mI7U5kPx7sADGQEjAE7MU8q222rBwLZgSP9wRC9AYtcODKu543wguT2Mkh1FhfjDgTm7CU4VI3yuFWHqEYgGthFKVbAzHCaOGYR+LFcLRqjhprelELxqiEgpYYShSXoNaRiddCSvAAmYSmmYRnjMJERiH65Rx5Phj1vbO61Lx58eQlibNRQwzIymcwPVY2AN/2JUGfFfBZWfyhUvcIzNpE50SbGVcbhPOqH2YxAzoE41QimgI49AAkMOlcZKi17AUzCUiWeOarj2OvqZATOe+wIdheLUnKAW70i29gk2VAGxCMWd+wBWvYgBmooj7ar6cgeDyB2fvhnI1JW23XtQkSsSUbXyuxmBEu1grEmzqY3rlYuIzAxvEcHhyoQdN2B21GDzlVG97UkL4BJ4GWHM50RSA4ckeHyneoVUY0gejD7OHQHvYTB6yGIQSwG5LMYr95fsKEMENv8iMwr5tClhuz+EJ3eIGZqyGBGIDmTxKOh04wgOYgIloDahyMzlSgMy4brmidhT6NJR/bLbUlwyiUJC3CV8tFCLoNiLqMkvkZhnY+orJulhuqKDqR8IyNCDcmIuiKW4hwlb9Ogdr69zLUSLzW02+mhZ8BvaKQRHEJqiIjuI6KniOgiEX0w4P4iEX3avf+bRHTWd9+H3NufIqKfMHE8kyBihQyM6tllhkp7GYFmIFhwL/gkMgKi0SIjA1kxXcakTMbzpq3QUAa4xnNxZAQNc7OK/fAyAslj9s6PUNWQeA+HyLhXjopC4YUfcdpLcHC/oW0DBRr8nMuYzgEvg6ohIsoC+E0A7wBwN4D3EtHdYw/7OQDbjLHbAXwMwK+7z70bzozjVwG4D8D/675eLBDdyeSyGanqFcCvEegdfjGXRb2YSyQQzJXkLagB+YxAhsuXbWwq5DLSHaf1Uj4WjWDd4NB6P0YzCeSOWUoj8Ep3Z4saitN5lIM3lZn4zjUlBtcDajR0HDCREdwL4CJj7DnGmA3gUwDuH3vM/QA+6f78GQBvIYeovx/ApxhjFmPseQAX3deLBd1edHcrR0miegXwawT69c5LtfibynQEuBGfbF4sltMI5GYRcOh06oZho+F8Zsumq4YUex+kNAKJBanbF/8e6XLgcfoMcSxW3SzcQFNZ2+4jlyGh6W2A3Pm5cGkL/8PvPYxrOx2tYwyCiUBwEsBl3+9X3NsCH+MOu98FsCz4XAAAEb2PiC4Q0YX19XWlAz06V8Rtq1Whx8pODmrbcjuBMCxWZjsQZDKEssQIQimxOCdTPqpm+x3XAPuNpoX5ch5FAQ8eGSShERQlLMC79iDSuJHDqxrSpIbiaigDnD4CwIwu17KcazKqIIVDhoa+vN3Gn3zvRiyGifGdXcNgjH0cwMcB4Pz580pttx/9qdcIP1Z2lugoJdQ/pcvVAq7vdrVfJwy6JXmVQhZt4QYkSY1AghpSzQheaLalnxcFx17CbDYAGNAIBBvKADHr9W5/gMWK2Ps0RQ3FmREsGdQIWlZf2F4CkKOhZaw9ZGHiFa8COO37/ZR7W+BjiCgHYB7ApuBzpwJZn/C2S1OYcEhMwm9INxCUC1nh2mfZPgIpakghI6iVYqKGYvAZAtTnFstUVUlRQwKzJTiKuQyIxGnEcfD50nFqBItugYYJvyHHgVhuMyhKQ8vMgZCFiUDwEIA7iOgcERXgiL8Pjj3mQQAPuD+/G8CfMaeF8UEA73Gris4BuAPAtwwckzZkMwKZOaVR4IEgTo9yXSMvmYEjogOBnMdkpCZlqWQEc6W8V5ZoEhtN27i9BDCqRJPVCLpuA6UIX+0FAqHy0aHweSeSoxHHsdvpoZTPGKfb/MhlM1io5I1svlqWvPFkWXAGOKeEokbtqkCbx2CM9Yno/QA+DyAL4BOMsceJ6CMALjDGHgTw2wD+PRFdBLAFJ1jAfdwfAHgCQB/ALzDGpj+uB3LeKwAfU2mGaVuqFmAPhmhJ+JrLgFtQz2nwruVCTpwakqwaEs3E2vbAM5GTAReLGWPCXK4INhqW8WYywNFkVARunqWKvEdvTKgAVy1TNQTI0Yjj2G3Hay/BYSoLd6zo5YKW6NziODMCI6sMY+xzAD43dtsv+37uAvgbE577UQAfNXEcJlEuZLHWEN816o6p9MPrLm7asQSCTm+A3oBhoazOZ1fyWYmqIRmvoZHnTdQC1u0NcERhB14v5cAYjAbabm+AhtWPRSMA3OClUDUkunOXcdyVDQSiO94g7HXjtZfgcLqL9Y3nWvYAi5JDiUTZh25viEJWzNpDFoeqs1gGMlw14FQN6RrOcXjj82IaULOj4TzKITOCsNMbIJ8lIf3EEy0FKiPailVDquJrGDZi6iHgUNE1OhILthQ11B9K0RPVQk65szhunyEOU5V6ShmBYIUi93iKA2kgmICihNUB4JaNGc4ITFQxBIGX5C1otO3L7PJkdpCjDtfo1xadxzuOuudAak4n2HCFxtgCgcJMApE50RxFwelwgyGD3R9K0RM6c4vjnE7mx7Kh3p22Lc8MiBamWBL9G7JIA8EEyGoEKjuBSfDqmg0O1PbDREZQkRAARa09ADnvlY4tR1Fw8Lr8PZMZAbeXiEEsBnjvg1zgksmYiJwmqKhrXsY3iqOqMa4yqYxgqVrAdrunNUkNUKOIRTUCS6JaSxZpIJgA0Q+Ho21gTCWH1+kYUwmpjvMoh1M1JN5ZLHoBi3re8DGMs0cNxagRyFJD9kBq5y7Sw6FSy66TEewlFgiKGAyZVjXZYMjQ7Q2l/cZKBUGNoK+28RFBGggmoOx+OKIlnC2DGkGtmEMhm8FWbNSQ87p6GkFOOFDKuFWKipa9AcNgGD31LAhxjKuMXSNQFYslrkmRLFimAoxDZtPgx3DI0LD6yVBDVX3X35ai31g5L9aT0+0NU40gaZTyWTAmJloCQNugRkDkzFE14X0SBBMaQaWQRW/AhKx7ZTSCoiA15BmqKZTsqpq4hWGjaaNezMW2Y6uV5DUCWQsOkQH2Mj0hHBVFaqjR7YMxYE6hRFgWJuaAtBX9xoSpoTQjSB4yLfd2fwh7oD+43o/FGLuLdzs9ZN3adFXIWAdIVa8IumCqTCfj4GKxyYxgPYZZxX7Ufb0PouB9BKKIixqqKJaP6kzRk4VXqaex+ZJ1HuUoi1JDEvbfskgDwQTIuAKaGlPpx3K1EBs1tNN2eFedZiqZmQRyYrE7MjEiAOuY/MUxwD6OWcV+1NzeB5mdtUzVEOBkY1HXOy8vlaleqRSyaNlyQQwwo2WJgjvGamUE7jUpu8HijrtR54dPWIwDaSCYgJKEG2OLD6Mw1FkMxOs3ZKISY5QRRC+mzgUsZ8srmhGopMrZDKFayBr1G4rLZ4ijVuQlr+LHLJsRlPOZyADMuWyZBalSyEnRrBxJWFBzLHqzwtV7d7gVvazDgGjvjCXZvyGDNBBMgMzkID6ntGLIawhA7BqBbiAo552LXWSHKrMz9WYdCGsEaue8VsoZHU6z0bTjDQSSArdKVZXIdLiuVz4qRw0B8g6kSWYEpXwW1UIWWy31a6JlqWUEZc/eI1qoTzOChCFTzy47p1QES9UCGlYfdgze4yYzAmFuU/ACHrlghr9v/ndV5z+YHE5j9QfY7fRiDQSyMwk8Ll8mEOTENQKpaiT3sS3J853EdDI/nIFQGhmBrbYhFKWhZQZrySINBBMg470iO6dUBHF2F++0e1oVQ4DcLs+pf5btIxDMCBS/GM64SjOBgAuMpofW+yHb++AFSimxONoXX8X4jG+QZKeUJZkRAE4vgVb5qOLcctFNp5VaTCQPGTG0pVgtEAYTVQyTYIQa8s5P9MLUsQfCO1NRzxsZr/0gmBxgH3cPASBf8joS08UXJcfzJqp8VNxAkKOimBHw6jaT36swLGvqcvz9qfQRAALUUFo+mjzKggsS8NLKCIZu9+SCNjUkphEMhwyWhDcNH2QS1WCjnxGY0wh4IFiNsXxUttLJ27nLVA0JUUPqGoFsCSl3HjVpFR4G3QINVYpYpEBiMGToDdQaKEWQBoIJKEmIxU3FnUAYTHQ6BsFr0jFWNRTlTSO3g/Q8byK0Ef53Z0Ej4EPr45hFwMG7oUWP2Ts/kn0EkVVDCl5DopuGcex2+onRQgC3olYfCMX9xmRtossC1JBKAJZBGggmQGZ0n9dHYFAsXvRmEpi1oh51Fevx2aLU2ciSQPxSE2ls0ikfBRyNwJTX0HoC1BDPNoU1AoWqqlI+A3swxCDEeI1najJctScWS9pM7HZ6iXQVcyxWC7D7Q68cXBaqM0lENp2613sUtAIBES0R0ReI6Bn3/8WAx7yWiP6CiB4noseI6G/57vtdInqeiB5x/71W53hMQqahjItEJtO2xUoBRMBW2+xIxR0DPkPAaKcZtctT2UGKeN507AEygmMYg1Ar5tCyB6GLnig2mhaqhayyXiGCfDaDUj4jnhEoaCgim59uf+jSd+K7Xp4py1JDSVlQc3h0rGIW3pQcXM8hIhareDzJQDcj+CCALzHG7gDwJff3cbQB/Axj7FUA7gPwL4howXf/P2aMvdb994jm8RgDb4ASGd3XtvuoKKSEYchmCAvlvFY5WxBM+AwBzpzXQjaDdi98YeJffplA4Exsii4fFR3DGARZqiUMcc0qHketmBf2G+oqaCgilXKy3coAUJHoOfGjkZDzKIcuHdtSzAhENAIu0s9qQ9n9AD7p/vxJAO8afwBj7GnG2DPuz9cArAFY1fy7sYMvdGJ9BOYsqP2Io7vYxCwCjkox2kNGxZtGxBe/basNpeEYOZDqZ1yOvUT8gcCZSSCpEUhSQwBC9RmVpqaypyfJU0NJBoKR8Zza5ssZXC9/TYpUDamY/clANxAcZYxdd3++AeBo2IOJ6F4ABQDP+m7+qEsZfYyIJn6biOh9RHSBiC6sr69rHrYYHDdGMY3ApOEcx3Kt6AmRpuBlBCYCgcBwmlGZp3igFDM/0wsEKpYNk+DYS8TXQ8AhI3CrmPIJUUMKxmeFXAb5LEllBIyxxKkh3YFQqtTQSCwOD8D+x5pG5CdKRF8kou8F/Lvf/zjmSO0TCVciOg7g3wP4e4wx/o4/BOAuAG8EsATgA5Oezxj7OGPsPGPs/OpqMgmF6CzRljWQ9hcRwWqt6JUmmoJJ/xaRcZUqF3BZoHqlI+mjMw6TMwni9hniqBXFS15VxOJiTmxnqrIrLUtMtAOcQNYfsmQzAk3juZatFgi4zhWuEcj3b8gg8qgZY2+ddB8R3SSi44yx6+5CvzbhcXMA/guADzPGvuF7bZ5NWET0OwB+SeroY0ZJ0Cfc4QbNf0ArtYJXkWIKu50eSvmMkQuqIjCUXKXev5TPeDOAJ6HdGyjNIuAwNaWsNxhiux2vvQRHrZTD5a220GNVMgIeNKyQ3plOb6BkcyByrfiRdFcxAFQLWRRyGeVA0OyqaQSZDEWyD6OqodnUCB4E8ID78wMAPjv+ACIqAPgjAP+OMfaZsfuOu/8THH3he5rHYxSiQ6UdsTiGjKBeRKPbl5qdHIWdtm3syyUygnBEDZktH+3aA6mS1HHwskTZYS/j4ItGEmJxXYIaatsDFLIZ5LIS511ggL3VGwo7yfpRKcplBF7mWkouEBCR10ugAlVqCIhea6ZODUXg1wC8jYieAfBW93cQ0Xki+i33MX8TwI8C+LsBZaL/gYi+C+C7AFYA/DPN4zEK0YxA5wIIA99lmmwqMynAVQQGaqjUP4u4YLZ7esGXawS6YvG6O7R+NQmNoCQeCGTmRHOIlY+qUUMVybnFuwaLGmSwWCkolY/2B0NY/aFy0UjUlLK4xWKt1YsxtgngLQG3XwDw8+7Pvwfg9yY8/806fz9uiNSzA3xwfRzUkBMINhoWTi6UjbzmbqeHhbKZRatSyOLKtnmNgA/qCIOuRmCKGkrCZ4iDzy1mjEWWzapkqaL17Crn/aVADQHOgBqVjVdLcUwlR9QAe/49mtXy0Zc1REfINa14qCFON5gUjHfa5ioxyvmcuFgsOztXwGtIZ3dULWRBpC8Wcy0jKY2g73o3RaHTG0pXVY2cX8OqV9TGJcqOq5xWIFAt2W5608nUrsmoAfae/feMUkMva5QFdqaMMbRio4acnTunH0xgu21jqWqOGooWi91qB4nacxFqSHboyjiIyIjfkEcNJaQRAGLBq2P3pRcN0YYyVWpIxrrhpRYIRkNp1I532tRQGghCUBIQi63+EENm1nmUw6OGDGUEjDFst3qej5EuRHjfjuuhLtN1Xcpl0Rsw9AeTg3BHs48AcITIPU2NYK3RRbWQjeXzH0dNohta5fwUYw0E0dmjH3vdPohGZb5JYblaQNPqh1ZOBYEHZ1WKOIp96PQGyGYIeQnxXwZpIAiBSENZHM6jo7+fRb2YiyylFEXbHsAeDLGkaTjHUS5kYfUjTMoUFiReYTSpw3U4ZOj2htppMufcdbDWsBLJBgBfE5zAMbdt+YyJUz5h1JMzJUuNGpLRCPY6PdSLOaO2LSJYcpvKZLMC1TGVHFGbThPXexjSQBCCqHQN8A2jiEEjABydwFQvAb+4TWYEQLi4qCLqRlWvcNpINyOoS1ThTMJ6w8KReknrNUThzSQQGE6joqEUss4siEkL0mDIYA/EZ0v4UVaghuY1/bBUoDoQajSURr1qKLpaK77lOg0EIeDpWpg/uW61QBRWa0VsGNII+JAbcxkBNxObvJh2FKpM+EIz6YuhO4uAo2ZgStl6w8LqXDIZQV2i0klFQyGi0AXJUnCS5agWcrD7w1C6z4+kfYY4VAdCNTUzAhGNoBjT4HogDQShKOWzYCw8VeYe63FQQ4AzB9eURmA8IxD0UZddOIoR1SsqjqZBMCEWr+11cSQxakhCI1Asrw0T6keVK2rUEDCyx46CM4tgeoFAlRpSzggiqqp0vbWikAaCEIhUUTQ1L4AorNSKxjQCLyMwTA2FCcZKGkHEeVexTwiCM8BeXSxuWX207EFi1JCMdXZH0Z21lMtMDMA6lSsyM8CB6WUEy4rUkK5WGNU7o1q2K4o0EIRg5BM++QNqu9RQHOWjgBMIdjs92AK141HYajmLnkmxGAgPBA5XbbbDdTQjWl8j0KGG1lzKLrGMQMIoT4WSA8K76XUCQVVyXOW0AsF8OY9shqQzgqblWHqo0jflfDZ0OpyK/bcM0kAQAr6AhXF3PCXU5asnYWQzoU8PbbdsZDNkrCSPN9FFUUPqYnFw8Gu757yc13sf9WIOVn+oHGST7CEAHHfQQjZ6SpndH6I/ZErXpDO3OJwaUtmZeuMqBam4aQWCTIawWMlLdxfrGk96lXIhWXBKDU0JIgMjWraeSBQF3lRmYi7BVtvGYiVvrCRvRA2Fi8WyO8hRh2v8YjGgPpNgrdEFABxJSCwGXL+hiIxAZ76tUzI9QZvxbA7UMwKRTv1ubwC7P0x0FoEfTlOZ3MZLdToZR9QA+25vmIrF04KI98ooI4ivfBQA1ptd7dfabtlYNEQLAWJznbsa5aOTXpcLjrrUkCe+KtJDa3ucGkpGIwDEBO6OFyjV5udOrBriAUaxfBQQo4am1VXModJdrGs8GTXA3lIwEZRBGghCICYWO9xgQXGIehRWPeM5AxlByzZWMQSIicUqKW2kWOxmIDrzCABHLAag3F281rCQzzpUQlJwhtOIZQQy1t8coRqBVz6qUTUkkH1NOxAsV4vyVUO2ZkYQMbdYVfMRRRoIQiBS6dC24xlKw8E1AhNNZTvtnjGhGBAbSq5yARcjZufy3o2KdtWQPjW0WitGOoGahGNFHR64OFWnoqGEddN75aMKlJyMWLw35UCwWM3LZwRdvYwgmhrSM1mMQhoIQhD14QDxOY96x1DIol7KGTGe22qbzQhGgTJ4IeVWEPIagTspK6p81EBnMaDuQOo0kyVHCwFiw2lUHF85wsoYPW1GIcDIDLCfdkawVC1ip9MLtU4Zhy41FKVHznT5KBEtEdEXiOgZ9//FCY8b+IbSPOi7/RwRfZOILhLRp91pZjMDkUEdcTmP+nF0roSbe3oagWM4ZxulMQq5DHKZyUPJeSOetB1yxOzctt1HNkPerFdVjBq01Kih9YblUXdJQUQs9jIm1aqhCQ1lI0pO/nVH2dfsawTL1QIYk+subll6M0mKIZtOxphS0YUMdEPMBwF8iTF2B4Avub8HocMYe637752+238dwMcYY7cD2Abwc5rHYxQigSCuoTR+HJ0rageChtVHf8iMNZNxhI2rVG38ymcJ2QxN7HBt2wNU8lltSoZrBMpiccNKtGIIEBOL+a5bxf+qlJucEehkYkV30yASdKcdCFS6i01VDQWtNXxDNcuB4H4An3R//iScucNCcOcUvxkAn2Ms9fwkIFIV09S8AETgZAR61BAfv2eyaggIHziiGgiIKLTDtW2Zqanmu9Q9hUBg94fYatmJNZNxiPgjjfyv1MpHJ1Zr2eod3USEqqDbKw8ESVtQc8h2Fw+GDA2rr2WJEbbWWL3ZDwRHGWPX3Z9vADg64XElIrpARN8gone5ty0D2GGM8SvjCoCTmsdjFHxINx+uEoSW1Y/NeZTj6FwJa40uhhKc5Tj47sZ0RlAp5Cb6x3ieQMpc9eTyURPBd7RLlQ8E3P8pydJRQKwJbuR/pcDl57MYDBl6AeZwHduZLZFV7EOpFXNoCFYN1Yo55GLy3o/CUk0uI+DBTafvYaQRBJx3ry8kvvMReaUQ0RcBHAu468P+XxhjjIgmrVRnGGNXiehWAH/mDqzflTlQInofgPcBwC233CLzVGXkshkUspN3SADnBmMOBPUiegOG7baNZUVOmvOdJsViwHVNnCAAqswr5ggrY1SZvhUEInJtJuQ1gvWE7SU4uK7Rsvoo5II/Sy8jUOwjAJzPbnwIim53a72UE+osnlZXMceIGhLLwnn58ZxGBhNWmKLzPRJF5JEzxt466T4iuklExxlj14noOIC1Ca9x1f3/OSL6CoDXAfhDAAtElHOzglMAroYcx8cBfBwAzp8/r741lkTUcJpWzOWjgJMRAMDNPUs5EHDjumXjGYF5jQBwzrs1gRpqWXpjKv2ol/LY68hnBGsJ20tw1LiuYfUnBvWW1UeG1HaQ/rnF48kO12ZUIer2utcxN1dbBZw+5d5cUfACgcYxl0IsJnQ6xUWhm2s8COAB9+cHAHx2/AFEtEhERffnFQBvAvAEc0z+vwzg3WHPnzbKhfCBEboikQiO8EDQUBeMOZVhesh6pZibHAg4p6zY2BRGDZnyXVms5KW954Hp2EsAvuE0IVx7y3boShUxPWxcpaqjKYdIxRPAM4Lp6AMAkM9mMFfKiWcE7kZCRyMoZDPITBgK5GkzM+w19GsA3kZEzwB4q/s7iOg8Ef2W+5hXArhARI/CWfh/jTH2hHvfBwD8IhFdhKMZ/Lbm8RhH2MAIuz9Eb8ASKB91FpubuxqBoGGjWsgav5iqhezEdF/P8yacGjKlyyxUCthpy1NDa3sWiMwH1iiINMG1rD4qGnbIwOSdqVYgkNAIpkkNAcByrShsPDfKCNSvST4UKOia9yxDpkkNhYExtgngLQG3XwDw8+7PXwfwmgnPfw7AvTrHEDfCZonG7TzKwQVJncqhjabl+RaZRK04mffV0wgyIX0E5qihpWoBz643pZ+31uhiuVqIbZj4JIj0PrRsdd1qVMZ4kJZr232lZjKOulRGMN1AIOM3xDuhdQfpTBpg39YQ/0WRdhZHIGxnqlOdIYNCLoPlakGbGopj91oN2eXpTBIrR3S4mspsFip5pYzgxm4Xx+aTrRgCxGYS6FSyeRpBQA+HNjUkrBH0X1qBoKtPDQEuHRqw+THVSR+GNBBEIGyGq051hiyOzJWwptFUttGMpwuWZwRBc535sHKVQFkMGZnYtvvGMoLFSgFNqy89k+D6bhfH5spGjkEGdQGNoK3R5RpFDemc91oxj7Y9CLVusPtDdHqDqQeC5WpBnBpyM4KaZt/DJGpIp1NcFGkgiMCkdA3QH08nA6e7WJ0aWm9YWKmbd/ColXIYsglUggZ1VsoF744Grn+RKX8nbrmxIykY39jr4th8svoAIOaY2tLQUMLsPdqKc5A5ROY/8M9hwXDjoyyWqgVst+zADc449ro91Is55f4KjihqSIeWi0IaCCJQDtEI2jEPpfHjaL2EG4oZQW8wxHa7Fxs1BACNAM66ZQ9QyGWUePRSPhPoPsq/KMYyArcEc1uCHur2Bthp93B8PvmMoJR3elvCSl4dsVh1iPpk51d9ash5blgg2GrH0wEvi6VqAf0hE+o6b3T7RspdJ+mRnZdA1dDLHmFujFz4ilsjAJyMYKNpBXZ8RoFznXEEgrrX4BS8k6kqXryTKDlvd2SQGgLkDMZuuNVbxxJ2HgWc6pK5ct6zYQhCyx54i64s+BSsuKghINzbadut3U9yxkMQZPyG9jo9I3YYE6/53gD5LMU28wRIA0EkKoWsJwqPg/O0SXiinFgogzEomc/xLtg4M4KgL7eODxPvIxhPzXWmbwVhQYEauu4GguNTEIsBYL6c83jpILQ0rNEnWYBzB0wz1NDkY58laggQ6y7e65ppgJukEbQtM530YUgDQQRqIW3xnKeta1YLiODEgkNDXNuRDwS8mWw1Bo2gGpLut62BVvXKkAH2WAZkal4xxygjEKeGbux1AABHpxQI5sr5iRrBcMhcR1y9qqHxBanbG4IxvalwIs1w/HNYrE5bLHY2TSLGc3udvpa9BMdkjWAQ68wTIA0EkagVc+gNWKBHO7+gk9AIeCC4utOWfm6cGUG9OLI8GEfLVm9s4hd+e4xyamt44gdBjRpyzuc0qCHAsWeeRA1585w1KDngoPmZCW2GZ85BNCLH9qxoBBLGc3vdnnbpKMA1goCiC01KTgRpIIhA2IDzhjueTrdaQAQntTKC+DQCnhEEZU1tWz0j8MzVxmi5tmFqqFzIopTPeDbdIrix28FcKZeINhSE0EBg6elWOXf+9vgksdH4S70+AiCcGtpu2Sjns7H66ojAs6IW1AhMUUOTrD1UN1SiSANBBKohYmija0YkEkG5kMVStYAr2x3p5240LVQK2VgWrrCSQMeHSe0CnnTeTVNDgLP7lKGGrk+pmYxjrjQ5EJgoaQ5q/DJRuSLSDLfd7k1dKAac3XmlkI3MCIbeLAIT1FCw07FuR7cI0kAQgVpIeWSj2090eMbJhTKu7cgHght73dhojNEuL5gaUs0IJmkPnZgCgYxYfHOvi2NTKB3lmC/nsdfpBda48/PFK3RUUC0edJQ1QQ3xayGqj2DaQjEH7yUIQ8vugzE951GOSbMgTHbST0IaCCJQC8sIrF4iQjHHiYUSrqoEgt2uZ2VtGuV8FhmaQA1Z6imt33ffj9FCZy4AL1bz0hnB8SnpA4ATCIYseEFteHYH6uenWjiYEfDrX2dBymYI1UI2tHx0q21PXSjmEOkuNmUvAYwqtsazApPeWpOQBoIIhJW8JZ8RVHBtpyPU7ejHjd1ubKWOfARhULrf1PC84RrAeCDwBHqD532xEr3z4+gNhlhvWtOlhlyXyyB6aK+jX8lWDTAS5IGhrpFpAK4VdWhG0Ju6UMyxKOA3xDNJHedRDh5kxzvqO2nV0PQx6oYMrhpKOiNo2wMpk7ThkLlURnwLV5ADaX8whNUfKusSkyinptVDNkNG66pXakWsN8XsO27udcHY9HoIgNFQ96DuYhO9LdVizvOJ4uCfr24ArofoG4BTNTQrgUDEeG7UAKd/zJOmlJn01pqENBBEIKwbstHtJVI6ynFqkZeQitNDGy0L/SGLPxCMV5locsqTqpGabqWWytCVSVitF9Ho9kMHEHFwsf7k4vQ0As5HB2YEBqZl1YoHZ0w0DIjQALAQUvE0GDLsdmZDLAYc+/f1hhWagfNyVxOzwCcFglZKDU0fYeWRe10z1QKiGDWViQeCJOwQgqghXv+vmhF4VUNjO9OG1TcefPm4Sd5vEYarbiA4tVgxegwy4Hx0cCDQ11AqhYMZXssQNRRW+uoI4NPvKuY4OleE7fp0TYLJWeAld7H3C/WDIYPdH862WExES0T0BSJ6xv1/MeAxP05Ej/j+dYnoXe59v0tEz/vue63O8cQBznGPe+5b/QHs/jDxqiFALiPwAkHC1BCndFR3MsVcBrkMBWoEps85DwRrAoGAZwSzQQ0F6Vb6TpiBn2dXfQ6yH/Mh8x+2DO6uTWA0K3xy7w6njhYMVA1VA3Qx095ak6CbEXwQwJcYY3cA+JL7+z4wxr7MGHstY+y1AN4MoA3gT30P+cf8fsbYI5rHYxwZt9JhkmiZpEawVC2glM9I9RJwx9K4A8E4l6/rzMpF6KAFyXggqElkBDttHKkXp9rwNF+ZbEW919E/P9ViFi17v89T0zJDyS2UCxMzgpHP0GxQQyKBYLtlY66UQ87ApLp6QJ+F6QbKSdA9+vsBfNL9+ZMA3hXx+HcD+BPGmLxPwhQRNHQ7ScM5DiLCmaUqXtgUP33Xd7vIZQgr1fi8850Fe1xc1L+AnQCz/3WbMVBDRzg1JCAYX9nuTFUfAIBaIQeiYGqoYcAArVLIYTBksHxW1KbO+0Ilj6bVD3TR5R3wyzFeqzLwZoWHZQTtnrEMZhQIRp9rUuuMbiA4yhi77v58A8DRiMe/B8Dvj932USJ6jIg+RkQTrwAieh8RXSCiC+vr6xqHLI9qMYemPR4IkjOc8+PMcgUvbLaEH3/T7SHIxGiDUQ8oCWwZEBerAaJl0+qjZvicL1ULIBLNCDpT1QcAJ0ud1F28Z6DbPaiHo2X1jZTs8t1+0LFzc8Q4BiipgFOGYQOhdtq2EX0AGK0l/ozAK9uddiAgoi8S0fcC/t3vfxxz8siJ8joRHYczxP7zvps/BOAuAG8EsATgA5Oezxj7OGPsPGPs/OrqatRhG0W9eDAj4Dxn0mns2ZUqXthqYxgy7s+P67tdb2cTF6rFLJpj4ypHF7BmPXtAADb9pchlM1iuFiMDwWDIcG2n42k108SkWcuNbl+7uSnI3kPHUtwPrm8EHftGY7YygmLOsXWJ0giWDInbPAD7h+E0PfE/3nUm8pNljL110n1EdJOIjjPGrrsL/VrIS/1NAH/EGPOuAF82YRHR7wD4JcHjThRBXPXIJTHhQLBchd0f4vpeV2hBurLTxutOH9DwjaJeymMwZn/slTFqLNpB2kOj2/eG4ZjEaj06EKw1uugNmFfGO004/kgHa9wb3T7uOKKbERy09zAl0s+HlL5uNC3Ml/OxDmCRxdG5UqRGcNexOSN/K5sh1Iq5fdQQb2SNu0xd94w/COAB9+cHAHw25LHvxRgt5AYPkKNAvQvA9zSPJxbUS7kDwhy/kJMudTu77NASL2xE00P9wRDXdro4vRTvwuXN/fV9uU10uFbGRHq77zSpxfGlcAJBuLPr1RnoIeBYrhYCvfJNDEnxLMDt/dSQiUDAvy+7nYPHvtG0sFKbDVqII2pW+FbbxpJBS4x6aX8p9ktFI/g1AG8jomcAvNX9HUR0noh+iz+IiM4COA3gv409/z8Q0XcBfBfACoB/pnk8sWChXDiQyvKOwnkDZWMyOLNSBQBcEhCMr+92MRgy3LIUL6c9X3a+vH7jtr1u35mvq7G7GxehTXW3BmG1Fp0RcJH+9JQ1AiC465UxZmTn7k2ds/Zz1ap2IX4shFBDm007Fqt0HRytT84IOvYA3d7QmEYA8EDgzwiSCQRar84Y2wTwloDbLwD4ed/vlwCcDHjcm3X+flJYqDp8LGPMK5/bbtuoF3NKg9l1cHyuhEIuIyQYX95KZuHyBMC2v9pBf1jHeMdynCW7q3XHZsL/GY/j0mYLGULsgVUESzUnEPiPt20PMBgyI+cdOKgRmBSLAzWCpoVXnjBDs5jC0fkSNpoW+oPhgRJRT9w2qGnUS/n9YnFCc9Fnh4ybYSxWCrAHw32t3zttGwtTcEnMZAhnlip4XoAaepEHgpgXroVAakh/Z8rTZC5CN2LkS1frRfQGLLSL9PmNFk4tVmaCw16uOtekf9fO6Up9amh/Nz1jzKkaMnDeeRDfCdAI1puW19MxKzg6V8SQBZcW80zhiMFijAPUkOVk1nFvOKd/Rb8EwDlw/yKxPUWXxHMrVTy73ox83OXtNrIZir0LdsGjhnyBwABXvVAuYDBk3mLXjJEvPSlg3/H8RgvnXGpu2lhyd6F+eoj/rFvXzj83rot1egMMmZkAnM0QFir5A0Phu70BGt3+zGkEYdcF70Q3afE+V8of6COIu2IISAOBEDgH7rcqnuYAjTuP1XFpsx1pkvbiVgcnFkpGuh7DsOAFyv0agS5FMV5hshdjIOCVQFe2g7UXxhguzVAgCBqlyAPBsmYgqBf3N6yZpidWa0WvVJSDv49Z0wh4z0hQN7+XEdTjywiahkT6KKSBQACLAU0w0xypd+exOgZDFpkVPLfexLmVWuzHU8o7c3/956fR0a/3nxsTFuMcbD4KBMEZwXrTQsseeFVb0wbf9W/5KodMGaBlMrTPHM50AF6tF7E2VqEVB81iAmHXxVrDQj5LRq/HcY1gz8D3SARpIBAA/2L5d7zT9E2/82gdAPD0zcbExwzdQHH7avyBAOCVVf6MQH9627i52o5Bp8egv1UtZCcGgufXHU3mXELnMwpeIAiihgxcl/5AwEs9TWXAR+oH5z9c33ECwfEpjgANQimfxUqtGJgp3tzr4kjdbNd+vZSDPRh62X5SzEMaCATAS964RtAfDNHo9hMvHeU4u1JFPkt46sbkjODqTgfd3hC3H0koEPg6XYdDR3TVra8etyPYavWQzzomgKZBRDi1WJno7HrJrdI6tzwj1FAtmBrKkJmS5vny6PMcDV8xc72v1otY29vv83991znvJ2YsEABOVhCYEexZxjOYuTHjuaSYhzQQCMBrgnF3pLziYVrUUD6bwW2rNTx1Y2/iYy66tFFSgWC+nPfOy163h8GQeYKmzmsCo/PNd0cmh9L4cXLCFx4AnltvoZDN4MTC9Oyn/agUcijns9j07ay3Wk6WamKH6s8ITFNyR+olWP3hPmv3aztdVApZIyMfTWNiIGh0jeoDwMGhQ0kxD2kgEEAhl0G1kPUyAi8Fn6KwdeexOp66MZkaenYt2UDgZATOedk0JFqOi8XbbXO+LkFwvvDtwIlUT95o4PYjtdiFdxkcmy95NuOAc12a8r6aL+d9lJxZX62gQUDXdzs4Pl+KLcjr4NRiBVe3Owf8vW7uWUYrhoAR5bfdtj3mIQk/s9m5qmccCz5vFy5sxTn1KwqvPD6Ha7vdiTNVn77ZwFK1kNiQj4Vy4WCg1PzblUIW+Sz5xOJerF+Ks8tVNLp9zw7Zj+9f38Mrj89Ys9Nc0Rs8BDji5ZG6mWvSn+Ftt23kXB8cE+C76DWfdcO13a43gW/WcGa5Answ3EcbNq0+djs943M+uOHeZtPyMQ9pRjAz8HPg3HskblfPMLzu9AIA4JHL24H3P3ZlF68+OZ/Y8azUnU7XwZB5Hji6gYDIqcjgNefbrXjT5Fe4Ivwza/szrc2mhbWGhVcer8f2t1VwfL68LyO4sds11jPCqSHGmBeATe3WVwPmP1zf6Ux16lsYeFZ9cW2kyfGu/TNLZjUjrv1sNO1EB/WkgUAQR+pFLxMY1Q9P78J9zal5ZDOE77y4c+C+jj3AM2tN/MCp5ALB0bmSGwSsUT27geYgx/3RWTC2Wua834Nwx1HnC//Mzf0iPKfgTLlMmgJ3xhwOGYZDhrVGF0cNLaYrtSIGruhvunKFf2/W3O+R3R9ivWnNXMUQB6+88wcC7jtl2m6Eb3Q2m7aXYacZwQzh+EIZ1900fG2vi7lSLvaB0mGoFHK461gdj1zeOXDfE9d3MRgyvCbBjGA01s/ydvAmaKkj9SLWGhas/gCbLTvWXeORehFzpdyBstzvXdsFANw1cxlBCb0Bw2bLxmbLRm/AjNGV/PNca3RdEdrcrnSunEOtmPME2Ks7HTCGmbD3DsJitYDlaiEwI7jFcF9JIZfBfDmPzdZoQ5UGghnC8bkStlo2ur1BLCKRCt5wZhEPv7ANu79/7N+jl52F6wdc+igJ8AXoxl4XN/a6mC/nUczpB8ojc449NOeT45y9TER4xdE6nlnbnxE8dGkbZ5YrM9f1yu0PLm+3R7qVofMzGtNo4cZeF8cM7taJCGeWK15JLi9suC2hwgYV3H6k5lXiAU458Xw5H0sJ+XLNsRjn+s/xBCrV0kAgiOPul+7GbhdXdtre79PEX75jFW17gAuXtvbd/o3nNnFyoZxosDrqCwSXtzrGZiCs1kvYbNneDizuOvM7j9Xx5PU9r0KEMYYLl7bwxrNLsf5dFZxbdfjp59dbnheOqYzJ+zx3O7i+0zVeNnt2eTR7m3fI35ZAF7wqbj9SwzM3G15F2fdvNHDnsXgyxBV3Wt61nQ4KuYx29Z0I0kAgiBPuF+zaTgfPr7dw6wx4zvzwbcsoZDP4ytOjGc79wRB/8ewm/vIdK4key0qtgAw5C8fl7bYx6+ujc0UwBnz3qpPlxJkRAE6W1ej28bQrGD+73sR2u4d7ZzAQnF6sIJshPL/R8rIYU15IXNB94toe7MHQ+HjOM8sVXN5qoz8Y4tn1JlZqRcxPqS9HBPecmsdet4/nNloYDhmevL6Hu2OqIju9VMELWy2nkiqhkto0EAiCWzl/47lNtOwBbludfiCoFnP4wVuX8KeP3/B2Kt98fgsNq48fe0Wyc51z2QzOLlfx9M0mrmx3jFlf8x3uhRec6qi4AwHf+X/reSfL+vNnNgAA956bvUBQyGVwy1IFz200cXGtiRPzJWOzGkr5LBYqeXzbLUYwnYndcbSG/pDh4noTj13ZnbmKrHG84Ywz7vXhF7bxwlYbbXsQWyA4t1LBzT3L+UwTYh60AgER/Q0iepyIhkR0PuRx9xHRU0R0kYg+6Lv9HBF9073900Q0Wx60PpxaLGO+nMdnH70GALh1Rjxn7n/tSVzabOOb7sL1h9++gnoxhx+/60jix/LK43P4b0+vw+4PjQl/3DTvi0/exEqtEPvs1lOLZZxZruBPH78JAPjcd6/jrmN1nJ2BDDAIdx6t47Eru3j6ZgO3HzW7mJ5ZqniZmGme+vW3OAvrl7+/jqduNnD+zOwFWj9uXalhsZLH1y5u4P+76GwOXn8mnlng/Fp78vpeYpVUuhnB9wD8NQBfnfQAIsoC+E0A7wBwN4D3EtHd7t2/DuBjjLHbAWwD+DnN44kNRIR7Ts17vOZdMfGDsvjJ1xzHSq2A//tPn8LTNxt48JFr+KnXn0Qpn3xF0yuP1z3h2lSp5enFMiqFLBhLpnyTiPBX7zmBrz+7gT9+9BoeurSNd772ROx/VxVvun0ZV7Y7ePyaeariDjewZMhZCE3ilqUKVmoF/D9/9gwYA86fjWdRNYVMhnDfq4/hC0/cxB8/eg23LFViYwX89F5S64xWIGCMPckYeyriYfcCuMgYe44xZgP4FID73YH1bwbwGfdxn4QzwH5mwXniu4/PYXlGKkjKhSw+cN9deOjSNu77F19FrZTDL/z47VM5lvM+Hv0eQz0MuWzGS8t/+PZlI68ZhZ/+oTOoFnL4h7//HSxVC/jpv3Qmkb+rgh/1UYBvu9tsFvhDtzrn+44jdeOl0kSEt7/qGNr2ACu14kxSb+N49xtOo20P8K3nt/Cu152Mjbt/hS+zS+q8JOHwdBLAZd/vVwD8IIBlADuMsb7v9gNzjTmI6H0A3gcAt9xySzxHGoEH3nQW2+0e3vW62doh/o3zpwEA33huCz/3I+emVtr6g+eW8Mv//d04sVA2mpH8yl99FT71rRcTW5CPzpXwb37mDfhP376Kn/mhM7HMSDaFM8tVfPSnXg2rN8QbDNMrf/UHTuDSZgtvu/uo0dfl+KW334lyPot3vPpY4rO/VfCGM4v4jb9+D55db+If/He3xfZ38tkMfvfvvRFP3WgkVgJOQQZb+x5A9EUAxwLu+jBj7LPuY74C4JfcofXjz383gPsYYz/v/v7TcALBrwL4hksLgYhOA/gTxtirow76/Pnz7MKFA38qRYoUKVKEgIgeZowd0HMjMwLG2Fs1//ZVAKd9v59yb9sEsEBEOTcr4LenSJEiRYoEkUQ+9hCAO9wKoQKA9wB4kDmpyJcBvNt93AMAPpvA8aRIkSJFCh90y0d/ioiuAPghAP+FiD7v3n6CiD4HAO5u//0APg/gSQB/wBh73H2JDwD4RSK6CEcz+G2d40mRIkWKFPKI1AhmEalGkCJFihTymKQRzL5UnyJFihQpYkUaCFKkSJHikCMNBClSpEhxyJEGghQpUqQ45HhJisVEtA7gBcWnrwDYMHg4LwWk7/lwIH3PL3/ovt8zjLED1sQvyUCgAyK6EKSav5yRvufDgfQ9v/wR1/tNqaEUKVKkOORIA0GKFClSHHIcxkDw8WkfwBSQvufDgfQ9v/wRy/s9dBpBihQpUqTYj8OYEaRIkSJFCh/SQJAiRYoUhxwvq0BARPcR0VNEdJGIPhhwf5GIPu3e/00iOuu770Pu7U8R0U8keuCKUH2/RPQ2InqYiL7r/v/mxA9eETqfsXv/LUTUJKJfSuygNaF5Xd9DRH9BRI+7n/d0xtdJQuPazhPRJ933+iQRfSjxg1eEwHv+USL6NhH13YFf/vseIKJn3H8PSP9xxtjL4h+ALIBnAdwKoADgUQB3jz3mHwD41+7P7wHwaffnu93HFwGcc18nO+33FOP7fR2AE+7PrwZwddrvJ+737Lv/MwD+I5yJelN/TzF/zjkAjwH4Aff35Vm/rg28578N4FPuzxUAlwCcnfZ7MvSezwK4B8C/A/Bu3+1LAJ5z/190f16U+fsvp4zgXgAXGWPPMcZsAJ8CcP/YY+4H8En3588AeAs5E6jvh3PxWIyx5wFcdF9vlqH8fhlj32GMXXNvfxxAmYiKiRy1HnQ+YxDRuwA8D+c9v1Sg857fDuAxxtijAMAY22SMDRI6bh3ovGcGoEpEOQBlADaAvWQOWwuR75kxdokx9hiA4dhzfwLAFxhjW4yxbQBfAHCfzB9/OQWCkwAu+36/4t4W+BjmDMzZhbNLEnnurEHn/frx1wF8mzFmxXScJqH8nomoBmcQ0v+RwHGahM7n/AoAjIg+71IK/2sCx2sCOu/5MwBaAK4DeBHAP2eMbcV9wAagswZpr1+RM4tTvHxBRK8C8Otwdo4vd/wqgI8xxppugnAYkAPwIwDeCKAN4EvuYJIvTfewYsW9AAYATsChSf6ciL7IGHtuuoc123g5ZQRXAZz2/X7KvS3wMW7qOA9gU/C5swad9wsiOgXgjwD8DGPs2diP1gx03vMPAvgNIroE4B8B+CdE9P6Yj9cEdN7zFQBfZYxtMMbaAD4H4PWxH7E+dN7z3wbwXxljPcbYGoCvAXgpeBHprEH669e0RRKDYksOjkhyDiOx5VVjj/kF7BeY/sD9+VXYLxY/hxkX1TTf74L7+L827feR1Hsee8yv4qUjFut8zosAvg1HNM0B+CKAn5z2e4r5PX8AwO+4P1cBPAHgnmm/JxPv2ffY38VBsfh59/NedH9ekvr70z4Bhk/mXwHwNBz1/cPubR8B8E735xKcipGLAL4F4Fbfcz/sPu8pAO+Y9nuJ8/0C+N/g8KiP+P4dmfb7ifsz9r3GSyYQ6L5nAH8Hjjj+PQC/Me33Evd7BlBzb3/cDQL/eNrvxeB7fiOcLK8FJ/t53Pfcn3XPxUUAf0/2b6cWEylSpEhxyPFy0ghSpEiRIoUC0kCQIkWKFIccaSBIkSJFikOONBCkSJEixSFHGghSpEiR4pAjDQQpUqRIcciRBoIUKVKkOOT4/wEvwj3sw7mOBwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABFJUlEQVR4nO29eZhdZZXo/Vs1ZayqpDLWkKQyEkICSaiEgIDNIIPaxLZpBNoreIHYtti3pdtWr/eqn930dehu+9P2a42CggOD2Gq8ooCIApKEBBLITCpzTakpNaSSVGp4vz/W3lWHSlXqDHusen/PU88+Z5+93712nap37TW8a4kxBovFYrGMXrLCFsBisVgs4WIVgcVisYxyrCKwWCyWUY5VBBaLxTLKsYrAYrFYRjk5YQuQDlOnTjXl5eVhi2GxWCyx4rXXXms0xkwbuD+WiqC8vJytW7eGLYbFYrHEChE5Mth+6xqyWCyWUY5VBBaLxTLKsYrAYrFYRjlWEVgsFssoxyoCi8ViGeV4oghE5GERqReRnUN8LiLydRGpFJE3RWRlwmd3ich+5+cuL+SxWCwWS/J4ZRF8H7jpPJ/fDCx0ftYB/wkgIkXA54HLgNXA50VkskcyWSwWiyUJPFlHYIx5UUTKz3PIWuBRozWvN4nIJBEpBv4EeM4Y0wwgIs+hCuUxL+SyWIKk6WQnj285RmdXT9iiJMXYrhaWNDxN+5iZ7C+6BkTCFikQyk9sZOqpSvZOvYGTY2aELU7K3HVFOVMmjvF0zKAWlJUCxxLeVzn7htp/DiKyDrUmmD17tj9SWixpUt92hr/87mb215+MxXyazyk25H2WcjkOwDe71/IvPR8IWSr/+VDWM7w/9xEALjj8A9ae/SeOUxSyVKlxy/LS2CqCjDHGrAfWA1RUVNhuOpbIUNd6hju/s4m6tjM8vm4Na+ZNCVuk4dnwcdjWCB/6Jbz5BB/b9kM+9ld/A2UVYUvmHycOwzc+BAtuhnd+khmP3MKmxU/DHdYBEVTWUDUwK+F9mbNvqP0WSyyobjnNB9ZvpL69k0f/++p4KIHWKtj+Y1h1D8y9Gm76MoybDC/9a9iS+cuL/wJZOfDer0HppfCO/wH7noaa7WFLFjpBKYINwIec7KE1QKsxphZ4BrhBRCY7QeIbnH0WS+Q51nyK2761keaOs/zgntVUlMfExfDaI2B64fL79f2YibB6nU6KLcfOf25c6WyHnT+FS26HgmLdd9lHIGccvP5ouLJFAK/SRx8DNgIXiEiViNwjIn8lIn/lHPI0cBCoBL4D/DWAEyT+R2CL8/NFN3BssUSZQ40d3PbtjXSc7eax+9awYnZMkt2M0Qmx/EqYPKd//yW363bXz8KRy292b4CuU7D8L/v3jS2Exe/R30d3Z3iyRQCvsobuGOZzA3xsiM8eBh72Qg6LJQgq609y53c20d1r+PG9a1hSUhC2SMlzfBc0H4ArPv72/UXzoGQl7P45vONvQhHNV/Y9DQVlULbq7fuX3Qo7n4Ijr8D8a8KRLQLYlcUWSwrsq2vn9vUb6TXw+LqYKQGAgy/odtGN53626Caofh1OjTCjvLsTDrwAi244N0V27tWQnQeVvw1HtohgFYHFkiS7a9q44zubyM4SnvjIGhbNyA9bpNQ59CJMWQgFJed+Nv9awPQri5HCsc3Q1QELbzj3s7wJ6ibb/1zwckUIqwgsliTYUdXKHd/ZxNicLJ5Ydznzp00MW6TU6elSF8jcqwf/vGQFjClUZTGSOLoJEJh9+eCfl18FjftGniWUAlYRWCzD8PrRE9z53U3kj83hiY9cTvnUCWGLlB7Vr8PZkzDvnYN/np0DZZdC1Qjr/nd0E0y/EMZNGvzzWZfp9tirgYkUNawisFjOw5bDzXzooVcpmpDHkx+5nFlF48MWKX2qnIlu9hVDH1O2Cup3a7rlSKC3F6q2wKzVQx9TskLXFxzbHJxcEcMqAotlCDYeaOKuh19lesEYnlh3OSWTxoUtUmZUvw6Fs2HiOb3L+ylbrWsMql8PTi4/adgDnW0wa83Qx+SNh5kXW4vAYrG8nZf2N/Dh779K6aRxPL5uDTMLx4YtUubUbIOS5ec/ptSpEF+1xXdxAsG9j/NZBKDuoerXoKfbf5kiiFUEFssAXthbzz2PbKV8ygQeX7eG6fkjQAmcaoYTh9QNcj7GF8GUBTopjgRq34QxBbpO4nyUrIDu09C0Pxi5IoZVBBZLAs/uqmPdD7ayaMZEHrtvjedVHkOjdrtuh1MEoG6S44P2mIofx3fCzGXDl9ieuVS3dSPkvlPEKgKLxeGFTVv51WP/wTtm9vCje9cweUJe2CJ5h1tYbTjXEMCMi6DlKJxp9VMi/+nt1Yl9xtLhj526SBeWHd/hv1wRJDZlqC0WP9n0mx9x2cZPcE1OJ6bjh0jLBhh3cdhieUf9bi2xMC6Jmkgzlznn7IHZ5wmyRp0Th3QhmXs/5yM7F6ZdAHWjUxFYi8Ay6nn65a0s2fj3HM8t4/TtTyF54+End4+sQmT1ezWXPhlmXKTbuLuH3Ek9GUUAMGOZdQ1ZLKORJ7Yc5cQz/8w46aL4vicZt/hd8Kdf18JsW78Xtnje0NMNjW/B9MXJHV9QqpU54z4pHt8Jkg3Tkrzvmcugox5O1vsrVwSxisAyavnBpiN85acv84HsPyAr/xtjZyzQDxZer/n0r65XP3PcOXEIejph+pLkjhdRv/rxXf7K5TcN+6BoLuQmmfXlWkwNe/2TKaJYRWAZlTz88iH+98938qmSbeTQTc7lf/X2A1bfp1bBkT+GI6CX1O/RbbJPxqD+8sZ92r8grjRVahA4WdxjG9/yR54IYxWBZdTx7T8c4Iv/dzc3L53JrTl/1LIK0y54+0GL36Pdq/ZsCEdIL2nYC8i593g+pizUrKFTTb6J5Su9PdB0QNdEJEtBCeROgMbRt5bAqw5lN4nIPhGpFJFPD/L510Rku/Pzloi0JHzWk/DZCPivs0SZbzy/n//z67386SUlfOPmKWTV74ILbzn3wLwJsOA62PPLeD8VgyqCSbP1npLFnUCbKv2RyW9ajqo7bOrC5M8R0eMb9vknV0TJWBGISDbwTeBmYAlwh4i8zRlpjPmEMWa5MWY58A3gvxI+Pu1+ZowZ5D/SYskcYwz/9uw+/vW5t3j/ilL+/QPLyal8Vj+84N2Dn7ToRmivjf/EkOqTMcBU5/i4Ph27cqfiGgLHJRbTe84ALyyC1UClMeagMeYs8Diw9jzH3wE85sF1LZakMMbwlWf28fXfVfKBill89S8uITtLtH3hlIX9k95Ayq/S7eGXghPWa4yB5oPDl1gYSOFsyMqNb8kFV+4pKVgEoBZBWxV0nvRepgjjhSIoBY4lvK9y9p2DiMwB5gK/S9g9VkS2isgmEXnfUBcRkXXOcVsbGho8ENsyGjDG8E+/2sN//v4AH1wzm//z/mWqBLrOaCB4sK5VLpPLdUI89IfA5PWcjkatvjllfmrnZeeo8mg64I9cftP4FowrgglTUjvPtSDi6hJLk6CDxbcDTxljehL2zTHGVAB3Av8uIoP+xRpj1htjKowxFdOmnaeMrsXi0Ntr+PyGXTz08iE+/I5y/nHtUrKynJoz1Vuh56y2KRwKEZh7FRx+Ob5ppM3ORF6UoiIAdSfF1U3SWJlafMDFtSCsIkiZamBWwvsyZ99g3M4At5AxptrZHgR+DyRRFctiOT+9vYbP/nwHj248wrqr5/G59y5BEguPHXkFEJgzRPtCl/Ir4fSJ+OaWu0/0qVoEoC6z5oOagRM3mvanpwgml+v2xCFPxYk6XiiCLcBCEZkrInnoZH9O9o+ILAYmAxsT9k0WkTHO66nAO4DdHshkGcX09Br+4adv8tirx7j/mgV85ubFb1cCoE/5M5YOX3un9FLdutU740bzQV1dO2l26udOWQC9XdByxHu5/ORMG5w8nnqAHLRJzcQZ0HzYc7GiTMaKwBjTDdwPPAPsAZ40xuwSkS+KSGIW0O3A48a8LRfvQmCriLwBvAB8yRhjFYElbbp7enngye089VoVn7h+EX9/4wXnKoGeLm1YMuc8LRtdpiyAvIna1CWONB9QJZCdm/q5rpukMWZukhOHdZtqgNxl8txRZxF4Un3UGPM08PSAfZ8b8P4Lg5z3CpBkRSiL5fx09fTyt49v51c7avmHmy7gr/9kiCfC+j3QdWr4rlUAWdlQfEl8FUHTgfTcQtA/kcZtUnQVwaQ56Z1fNBcOveiZOHHAriy2jAg6u3v42I9e51c7avlf77lwaCUA/ZN6Mk1a3OPqdqglESf6UkfTVAQTp+vq6hMxcw25isD196fK5LnQVqOZZaMEqwgssedMVw8f/eHrPLv7OP/PLRdx71XDuARqtsGYwuRdByUroPtMf82euHCyHs6eTN8iEFG3UtxiBC1HtHrquEnpnT+5HDDxu+8MsIrAEmvOdPVw36Nb+d3eev75z5Zx1xXlw5/kNnEfrn2hy0ynQU3cqnG6E1m6T8YAk+fE0yLI5J6L5uq2OWYusQywisASW06d7ebD39vCy5WNfOXWi7nzsiQyY7o7dUJP1i0Eajlk52mXrzjRclS36WQMuUyaowolTvWWMlUEk+f2jzNKsIrAEktOdnZz98Nb2Hyoia/dtpzbKmYNfxKoEujtSk0RZOfoitO4rSVwFUFhkr+bwZg8R1cmnz7hjUx+09ur951uoBhgwlTNFItbkDwDrCKwxI62M1186KHNvHb0BF+/YwXvWzFoRZPBSTVQ7DL9wvjFCFqOapmFMRPTH8OdUOPiL2+v1RXjmVgEInq+dQ1ZLNGk9VQXH/zuZnZUt/LNO1fy3otLUhug9g1dRJaqu2T6hdB6TBcrxYXWYzApA2sA1CKA+MQJMs0Ycplcbl1DFksUae44yx3f2cTe2na+9cFLuWnpzNQHqd+jK4qTDRS7uG0e41SSuuVoZvEB6J9Q42IReKUIJs2G1qp4xUYywCoCSyxoPNnJHes3caDhJN+5q4LrLpyR+iDGqCJwe9OmgtvmMS4BY2Og5VhmvnLQNMyxk+JjEbQcASSzuAhAYRl0dcQnNpIhVhFYIk992xluX7+Jo82n+N7dq3jnojSrz7ZWwdn21Hr3ukyarZlDcalK2dEI3acznxBB3UNxsQhajmrLyZy8zMYpLNNta1XmMsUAqwgskaa29TQfWL+J2pbTfP/Dq7hiwdT0B3ODvdOXnP+4wcjK1rTC5oPpXz9IWj1IHXWZFKO1BK1V/ZN4JrgKtPXY+Y8bIVhFYIksVSdO8YFvb6KxvZNH71nNZfNSbDIyENetMz0NiwC0AF1cGrX0rSHwwCKIk7/cc0VgLQKLJTSONqkSaDl1lh/eexmXzinKfND6PZBfMnzp6aGYMs+pzx+DJjUtzpOsF66hglJ1M0XdX97bC23VKm+mTJgK2WOsRWCxhMWhxg5u+/ZGOs528+P71nDJrEneDFy/O71AsUvRfOjp1J62UaflqNZTSrfeTiKFzsQa9afjU426hsAL5SeilkWLVQQWS+BU1rdz27c30tXTy2P3rWFpaaE3A/f2aOpnJorALd4WB/eQF6mjLgUxCZy6T+9euIZA3WpRv2ePsIrAEhn21rXxgW9vAuDxdWu4sLjAu8GbD+nTfDqBYhe341UcMoe8WEzm4k6sbUN1oI0I7qRd6IFrCPS+rSJIHhG5SUT2iUiliHx6kM/vFpEGEdnu/Nyb8NldIrLf+bnLC3ks8WNndSt3rN9EbnYWT6xbw8IZ+d5eoC9QnIFFkF8MueOjnzlkjLcWwYRpkJUb/Umx1VFUXriG3HFO1mmhwhFOxh3KRCQb+CbwLqAK2CIiGwZpOfmEMeb+AecWAZ8HKgADvOac60tUqvV0F109KQT6TK92ssrLoFZLHOk6DVk56bU3TIODDR3c+8gW8sfm8uP7LmPOlAneX8RdETztgvTHENFKpFF3DZ1p0T4EXrlIsrI0Nz8OFkHu+PSTAQbiKpS26vTbXsYEL1pVrgYqjTEHAUTkcWAtyTWhvxF4zhjT7Jz7HHAT8JgHcp3D3z6+jRf2NSR17J3Zz/NAzk+YKm282TuX/9l1DzvNyP5jKKGRf859iD/JfoOTZizf77mRr3XfSg/Zvl97VtE4fnzvGmYVjffnAk2V6uvOy1DJFM2Lfl+C9jrdFqRYh+l8xMFN0lalGUOplg8ZisRFZVYRDEspkBharwIuG+S4PxeRq4G3gE8YY44Nce6gDj4RWQesA5g9Oz2T979dPodrF08f9riLDj7Eyv0PUVe0iu1Fq1hY9VN+1vUgz656mObCDHzMEWbcmXpu3vwJcrs72DHrHvJPV3F/3S9496xu/rjsQe/+uQYhK0u4YclMpuWP8e0aNB/Q9M9MKZoH+36twecs/xVkWrTV6Da/2LsxC8vgyEbvxvMDr9YQuIyi1cWeNK9Pgl8CjxljOkXkI8AjwLWpDGCMWQ+sB6ioqEhrZcu1i5OoT3P4j/DMN2Dprcx8/3eYmZUFbX8D372e9+z9FHx0Y2ZlfaOIMfDI/dDTDvf8hmXFl+j+P3yFeS88yLxL3wUVHw5XxkxpOgBL1mY+zuQ52s+gvc67oKTXuBZBfhpF+YaioBTaa6KtAFurYaGHD2oFMUmb9QAvgsXVQGJ0pszZ14cxpskY40Zcvgtcmuy5gdLbC7/+Bw2y/en/q75RgIJi+PPvagDupX8NTTzf2P0LOPwS3PBP4CoBgKv+HuZeDb/9ApxuCUu6zDl9Ak43p9+7NxE3ABvl2jvttbr11CIohd5uOHncuzG9pLtTA7teWgS5Y2HijP5V2iMYLxTBFmChiMwVkTzgdmBD4gEikvgXeQvgdvh4BrhBRCaLyGTgBmdfOOz8KRzfCdd97tyn/jmXw7K/gM3fgo6mcOTzg55u+O3nYfpFcOndb/8sKwtueFCDj698PQzpvKHJyfIp8kIRuI1aIjw5tNdqxdDccd6N2beWIKIBY9cd5qUicMezFsHwGGO6gfvRCXwP8KQxZpeIfFFEbnEO+xsR2SUibwB/A9ztnNsM/COqTLYAX3QDx4FjjD7tz1gKF71/8GOu+jvNInp1fbCy+cneX2oN92s/O7jJX3yx/j42fzteTVkScfP+vbAI3EySKBdha6/z1hqAhLUEEZ0U3YwmrxVBfnG/hTWC8WQdgTHmaWPMImPMfGPMg86+zxljNjivP2OMucgYc4kx5hpjzN6Ecx82xixwfr7nhTxpceSP0LAH1ny03yU0kOkXwgXvVkUwUnKLN31Lm3gsumnoYy7/mKYjvvlEYGJ5SvMBkKzMm5WA4y6YGX2LwMv4ACSUmYioReA+tRd4rAgKSvqtjRGMXVnssuW7ak4v/fPzH1dxj/qb3/pNIGL5yvFdcGwTrF53/gBg6aVQvFx/R3GoQDmQpgP6pJjjUVZS1Ovzt9d5mzoKjqtpQnTdJF6vKnbJL4bONug86e24EcMqAtBA6N5fwSV3DO9XnX+NVrDc9qNARPOVN5/QhWMX337+40Q0ftCwF2q3ByGZtzQf8CY+4DJpdnQVQW+P4xry2CJwi7BF1TXUXqcLybyMi0B/5tAIdw9ZRQCqBHrOajB4OLKy4ZLbofI5OJnc4rRI0tsLO56C+dfBhCTq/C9Zq0pj50/9l81LjNFgsRfxAZdJc9RF0tPt3Zhe0dEIpsf7GAHo03ZUXUPttf7cc4Ez5gh3D1lFADq5TZoDpSuTO37p+7X8xL6n/ZXLT45u1ADbxbcld/z4IlUaO38Wj3r8LqeaoLPVe4vA9GhefdTwI3XUJb+kf41C1PDDCgK9Z7AWwYjndAsc/D1c9GfJr56dsVQDj3t+6aNgPvPWr7UH76Ibkz9n6fvVNVDzun9yeY1bF8hTi8BZSxDFzCFfFcFMXUfQ2+P92JniR6YUWItg1HDgd/p0d8G7kz9HBBa/VxXImVbfRPOVfb+B8ithTApVPhfeoNk3+5/1Ty6vaXYVwQLvxpwc4bUEfYrAh6fjgmL9X+mImEu0t1cXk/lxz3kTtMGPtQhGOPuf1SBTWUVq5y1+r5YaOPCCP3L5SdMBaNp//pTRwRhfBGWr4K3w1vylTNMBkGzvSjKDk6Io0Wxj2F4HCEwcvqZWyuRH9On4VJOuevbDIgBVgFG7Z48Z3Yqgtxf2PwcLrk+9fkpZBYwpUIsibrgT+cIbUj934bs0c6g9oqUGBtJ8QJ/gvSypnZOnE20UUynba1U2P0qIuxNt1OIEflpBMCrWEoxuRVCzTfucpjMhZudqHZ4Dv4tfbv1bv4Fpi6Foburnur+ryt96K5NfNFV6Gyh2KSiNZn3+Nh8Wk7n0KYKITYp9RfZ8sgjyS6xraERT+RwgahGkw/xr1T0Qh9aFLl1n4OgmzQBKh5kX6z9cHOIEfqSOukQ1ldKvoCmopSFZo9AiKNYgeRTThT1idCuCQy9pLZ3xRemdP9+ppB0n91DVq9q7d9470ztfBOa+Ew6/HH1L6ORx6OrwySIoU4sgar8Dv/LpQd2nE2eo1RElXMU0MYky8+mQX6zp4h31/owfAUavIug6A1VboPyq9McomquNSuKkCA69qMHT2ZenP8bcq9Sl1rB3+GPDpC911IfuUoWlWn8pSllj3Z36vfilCCCaRdjaa7Wvsl+tVd1yHVFTgB4yehVB9VZ9Mi6/MrNxyq/Szk1RzK0ejEMvQskKGFuQ/hju7+zwy97I5Bdu6qgvFoE7OUTIPeT2CvDLRQIRVQQ+pY66RDU24iGjVxEc/iMgmT0ZA8y5Qleu1ifTojlkOk9C9Wsa5M6EyeVQOFuVSpRpOgBZuf2lo70kivX5/Q6aQjRTKf10h0F/vaGo3beHjGJF8BLMXAbjJmU2jqtIot7PFTRI3Nutrp1MKb9SS3dHudxE8wFVWtk+dGR1q1xGqQib+6Re4KdraKY2Kuo67d81UsVvi2D8FH2gsIrg/IjITSKyT0QqReTTg3z+gIjsFpE3ReR5EZmT8FmPiGx3fjYMPNcXujud+ECGbiHQhUoFpVq7J+oc26TxgVmXZT7W3Kt0IU+U4wR+ZQyB9iSQrGhNDm0+lpdwiVrtnZ5uDeL6ec9ZWdF0iXlIxopARLKBbwI3A0uAO0RkYAfpbUCFMeZi4CngKwmfnTbGLHd+biEIql+D7jPeKAJx3EtHN0Yvg2QgxzarFZQ3IfOxZq9xxtyU+Vh+0NsLzQf9iQ+AWhn5xRFzDdXqk+u4NLPgksF98o5KCmlHg2b0+GkRQDRdYh7ihUWwGqg0xhw0xpwFHgfWJh5gjHnBGHPKebsJbVIfHkde0W2m8QGXOZfrP+GJw96M5wc93VD1mjfWAMDkuTB+Khzb4s14XtNeC92n/bMIwFlUFiXXkLOGYKgOe17QFySPyKToZ5G9RKxFMCylQGLRlSpn31DcA/w64f1YEdkqIptE5H1DnSQi65zjtjY0ZFj0qmorTFmY/vqBgcy+QrdRdg8d36k59bNWezOeiCqVY5u9Gc9rmn2oOjqQqC0qa6/x/8k4ahZBX4Dcb4ugRF1vUbf60yTQYLGIfBCoAL6asHuOMaYCuBP4dxEZ9D/XGLPeGFNhjKmYNm1a+kIYo6mjZavSH2Mg0xZr4TrX0ogix17VrVcWAcCsVTrhdjR5N6ZXuKu9/XINQX+ZiahMDn4HTUFbVuaMi87TcZAWQVdHtNaNeIgXiqAaSMzPK3P2vQ0RuR74LHCLMaav87sxptrZHgR+D6zwQKahaTmifsVUq42ej6wsVSzVr3k3ptcc26yBvkIPvXKuUql61bsxvaLpAOSM7U/984PCMo01nWr27xqp4Eev4oGIqL88MoqgToP2EzJ4OEwG9/fqrtUYYXihCLYAC0VkrojkAbcDb8v+EZEVwLdRJVCfsH+yiIxxXk8F3gH4m5BftVW3XloEoA3e6/dAZ7u343rFsc3qFkq2+U4ylKzQ9pXHIqgImg9qHCMQf3kE4gSdJ7XJut8WAejTcVRW2bbXammJVKsHp0qfSywi9+0xGf+XGGO6gfuBZ4A9wJPGmF0i8kURcbOAvgpMBH4yIE30QmCriLwBvAB8yRjjsyLYArnjYfrAxKYMKa0AjFY0jRqt1Vocz8308YrccZqFFEVF0HTA3/gARGtRWRCLyVyiFDgNwh0GCb0YInLfHuPJShtjzNPA0wP2fS7h9aDlPY0xrwDLvJAhaaq2QMlK7xcZuf2OvVi56zWuy8prKwjUPfT6o9DT5V+tl1Tp7YETh1Jrw5kOrkUQhdIDflfgTCR/pl7PGG8tzHRor4NJPqwcH4i1CEYQXWeg9k1v4wMu44u0AJ3reooSNdvUhTNjqfdjl62CrlPRKrHRWgU9Z/23CKJUlrnPIvA5RgCqALvP6ArjsGn3sf9CIn0tKyPwXfvA6FIEdW9qe0k/FAFonKA6go3da7bB9Ashd6z3Y5es6L9GVPCz2FwiUSrL7FolQVkEEP59d5/1v9pqIq4lNAIZXYrAfVov9UsRVOg/ZFQW24Ca7zXb+idsrymapymFUVKATQGsIXCJyuTQXge5E2BMvv/XikqZiSCqrSYSle/aB0aZItiilSj9KsrlWhpRcg+1HFET3i9FIKJj10RIETQf1ISAQAKnJdFwF7TX6t91ED77qPjLgwyQg7rEovBd+8DoUgTzr4HLPuLf+DOWaq2XKK0ncF02fikCd+z6PdGpSNl0QC2VoCbFSASLfWxROZCoZNAEGSB3r9NeF+2Ku2kyuhTByg/BFR/3b/zcsZpOGTVFkJ3nfbpsIqUrtbx13U7/rpEKzQGkjroUFMPpE5qIECZtAZSXcMkdqyvpT4b8dBy0RZBfrDHGUxFcSZ8ho0sRBEHppTr5RqVjWc02mHER5Izx7xpRChj3dGvxP78DxS7uJBTmpGhMcPn0LvnF4btJgqi2mkhfp7KRFyewisBrSldqL9vG/WFLoiZszRv+uoVAyzhMmB6NOEHLEbVOgrIIopBBc/qEtl0NInXUJQqBU1f5+bl6PJE+RTDy4gRWEXhNibOwLAqT4olD2kazeLm/1xFRBRgFi6D5oG4DswgikEETVAXORKJiEQR6zxEJkvuAVQReM3Uh5E2MRjplEIFil5IV0LAv/FpLQaaOQjTKMvetIQjIVw7RCJwGrQgmzui/7gjDKgKvycqG4kui8XRcsw2yx+hiMr8pWQkYXbkdJs0HIC/f/2qULuMm6+84zMwhVwn52at4IPnFYHp0QVdY+N20fiA5efp3ZRWBJSlKVkDdDl35GCY12zWLKYgaQH0B45AtoaYDMCWg1FFIKMscpkXgTEwTR5Gb5Owp7Q0QpEUA/ZbQCMMqAj8oXanBuzDr7/T2Qu32YNxCABOn6WK9sC2h5gPBxQdcwi7L3FarlokfJUSGIuzA6cmAU0ddolR51UOsIvCDvoBxiJNiU6VmLwWlCECvFWZspPsstBwNLj7gEnYGTZCLyVzCtgjCCJC71wt7IZ0PWEXgB5PL9QktTDdJkIFil5IVmql0+kRw10yk5QiY3hAsAqf0QFgtK4P2lUNC4DQkiyCoFpUDyS/RDoc9XcFe12esIvADt/5OdYgWQe127S07dVFw13SVTu0bwV0zkaAzhlzyZ2o/2862YK/rEoZFkJ3rBE7DUgQhWgQYOFk/7KFxwhNFICI3icg+EakUkU8P8vkYEXnC+XyziJQnfPYZZ/8+EfG5k0iAlKzUGMHZU+Fcv2YbFF/sfQOe81GyvP/aYeA2rJ+yINjrhukv7+3RKpxBT4gQbuC0vVZ7Uo+dFOx1R+jq4owVgYhkA98EbgaWAHeIyMDCNvcAJ4wxC4CvAV92zl2C9ji+CLgJ+P+c8eJPyQpNrzseQv2d3h59Kg/SLQTqDps8N1xFMK5ImwQFSUGIk0NHg/6dBZk66jIxxNiIu6o46A5pYX7XPuKFRbAaqDTGHDTGnAUeB9YOOGYt8Ijz+ingOhERZ//jxphOY8whoNIZL/70ta4MIU7Q+JZ2DQtaEYBaBWEqgqCtAQi3GmdYvnII2SIIwR0G4Vp/x16FJ+/ShAiP8UIRlALHEt5XOfsGPcZpdt8KTEnyXABEZJ2IbBWRrQ0NDR6I7TMFJfrEFEbAOIxAsUvJCv1D7QihQmNoiiDEDBpX+YTiGiqGjnot9Bc0Qa8qdhk/FSQ7nO+6fg/s/jngvRUUm2CxMWa9MabCGFMxbVpAq0YzJaz6OzXbtMxFGJNiX8A44PvuPKn/nFNDuOcw+9mGbRGYXnVPBU1YFkFWVngppO7fl5ux5SFeKIJqYFbC+zJn36DHiEgOUAg0JXlufClZoVVIzwScTVKzXctcZIUQbim+xJEhYEXg9ikOQ/lBeA1q2utAsrT6a9CEFTjtbNc1MmFYBBDeorKTdTB+ipa68BgvFMEWYKGIzBWRPDT4u2HAMRuAu5zXtwK/M8YYZ//tTlbRXGAh8KoHMkWDvvo724O7Zk831L3pf8XRoRhbqJNxzfZgrxtWxpBLWGUm2mtVCQSZHeYSVsG9oBvSDCSs2Eh7nW9lRDJWBI7P/37gGWAP8KQxZpeIfFFEbnEOewiYIiKVwAPAp51zdwFPAruB3wAfM8ZEpKOLB7hukiADxg17oftMOPEBl5IVwVsEjZWAaIvKMAirLHNYvnIIzyIIukXlQMKyCHxsPuTJY4Qx5mng6QH7Ppfw+gzwF0Oc+yDwoBdyRI4JU2DSnGAnxTADxS4lK2DHT6D9OOR7788clKZKrXWUOy6Y6w3ELTPR2xtcoxTQyWHS7OCul8iEaeqWGm0WQUExnGnRHt1B/r211/lWSTg2weLYUrIi2Myhmm0wpiC8J2NICBhvD+6aTZXBryhOJL9EO6MF3c82TIsgO0fdUqPRIkiUIwh6ezVDy6d7torAb0pXOumUAdVtr3ndCRSH+NXOvBiQ4CwhY5zy0yHFByCcFNLuTlU8YT0ZQzj+8vY6zYobkx/sdV3CiI2catIHjajGCCzD0FeJdLv/1+ruhLqd/YvZwmLMRJh2QXCKoKNBW3KGqghCWGgUVr2dRMKIjYRpBUE4FoHPVpBVBH5TfAn6dByAe+j4Lujt6lc+YeIGjIOoyOlmDIWxhsAlDIugTxEE2LR+IGGU4A5rDYFLGCvJTx53rm0VQTwZW6B9jIPIHHKVTZiBYpfi5frHG8QkEXbqKIRTljlsXznopHiqMdhufGFbBGMLtbJvGBaBD4vJwCqCYChZqZO030/H1dt0wUlYWSSJ9LWuDMA91FQJ2XmaNRQWOXlafiAUd0HIMQLof2L1G2N8TaNMCpHgYyPt1iKIP6Urg3k6rnldlU7QFRkHY+YyTS0MIjbS8JY2owljJXUiBQHnl7fXqgIMutpqIkHHRs606DqZMJUfaC2xoL/rcZMhZ4wvw1tFEASuz95P99DZDl1MFgW3EEDeeJh2YTAWQcNemL7Y/+sMR9ALjcIqxZxI0LERH+vtpETQsZGTx31VflYRBMHMpZCV42/AuPZNLQAWdsZQIkEEjLtOw4nDMC0KiiBgd0FbTfhPxkFbBO7kWxBigBz6s6WCak/aXuur8rOKIAhyx+mKQD8tgr5AcZQUwXINJLZW+XeNxrcAo+mqYZNfrC0MgyrLHLavHDQmlZUT3NNxmGW3E8mfqT0/gmpP2u5vFzqrCIKiZKW/T8fVr0NBaXAlHZKhbw2Fj+6hhn26nebP0vuUcPvZdgTUz7a9LtzUUdCFixMDtISiECBPvH4QKaS9vVp51LqGRgClKzXQdeKQP+PXvB6d+IDLjIscl5ifimCvXiPMkhouQS406myHs+3hPxlDsP7y9lrtUxxWTSmXIL/rU426qthHd5hVBEHhZyXS0yeg+WD0FEHuWJi+xF9FUL9XM4Z8qNGeMkGWHgi78Foi+TODSx9trws/PgDBftdtNW+/pg9YRRAU05dAzlh/JkV3zCgFil38DhhHJWMI+t00QTwl9gVNo6AIAsyWaquJiBUUoEUQwApyqwiCIjtXc+v9UATHXgUESi/1fuxMKVmhLrHmg96P3XVGXW1RyBgCmOD0sw3Cbxw1i+D0Cf0+/Cbs8hIueeN1hXEgisBaBCOLkhW6wKrX4947xzarxTG20NtxvWDWat0e86HxXNN+TZmNQsYQ6IK2iTNGjLsgadyJ+aTP993b43s+fUoEZQm57Uijmj4qIkUi8pyI7He2kwc5ZrmIbBSRXSLypoh8IOGz74vIIRHZ7vwsz0SeyFOyEro6nJRHj+jthaqt/RNu1Ji2WPsjHNvs/dhRyhhyCSpwGnYp5kSC8pd3NIDpiYbyg+DWjbTV+N6ONFOL4NPA88aYhcDzzvuBnAI+ZIy5CLgJ+HcRmZTw+SeNMcudn+0ZyhNtSn1Ip2zYq7nMsy7zbkwvycqGslX+KIL6PeqKCbMhzUCCKsscduG1RILyl0dlMZlLfklwbkCfv+tMFcFa4BHn9SPA+wYeYIx5yxiz33ldA9QD0zK8bjyZslCf4rzMHHIn2KhaBACz1+ikfbrF23GP71S3kE/1V9IiKIsgCquKXYKyCKKymMwlf6a6w3p7/b1Oe63vyi9TRTDDGOP+1dcB53ViichqIA84kLD7Qcdl9DURGfI/WkTWichWEdna0NCQodghkZWl5Zm9LDVx7FWtehmFPPqhmLUaMOrC8pK6HRqAjxIFxXC6WZsE+Ul7rS4gjALjJkP2mOAsgrAX0bnkFwfTnjSATKlhFYGI/FZEdg7yszbxOGOMAYbMERSRYuAHwIeNMa4K/QywGFgFFAGfGup8Y8x6Y0yFMaZi2rQYGxRll+oE1nXam/GqXlW3UBQqjg5FaYW6cI5t8m7MjiZoq46eIgii9k5vr6MIImIRBFWWub1Wg6YTIvL/H0TBve5OfbDwWfkNqwiMMdcbY5YO8vML4LgzwbsT/aBr60WkAPgV8FljzKaEsWuN0gl8D4iwf8Mj5lwJPWehakvmY3U0aS3+KLuFQFtXzlzqbZyg7k3dRk4RBOAmcVeaRuXJGILJoHELr/kYNE2JggDWjQTUfChT19AG4C7n9V3ALwYeICJ5wM+AR40xTw34zFUigsYXdmYoT/SZvUafag69lPlYR152xrw887H8ZtZlUPUa9HR5M17dDt3OiJoicC2CGv+u4aaORsUigGAsgrYIBcghGIvA/Z36/F1nqgi+BLxLRPYD1zvvEZEKEfmuc8xtwNXA3YOkif5IRHYAO4CpwD9lKE/0GVugcYLDL2c+1qGXIHdCNFcUD2TOOzR11quMqbod6iOfMMWb8bwiCNdQ1HzlEEy2VFQWk7lMnAGIv/fdt17E3/vOyMYyxjQB1w2yfytwr/P6h8APhzj/2kyuH1vKr4TN34Kzp3SFYrocfkktjOxc72Tzi/KrdHvoD964sqIYKAYncJrn71NiVC2CzjboPKmuQD9or9W/96iQnavxiiAsAp8VgV1ZHAblV2UeJzhZr2sI5l7lnVx+MmGKTtwH/5D5WF2ndVFeFBVBEIHTvqDpdP+ukSp9q4t9Kj7XdcYJmkZI+YF+136uJWiv0Rpl485Zq+spVhGEgRsnyMQ9dNiJMZRf7Y1MQTD3nZrummnGVO0busI0Sk14Esn3uZ9tW632AIhK0BT895efDMZXnjJ+B8kDakdqFUEY9MUJMggYH3oR8vKh+BLPxPKduVdDT2fm2UNu3aKyVZnL5Ad+WwRt1RGcEH3OloraYjIX37/r2kBiQVYRhMX8a3RCO30i9XONgf2/1Yk1Sk+FwzHnCl1PcPD3mY1TtQUml8PEiOSTD8TvwGl7bTRdJODf03EUA+SgKaQdDd5lww0koFIiVhGExcIb1b1x4Hepn1u/G9qqYNGN3svlJ2PyNdX1rWczG6dqa3StAXh74NQP2vwvOZAyYwogd7x/CjCgfPqUcduT+hEbMSaQ8hJgFUF4lFXAuKL0JsW3ntHtwhu8lSkILrgJ6ndBy9H0zm+t1gBapBWBjymkZzugszV6FkFfkNxHiyB7jO9B05Tx87vubIOuU9YiGNFkZcPCd8H+Z1PvT7D/WY0NRM1PnAyLbtbtvt+kd36VGx+o8EYeP/DTTeL6yqNmEYC/LrE2p6RG1EqpBPFdB6D0rSIIk4U3aEpcKsXYTjVrsHVhzNxCLlMXwJQFsO/p9M4/tkWfDKO2ojiRvtIDPkyK7orlSCoCPy2CiC0mc3FjFn6kkLZbRTA6WHA9ZOXC7nMqcwzN3v+rXbkuuNk/ufzmgps1dfZMa+rnHnpRF6RFoVn9UPQ9JfpQZqItokFT6LcI/OhP3R6RXsUDGT8FsnL8UYAB9qW2iiBMxk1S99Cu/0rePbTjKSiar20v48qSP4PertQUIEBHIxzfoesRosyYfA2etlZ7P3Z7BFcVu+TPVJ92Z7u34xqjq6mjUnY7kawsXdPhi/VnLYLRw7Jb9Qs/8sfhj22v0yfiZbdGz1eaCqUrVZm98URq5x16UbfzIq4IQCetNh8UQVstjCmEvAnej50pfnUqO9UE3WegsMzbcb2iwKdFZW01GhzPHef92AOwiiBsFt2sC8O2DVqO6e288RhgYNlf+C6Wr4jAJbdr9dQTR5I/79Af9HcV1RXFiRSWQmuV9+NGcTGZi/vE7vV9u+NF0SIA/2IjrVVQEIzys4ogbPLGw/I7YNfP4OR5Oq/1dMOWh3QR2dSFwcnnF5fcoYvLtnwnueN7ezXVdt4747GIzi+LIIqLyVwKfVIE7u+xMKqKwCeLoLU6MCvIKoIosOo+LUL32veGPmbf09B6DFavC04uP5k0C5bcAq89mtzCq5pt6h9f/F7/ZfOCwjJdcep1y8ooLiZzyS/WGlpeK0A31hLQ03HK5M/UxIezp7wdt/VYYMrPKoIoMG2RpoNu/A9NDx1Ibw+88M/al3hRjLOFBnL5/bo4ast3hz927y/VgojLamrXjeHlpNjTrStYo6oIsnM1cOq5RVCl2XVRaVE5EDeD66SHAeOzHXCmJTB3WEaKQESKROQ5EdnvbAdd9iciPQlNaTYk7J8rIptFpFJEnnC6mY1Orv+CZlv84Svnfrbth9CwB677fDzcIslSVqFrKV7+t8EVoIsxmmFUfiWMLwpOvkzoc5N4qAjaa7UsSeEs78b0Gj9iI63VqvyyIvrc6qa1ermWwP27Cei7zvQ3+2ngeWPMQuB55/1gnDbGLHd+bknY/2Xga8aYBcAJ4J4M5YkvM5bAyru0YU3l8/37G/fDM5+F2VfAkrXhyecX130ezrSpMhiKQy9C80FYfmdwcmWK68bw0iJwJ9ioZs+AyuZHjCDKys+PbKnWY7qNiWtoLfCI8/oRtO9wUjh9iq8F3D7GKZ0/IrnxQZi+BB7/S3jlG/D6o/D990DOGHj/+ninjA7FzKUaON68HlqODX7M1oc1jW7J+wIVLSNc942Xk2Lf5BDhSdENknu5qKy1OrqBYujP4vJyLYH7ABEH1xAwwxjjqsE6YMYQx40Vka0isklE3ufsmwK0GGO6nfdVQIS/7QDImwB3bdCVs8/+L9jwcV25ePevNLg6Urnmf+r2hX8+97Pmg7qaevlfQu7YYOXKhLzxWlTQF0UQ4X+Twlma83+qyZvxens0SSCqqaOQUHnVa9eQBBYPGtbhLCK/BQZb2/3ZxDfGGCMiQz0GzDHGVIvIPOB3TsP6lOoLiMg6YB3A7NmzUzk1XkyYCh/6BTQd0H+o6RdqgbqRzKRZcNk6eOU/YM1Hofji/s9++wUNFF7x8dDES5tCj1NIW6v0wSCKi8lcElNIJ0zNfLyT9dDbHW3lJ6LuIa+/6/yZgfUjH9YiMMZcb4xZOsjPL4DjIlIM4Gzrhxij2tkeBH4PrACagEki4iqjMmDI36QxZr0xpsIYUzFtWkSzB7xCRIuzzVw68pWAy5UPaFbIT+6Gdqe2+5aHNEh89d9Fs87McBSUeRssbq2KdnwAvF9U1hbx1FGXSbOGdm2mQ1tVoFZQpq6hDcBdzuu7gHOKx4jIZBEZ47yeCrwD2G2MMcALwK3nO98yShhfBLc9qub1f14OD90Iv3pAC/Nd+UDY0qVHYan+Q3tFa1W04wPQL59XT8d9AfIIWwSg993qoSIIWOlnqgi+BLxLRPYD1zvvEZEKEXGTwy8EtorIG+jE/yVjzG7ns08BD4hIJRozeChDeSxxZs7lcM+z2sWspxP+5DNw+4/jaxUVlOpCIy86lRmjT5xRtwgmTNUy4Z5bBBFXBJPm6BqPrjOZj2VMoKuKIYkYwfkwxjQB1w2yfytwr/P6FWDQ4vGOq2h1JjJYRhgzl8HtPwpbCm8oTEghnXZBZmOdaYWz7dFXBOIEOL1SBK3VGoiNWmeygbjJHK1V6tbNhNMnoPt0rFxDFotlKLz0l8dhDYFLYZl3riHXVx711GnXJdaaZgvWRPqyw+LjGrJYLEPh/iN74TvuUwQxyJjzclFZa1X04wMAk5zvJd1e3In0rSq2FoHFEn8KSrU+kieTQ/BPiWlTWKZB/57u4Y8djhNH1P8edfKLne/aQ6UfYKaUVQQWi19k5+hTnVeKIDsvuoXXEiks03aqmbqHOk/CqUaYHANF4OV33XIEcsbCxOmZj5UkVhFYLH4yaU5qzXeGotXxlUe18Foi7hN8S4b37VpBcbAIQN12XrgBWxwrKMC4SAz+qiyWGDN5TuYTIsRjMZnL5HLdZqoA3fPjoggmzfbGNXTicOBWkFUEFouf9OWXn85snJaj/QHJqFNYpg1qThzObBxXgcbBNQSaQtpeAz1dmY1z4mjgys8qAovFT/rcJBk8KXad1uCr+6QddbJzVRlkagmdOAI54+IRFwFV1JnGRk6f0GZN1iKwWEYQkz3wl7sukslzM5cnKLyIjbQc0ck16msIXNy1BJkEjENyh1lFYLH4iReBU9fFEheLALyJjbQciY9bCPpXF2di/YXkDrOKwGLxk4kztPZOJk/HJw7ptihGFsHkco2NZNLQPQRfeUYUlAFiLQKLxTKArCynRHGGFkHeRO1FEBcmles23UkxJF95RuTkaWzEVdzp0HIExk6CcZO8kioprCKwWPxm0pzMnhKbD2l8IC6+csg8NtL3ZByTTCmXonnaVCpdQkgdBasILBb/mVyuLTfT7eMb0uSQEZmuJXDjInFyDYEqguaD6Z8fUkkNqwgsFr+ZskDLSJ9qTv3c3l6dFOMUHwBN+cwdn/5agmbnqXpKhiWdg2bKfDjdrK6tVOntVcvRWgQWywjEncyaKlM/92SdNumJU8YQqBuraF569wzqXskvhjETvZXLb4rm6bYpDaug9Zh+1yEov4wUgYgUichzIrLf2Z7TPUJErhGR7Qk/Z0Tkfc5n3xeRQwmfLc9EHoslkkyZr9t0JsVmJ/AYpzUELlPmQ9P+9M5tqoyfNQBQ5HzX6biH3N/VlIXeyZMkmVoEnwaeN8YsBJ533r8NY8wLxpjlxpjlwLXAKeDZhEM+6X5ujNmeoTwWS/SYNAeyctJTBG4GStwsAtAJ7cQR6D6b+rlNlf0KNE5MLgek37WVCo3O38fU+CmCtcAjzutHgPcNc/ytwK+NMRkkF1ssMSM7R5/o01EEjfshKzd+QVPQCc30pJ5OeaoZTjXF0yLIHasppOlkDjXthzGFoZTUyFQRzDDG1Dqv64AZwxx/O/DYgH0PisibIvI1ERkz1Ikisk5EtorI1oaGhgxEtlhCYMqC9CaHxv36ZJydUXvxcHBdHI0puodct0ocFQE4mUPpKALHCgohTXhYRSAivxWRnYP8rE08zhhjgCHz40SkGG1i/0zC7s8Ai4FVQBHwqaHON8asN8ZUGGMqpk2LSREqi8VlynydHHp7Uzuv8a1QXAWe4DZxTzVO4FpOsVYEacQIGitD+66Hfcwwxlw/1GciclxEio0xtc5EX3+eoW4DfmaM6avRmmBNdIrI94C/T1JuiyVeTFkA3We0MqVbk2Y4errUrbLkFn9l84uxhTBher/vO1maKrXtYxzdYeCkkJ6AjiaYkORq8LMd0FYVSqAYMncNbQDucl7fBfziPMfewQC3kKM8EBFB4ws7M5THYokm6aSQNh+C3m6YusgfmYJg6sL0LILJc7RkQxyZtli3DXuTP8d1G04NxwrKVBF8CXiXiOwHrnfeIyIVIvJd9yARKQdmAX8YcP6PRGQHsAOYCvxThvJYLNHEVQSp+Msb39JtXF1DoPedaoygMaapoy59imBP8uf0pY6Gc98ZRaCMMU3AdYPs3wrcm/D+MFA6yHHXZnJ9iyU25M9UV0n97uTPcRVBSO4CT5i6UFfanmqG8UXDH9/TBY37YP41/svmF4VlkJcP9SlYBI37AelfhxAwdmWxxRIEIjD9otQUQf1ubVg/tsA/ufxm2oW6Pb4rueObDkDPWZix1D+Z/EYEpi9OzTV0fJeWEckb759c58EqAoslKGZcBPV7ki8+d3xXvCdEgJmO/MkqguNOmHDGEn/kCYppi/W7TpaQv2urCCyWoJixBDrbtKbMcHR3qmtoZswVwcQZMH4qHN+R3PH1uzVjKM4BcoDpF8KpRuhoHP7Ysx2abmoVgcUyCph+kW6PJ+EeatirGUNxtwhEVJnVJZkQeHyXKoGcIdeWxoPpjkVTl4QCrN8DmFCVvlUEFktQTHf95UlMiu7EOXOZf/IExYylqth6uoc/9vju+LuFAIov0W3t9uGP7XOHXeSbOMNhFYHFEhRjC7TmULKTQ864/rLGcWbGUl1MN1zZhY4maD06MpTf+CItQFezffhj63ZqllFheN3YrCKwWIKkrAKqXhv+uJrt6irIyvZdJN9xn46rXz//cdXO76W0wl95gqJkBdRsG/646q1Qslz7W4eEVQQWS5CUVkB7DbRWD31M91moeR3KVgcnl59MWwxjCqDq1fMfV70VJEsn0JFA8XLt2Xy+znRdpzWOULYqMLEGwyoCiyVIypyn3eqtQx9Tt0NdKbNGiCLIyoLSS+HYMIqgaosGWePWlWwoXIVWcx5LqGabJgWE/F1bRWCxBMnMZZCdB1XnUQTHNut21mXByBQEsy7T1NDO9sE/7+1V11DppcHK5SelKzUV9sjGoY9xlWPI7jCrCCyWIMkZoy6DI68MfUzVqxo4LCgOTCzfmbUKTO/QCrBxH5xpDd1F4ilj8lWxHXpx6GOqtmgCwcRwS+tbRWCxBM38a9RdMJjvuLcXDr8Ms0eQNQA6wUv20JPiwd/rdt47AxMpEOZerZbOYJZQTzccfgnmvCN4uQZgFYHFEjQLrtenY3fyS6TuTeho0GNGEmMLYc4V8NYzg39+8PeaKjspvBRKX5h7tbbrHMw9VPO6WkELwq+9aRWBxRI0JSt1Yqx8/tzPKp/T7fzwJwfPWXQT1O+ClqNv33+2Qy2F+ecUMo4/s1brepD9z5772f7nAIF54VdatYrAYgma7Byd6N/6jZZdTmTnzzRtdOL0cGTzk0U36Xbfb96+f/+z0HUKlqw995y4kzsOFr4L9myA3p7+/cbArv+C8iuTK8/tM1YRWCxhcPEHtCjZ/uf699Xt0Cfmi28LTy4/mbpA00O3//DtFVjfeEJbWs65IjzZ/OSiP4OTx+HgC/37al7XTmzLbg1PrgQyUgQi8hcisktEekVkyPwnEblJRPaJSKWIfDph/1wR2ezsf0JEYtqbzmJJkQXvgokzYeM3+yfFV74BueNh6Z+HK5ufVPx3qH2jP0W2sVIto4oPj4xV1IOx+D1ahXXjN/v3vfINLSux5H2hiZVIphbBTuD9wJD5USKSDXwTuBlYAtwhIm5VqS8DXzPGLABOAPdkKI/FEg+yc+Cqv4MjL8POn2qm0I6fwKp7IuEq8I1L7oD8Ynj6k5pJ8/TfqfJbde/w58aVnDGw5q/hwO9g9wYNjO/6Oay+F8ZNClk4JdNWlXsAtPf8kKwGKo0xB51jHwfWisge4FrgTue4R4AvAP+ZiUwWS2y49G5VAv91H2TlaJvCqz8ZtlT+MmYivPtf4IkPwlcXQvdpeO+/j8yYSCJr/hp2/xye+rCW0Zh2QaS+64wUQZKUAomdOKqAy4ApQIsxpjth/zl9jV1EZB2wDmD27BGWYmYZneTkwZ1PwEv/qiUl3vG3mk000rnwvfCXT6kFtOC6kRsTSSQnDz74X/pd93TBVQ9A3oSwpepjWEUgIr8FZg7y0WeNMb/wXqTBMcasB9YDVFRUJNnrz2KJOOMmwQ3/GLYUwbPwev0ZTYwvghsfDFuKQRlWERhjMv22qoFZCe/LnH1NwCQRyXGsAne/xWKxWAIkiPTRLcBCJ0MoD7gd2GCMMcALgJs/dRcQmIVhsVgsFiXT9NE/E5Eq4HLgVyLyjLO/RESeBnCe9u8HngH2AE8aY3Y5Q3wKeEBEKtGYwUOZyGOxWCyW1BFj4udur6ioMFu3nqeMr8VisVjOQUReM8acs+bLriy2WCyWUY5VBBaLxTLKsYrAYrFYRjlWEVgsFssoJ5bBYhFpAI6kcMpUoNEncaLKaLxnGJ33PRrvGUbnfWd6z3OMMef0xYylIkgVEdk6WKR8JDMa7xlG532PxnuG0Xnfft2zdQ1ZLBbLKMcqAovFYhnljBZFsD5sAUJgNN4zjM77Ho33DKPzvn2551ERI7BYLBbL0IwWi8BisVgsQ2AVgcVisYxyRpQiEJGbRGSfiFSKyKcH+XyMiDzhfL5ZRMpDENNTkrjnB0Rkt4i8KSLPi8icMOT0muHuO+G4PxcRIyKxTzNM5p5F5Dbn+94lIj8OWkY/SOJvfLaIvCAi25y/83eHIaeXiMjDIlIvIjuH+FxE5OvO7+RNEVmZ0QWNMSPiB8gGDgDzgDzgDWDJgGP+GviW8/p24Imw5Q7gnq8BxjuvPxr3e072vp3j8oEXgU1ARdhyB/BdLwS2AZOd99PDljug+14PfNR5vQQ4HLbcHtz31cBKYOcQn78b+DUgwBpgcybXG0kWwWqg0hhz0BhzFngcWDvgmLXAI87rp4DrREQClNFrhr1nY8wLxphTzttNaCe4uJPMdw3wj8CXgTNBCucTydzzfcA3jTEnAIwx9QHL6AfJ3LcBCpzXhUBNgPL5gjHmRaD5PIesBR41yia022NxutcbSYqgFDiW8L7K2TfoMUYb5rSiDXHiSjL3nMg96FNE3Bn2vh1TeZYx5ldBCuYjyXzXi4BFIvJHEdkkIjcFJp1/JHPfXwA+6DTJehr4eDCihUqq//vnZdiexZaRgYh8EKgA3hm2LH4jIlnAvwF3hyxK0OSg7qE/QS2/F0VkmTGmJUyhAuAO4PvGmH8VkcuBH4jIUmNMb9iCxYWRZBFUA7MS3pc5+wY9RkRyUDOyKRDp/CGZe0ZErgc+C9xijOkMSDY/Ge6+84GlwO9F5DDqQ90Q84BxMt91FdoPvMsYcwh4C1UMcSaZ+74HeBLAGLMRGIsWZxvJJPW/nywjSRFsARaKyFwRyUODwRsGHLMBuMt5fSvwO+NEXmLKsPcsIiuAb6NKYCT4jGGY+zbGtBpjphpjyo0x5Whs5BZjTJz7mybz9/1z1BpARKairqKDAcroB8nc91HgOgARuRBVBA2BShk8G4APOdlDa4BWY0xtuoONGNeQMaZbRO4HnkEzDR42xuwSkS8CW40xG4CHULOxEg3E3B6exJmT5D1/FZgI/MSJix81xtwSmtAekOR9jyiSvOdngBtEZDfQA3zSGBNnizfZ+/474Dsi8gk0cHx3zB/wEJHHUKU+1Yl9fB7IBTDGfAuNhbwbqAROAR/O6Hox/31ZLBaLJUNGkmvIYrFYLGlgFYHFYrGMcqwisFgsllGOVQQWi8UyyrGKwGKxWEY5VhFYLBbLKMcqAovFYhnl/P/qv5Rh8FUg1AAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
@@ -181,11 +176,24 @@
}
],
"source": [
+ "ratio = 2\n",
+ "first = 1\n",
+ "(length,) = x.shape\n",
+ "slop = int(length/6)\n",
+ "second = ratio-first\n",
+ "odd = ratio % 2\n",
"\n",
- "x = np.linspace(0,0.1,1000)\n",
- "y = np.sin(100 * 2.0*np.pi*x+1.5*np.sin(30 * 2.0*np.pi*x))\n",
- "plt.plot(x, y, '-')\n",
- "plt.show()"
+ "first = int(first * length/ratio) \n",
+ "second = int( second * length/ratio) + odd\n",
+ "slop = np.array(np.append(np.zeros(first-slop) , (np.arange(slop))/slop))\n",
+ "#steep = np.ones(int(first * length/ratio)+ odd) - np.exp(-np.arange(int(first * length/ratio) + odd)/200)\n",
+ "steep = (np.ones(first) + slop)*0.5\n",
+ "\n",
+ "step = np.append(steep, np.ones(second))\n",
+ "m = np.sin(5 * 2.0 * np.pi * x) * step \n",
+ "plt.plot(x, step, '-')\n",
+ "plt.plot(x, m, '-')\n",
+ "plt.savefig('m_t.pgf', format='pgf')"
]
}
],
diff --git a/buch/papers/fm/Python animation/Bessel-FM.py b/buch/papers/fm/Python animation/Bessel-FM.py
index cf30e16..cb35ebd 100644
--- a/buch/papers/fm/Python animation/Bessel-FM.py
+++ b/buch/papers/fm/Python animation/Bessel-FM.py
@@ -4,39 +4,45 @@ from scipy.fft import fft, ifft, fftfreq
import scipy.special as sc
import scipy.fftpack
import matplotlib.pyplot as plt
-from matplotlib.widgets import Slider
-
-# Number of samplepoints
-N = 600
-# sample spacing
-T = 1.0 / 800.0
-x = np.linspace(0.01, N*T, N)
-beta = 1.0
-y_old = np.sin(100.0 * 2.0*np.pi*x+beta*np.sin(50.0 * 2.0*np.pi*x))
-y = 0*x;
-xf = fftfreq(N, 1 / 400)
-for k in range (-5, 5):
- y = sc.jv(k,beta)*np.sin((100.0+k*50) * 2.0*np.pi*x)
- yf = fft(y)
- plt.plot(xf, np.abs(yf))
-
-axbeta =plt.axes([0.25, 0.1, 0.65, 0.03])
-beta_slider = Slider(
-ax=axbeta,
-label="Beta",
-valmin=0.1,
-valmax=3,
-valinit=beta,
-)
-
-def update(val):
- line.set_ydata(fm(beta_slider.val))
- fig.canvas.draw_idle()
+import matplotlib as mpl
+# Use the pgf backend (must be set before pyplot imported)
+mpl.use('pgf')
+from matplotlib.widgets import Slider
+def fm(beta):
+ # Number of samplepoints
+ N = 600
+ # sample spacing
+ T = 1.0 / 1000.0
+ fc = 100.0
+ fm = 30.0
+ x = np.linspace(0.01, N*T, N)
+ #beta = 1.0
+ y_old = np.sin(fc * 2.0*np.pi*x+beta*np.sin(fm * 2.0*np.pi*x))
+ y = 0*x;
+ xf = fftfreq(N, 1 / N)
+ for k in range (-4, 4):
+ y = sc.jv(k,beta)*np.sin((fc+k*fm) * 2.0*np.pi*x)
+ yf = fft(y)/(fc*np.pi)
+ plt.plot(xf, np.abs(yf))
+ plt.xlim(-150, 150)
+ #plt.savefig('bessel.pgf', format='pgf')
+ plt.show()
-beta_slider.on_changed(update)
-plt.show()
+fm(1)
-yf_old = fft(y_old)
-plt.plot(xf, np.abs(yf_old))
-plt.show() \ No newline at end of file
+# Bessel-Funktion
+for n in range (-2,4):
+ x = np.linspace(-11,11,1000)
+ y = sc.jv(n,x)
+ plt.plot(x, y, '-',label='n='+str(n))
+#plt.plot([1,1],[sc.jv(0,1),sc.jv(-1,1)],)
+plt.xlim(-10,10)
+plt.grid(True)
+plt.ylabel('Bessel $J_n(\\beta)$')
+plt.xlabel(' $ \\beta $ ')
+plt.plot(x, y)
+plt.legend()
+#plt.show()
+plt.savefig('bessel.pgf', format='pgf')
+print(sc.jv(0,1)) \ No newline at end of file
diff --git a/buch/papers/fm/Python animation/m_t.pgf b/buch/papers/fm/Python animation/m_t.pgf
new file mode 100644
index 0000000..edcfb33
--- /dev/null
+++ b/buch/papers/fm/Python animation/m_t.pgf
@@ -0,0 +1,746 @@
+%% Creator: Matplotlib, PGF backend
+%%
+%% To include the figure in your LaTeX document, write
+%% \input{<filename>.pgf}
+%%
+%% Make sure the required packages are loaded in your preamble
+%% \usepackage{pgf}
+%%
+%% Also ensure that all the required font packages are loaded; for instance,
+%% the lmodern package is sometimes necessary when using math font.
+%% \usepackage{lmodern}
+%%
+%% Figures using additional raster images can only be included by \input if
+%% they are in the same directory as the main LaTeX file. For loading figures
+%% from other directories you can use the `import` package
+%% \usepackage{import}
+%%
+%% and then include the figures with
+%% \import{<path to file>}{<filename>.pgf}
+%%
+%% Matplotlib used the following preamble
+%% \usepackage{fontspec}
+%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/joshua/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/joshua/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/joshua/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%%
+\begingroup%
+\makeatletter%
+\begin{pgfpicture}%
+\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{4.000000in}}%
+\pgfusepath{use as bounding box, clip}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.000000pt}%
+\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetstrokeopacity{0.000000}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{6.000000in}{4.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathclose%
+\pgfusepath{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.000000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetstrokeopacity{0.000000}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}%
+\pgfpathlineto{\pgfqpoint{5.400000in}{0.500000in}}%
+\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}%
+\pgfpathlineto{\pgfqpoint{0.750000in}{3.520000in}}%
+\pgfpathlineto{\pgfqpoint{0.750000in}{0.500000in}}%
+\pgfpathclose%
+\pgfusepath{fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.918664in}{0.500000in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.918664in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.0}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.772658in}{0.500000in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.772658in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.2}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.626653in}{0.500000in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=2.626653in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.4}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.480647in}{0.500000in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=3.480647in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.6}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.334642in}{0.500000in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=4.334642in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.8}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{5.188636in}{0.500000in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=5.188636in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 1.0}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{0.637238in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.235508in, y=0.584477in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}1.00}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{0.980424in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.235508in, y=0.927663in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.75}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{1.323611in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.235508in, y=1.270849in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.50}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{1.666797in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.235508in, y=1.614035in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.25}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{2.009983in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.343533in, y=1.957221in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.00}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{2.353169in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.343533in, y=2.300407in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.25}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{2.696355in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.343533in, y=2.643594in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.50}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{3.039541in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.343533in, y=2.986780in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.75}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{3.382727in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.343533in, y=3.329966in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 1.00}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.961364in}{2.696355in}}%
+\pgfpathlineto{\pgfqpoint{2.373982in}{2.696355in}}%
+\pgfpathlineto{\pgfqpoint{3.077645in}{3.382727in}}%
+\pgfpathlineto{\pgfqpoint{5.188636in}{3.382727in}}%
+\pgfpathlineto{\pgfqpoint{5.188636in}{3.382727in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.961364in}{2.222083in}}%
+\pgfpathlineto{\pgfqpoint{0.993108in}{2.367402in}}%
+\pgfpathlineto{\pgfqpoint{1.019561in}{2.473982in}}%
+\pgfpathlineto{\pgfqpoint{1.040724in}{2.546802in}}%
+\pgfpathlineto{\pgfqpoint{1.056596in}{2.592979in}}%
+\pgfpathlineto{\pgfqpoint{1.072468in}{2.631215in}}%
+\pgfpathlineto{\pgfqpoint{1.088341in}{2.660988in}}%
+\pgfpathlineto{\pgfqpoint{1.098922in}{2.675931in}}%
+\pgfpathlineto{\pgfqpoint{1.109503in}{2.686839in}}%
+\pgfpathlineto{\pgfqpoint{1.120085in}{2.693647in}}%
+\pgfpathlineto{\pgfqpoint{1.130666in}{2.696313in}}%
+\pgfpathlineto{\pgfqpoint{1.141248in}{2.694822in}}%
+\pgfpathlineto{\pgfqpoint{1.151829in}{2.689182in}}%
+\pgfpathlineto{\pgfqpoint{1.162410in}{2.679428in}}%
+\pgfpathlineto{\pgfqpoint{1.172992in}{2.665619in}}%
+\pgfpathlineto{\pgfqpoint{1.183573in}{2.647837in}}%
+\pgfpathlineto{\pgfqpoint{1.199445in}{2.613960in}}%
+\pgfpathlineto{\pgfqpoint{1.215317in}{2.571856in}}%
+\pgfpathlineto{\pgfqpoint{1.231190in}{2.522098in}}%
+\pgfpathlineto{\pgfqpoint{1.252352in}{2.445035in}}%
+\pgfpathlineto{\pgfqpoint{1.278806in}{2.334146in}}%
+\pgfpathlineto{\pgfqpoint{1.310550in}{2.185325in}}%
+\pgfpathlineto{\pgfqpoint{1.421655in}{1.645905in}}%
+\pgfpathlineto{\pgfqpoint{1.448108in}{1.540247in}}%
+\pgfpathlineto{\pgfqpoint{1.469271in}{1.468321in}}%
+\pgfpathlineto{\pgfqpoint{1.485143in}{1.422894in}}%
+\pgfpathlineto{\pgfqpoint{1.501015in}{1.385464in}}%
+\pgfpathlineto{\pgfqpoint{1.516888in}{1.356540in}}%
+\pgfpathlineto{\pgfqpoint{1.527469in}{1.342183in}}%
+\pgfpathlineto{\pgfqpoint{1.538050in}{1.331872in}}%
+\pgfpathlineto{\pgfqpoint{1.548632in}{1.325669in}}%
+\pgfpathlineto{\pgfqpoint{1.559213in}{1.323611in}}%
+\pgfpathlineto{\pgfqpoint{1.569795in}{1.325711in}}%
+\pgfpathlineto{\pgfqpoint{1.580376in}{1.331956in}}%
+\pgfpathlineto{\pgfqpoint{1.590957in}{1.342308in}}%
+\pgfpathlineto{\pgfqpoint{1.601539in}{1.356705in}}%
+\pgfpathlineto{\pgfqpoint{1.617411in}{1.385688in}}%
+\pgfpathlineto{\pgfqpoint{1.633283in}{1.423174in}}%
+\pgfpathlineto{\pgfqpoint{1.649155in}{1.468653in}}%
+\pgfpathlineto{\pgfqpoint{1.670318in}{1.540640in}}%
+\pgfpathlineto{\pgfqpoint{1.691481in}{1.623984in}}%
+\pgfpathlineto{\pgfqpoint{1.717934in}{1.741037in}}%
+\pgfpathlineto{\pgfqpoint{1.754969in}{1.920906in}}%
+\pgfpathlineto{\pgfqpoint{1.829039in}{2.286606in}}%
+\pgfpathlineto{\pgfqpoint{1.855493in}{2.402871in}}%
+\pgfpathlineto{\pgfqpoint{1.876655in}{2.485395in}}%
+\pgfpathlineto{\pgfqpoint{1.897818in}{2.556416in}}%
+\pgfpathlineto{\pgfqpoint{1.913690in}{2.601088in}}%
+\pgfpathlineto{\pgfqpoint{1.929563in}{2.637708in}}%
+\pgfpathlineto{\pgfqpoint{1.945435in}{2.665778in}}%
+\pgfpathlineto{\pgfqpoint{1.956016in}{2.679547in}}%
+\pgfpathlineto{\pgfqpoint{1.966597in}{2.689260in}}%
+\pgfpathlineto{\pgfqpoint{1.977179in}{2.694858in}}%
+\pgfpathlineto{\pgfqpoint{1.987760in}{2.696307in}}%
+\pgfpathlineto{\pgfqpoint{1.998342in}{2.693599in}}%
+\pgfpathlineto{\pgfqpoint{2.008923in}{2.686749in}}%
+\pgfpathlineto{\pgfqpoint{2.019504in}{2.675800in}}%
+\pgfpathlineto{\pgfqpoint{2.030086in}{2.660817in}}%
+\pgfpathlineto{\pgfqpoint{2.045958in}{2.630985in}}%
+\pgfpathlineto{\pgfqpoint{2.061830in}{2.592694in}}%
+\pgfpathlineto{\pgfqpoint{2.077702in}{2.546466in}}%
+\pgfpathlineto{\pgfqpoint{2.098865in}{2.473584in}}%
+\pgfpathlineto{\pgfqpoint{2.120028in}{2.389486in}}%
+\pgfpathlineto{\pgfqpoint{2.146481in}{2.271711in}}%
+\pgfpathlineto{\pgfqpoint{2.183516in}{2.091294in}}%
+\pgfpathlineto{\pgfqpoint{2.257586in}{1.726215in}}%
+\pgfpathlineto{\pgfqpoint{2.284040in}{1.610703in}}%
+\pgfpathlineto{\pgfqpoint{2.305203in}{1.528957in}}%
+\pgfpathlineto{\pgfqpoint{2.326365in}{1.458849in}}%
+\pgfpathlineto{\pgfqpoint{2.342237in}{1.414938in}}%
+\pgfpathlineto{\pgfqpoint{2.358110in}{1.379133in}}%
+\pgfpathlineto{\pgfqpoint{2.400435in}{1.300923in}}%
+\pgfpathlineto{\pgfqpoint{2.411017in}{1.287575in}}%
+\pgfpathlineto{\pgfqpoint{2.421598in}{1.278578in}}%
+\pgfpathlineto{\pgfqpoint{2.432179in}{1.274111in}}%
+\pgfpathlineto{\pgfqpoint{2.442761in}{1.274326in}}%
+\pgfpathlineto{\pgfqpoint{2.453342in}{1.279345in}}%
+\pgfpathlineto{\pgfqpoint{2.463924in}{1.289257in}}%
+\pgfpathlineto{\pgfqpoint{2.474505in}{1.304122in}}%
+\pgfpathlineto{\pgfqpoint{2.485086in}{1.323962in}}%
+\pgfpathlineto{\pgfqpoint{2.500959in}{1.363022in}}%
+\pgfpathlineto{\pgfqpoint{2.516831in}{1.413067in}}%
+\pgfpathlineto{\pgfqpoint{2.532703in}{1.473735in}}%
+\pgfpathlineto{\pgfqpoint{2.553866in}{1.570194in}}%
+\pgfpathlineto{\pgfqpoint{2.575028in}{1.682799in}}%
+\pgfpathlineto{\pgfqpoint{2.601482in}{1.842735in}}%
+\pgfpathlineto{\pgfqpoint{2.633226in}{2.055389in}}%
+\pgfpathlineto{\pgfqpoint{2.728459in}{2.712794in}}%
+\pgfpathlineto{\pgfqpoint{2.754912in}{2.866609in}}%
+\pgfpathlineto{\pgfqpoint{2.776075in}{2.970913in}}%
+\pgfpathlineto{\pgfqpoint{2.791947in}{3.035961in}}%
+\pgfpathlineto{\pgfqpoint{2.807819in}{3.088287in}}%
+\pgfpathlineto{\pgfqpoint{2.818401in}{3.115544in}}%
+\pgfpathlineto{\pgfqpoint{2.828982in}{3.136361in}}%
+\pgfpathlineto{\pgfqpoint{2.839564in}{3.150485in}}%
+\pgfpathlineto{\pgfqpoint{2.850145in}{3.157708in}}%
+\pgfpathlineto{\pgfqpoint{2.855436in}{3.158677in}}%
+\pgfpathlineto{\pgfqpoint{2.860726in}{3.157860in}}%
+\pgfpathlineto{\pgfqpoint{2.866017in}{3.155244in}}%
+\pgfpathlineto{\pgfqpoint{2.876599in}{3.144569in}}%
+\pgfpathlineto{\pgfqpoint{2.887180in}{3.126596in}}%
+\pgfpathlineto{\pgfqpoint{2.897761in}{3.101314in}}%
+\pgfpathlineto{\pgfqpoint{2.908343in}{3.068761in}}%
+\pgfpathlineto{\pgfqpoint{2.924215in}{3.006498in}}%
+\pgfpathlineto{\pgfqpoint{2.940087in}{2.928568in}}%
+\pgfpathlineto{\pgfqpoint{2.955959in}{2.835706in}}%
+\pgfpathlineto{\pgfqpoint{2.977122in}{2.690371in}}%
+\pgfpathlineto{\pgfqpoint{2.998285in}{2.523160in}}%
+\pgfpathlineto{\pgfqpoint{3.024738in}{2.288895in}}%
+\pgfpathlineto{\pgfqpoint{3.061773in}{1.928914in}}%
+\pgfpathlineto{\pgfqpoint{3.109390in}{1.462671in}}%
+\pgfpathlineto{\pgfqpoint{3.135843in}{1.229526in}}%
+\pgfpathlineto{\pgfqpoint{3.157006in}{1.063841in}}%
+\pgfpathlineto{\pgfqpoint{3.178169in}{0.921048in}}%
+\pgfpathlineto{\pgfqpoint{3.194041in}{0.831078in}}%
+\pgfpathlineto{\pgfqpoint{3.209913in}{0.757165in}}%
+\pgfpathlineto{\pgfqpoint{3.225785in}{0.700319in}}%
+\pgfpathlineto{\pgfqpoint{3.236366in}{0.672294in}}%
+\pgfpathlineto{\pgfqpoint{3.246948in}{0.652372in}}%
+\pgfpathlineto{\pgfqpoint{3.257529in}{0.640675in}}%
+\pgfpathlineto{\pgfqpoint{3.262820in}{0.637934in}}%
+\pgfpathlineto{\pgfqpoint{3.268111in}{0.637273in}}%
+\pgfpathlineto{\pgfqpoint{3.273401in}{0.638691in}}%
+\pgfpathlineto{\pgfqpoint{3.278692in}{0.642186in}}%
+\pgfpathlineto{\pgfqpoint{3.289274in}{0.655385in}}%
+\pgfpathlineto{\pgfqpoint{3.299855in}{0.676791in}}%
+\pgfpathlineto{\pgfqpoint{3.310436in}{0.706272in}}%
+\pgfpathlineto{\pgfqpoint{3.321018in}{0.743651in}}%
+\pgfpathlineto{\pgfqpoint{3.336890in}{0.814020in}}%
+\pgfpathlineto{\pgfqpoint{3.352762in}{0.900680in}}%
+\pgfpathlineto{\pgfqpoint{3.368634in}{1.002450in}}%
+\pgfpathlineto{\pgfqpoint{3.389797in}{1.159225in}}%
+\pgfpathlineto{\pgfqpoint{3.416250in}{1.383646in}}%
+\pgfpathlineto{\pgfqpoint{3.447995in}{1.683359in}}%
+\pgfpathlineto{\pgfqpoint{3.553809in}{2.713731in}}%
+\pgfpathlineto{\pgfqpoint{3.580262in}{2.928394in}}%
+\pgfpathlineto{\pgfqpoint{3.601425in}{3.075502in}}%
+\pgfpathlineto{\pgfqpoint{3.617297in}{3.169087in}}%
+\pgfpathlineto{\pgfqpoint{3.633169in}{3.246883in}}%
+\pgfpathlineto{\pgfqpoint{3.649041in}{3.307831in}}%
+\pgfpathlineto{\pgfqpoint{3.659623in}{3.338682in}}%
+\pgfpathlineto{\pgfqpoint{3.670204in}{3.361485in}}%
+\pgfpathlineto{\pgfqpoint{3.680786in}{3.376101in}}%
+\pgfpathlineto{\pgfqpoint{3.686076in}{3.380309in}}%
+\pgfpathlineto{\pgfqpoint{3.691367in}{3.382440in}}%
+\pgfpathlineto{\pgfqpoint{3.696658in}{3.382493in}}%
+\pgfpathlineto{\pgfqpoint{3.701948in}{3.380466in}}%
+\pgfpathlineto{\pgfqpoint{3.707239in}{3.376363in}}%
+\pgfpathlineto{\pgfqpoint{3.717821in}{3.361955in}}%
+\pgfpathlineto{\pgfqpoint{3.728402in}{3.339358in}}%
+\pgfpathlineto{\pgfqpoint{3.738983in}{3.308708in}}%
+\pgfpathlineto{\pgfqpoint{3.749565in}{3.270190in}}%
+\pgfpathlineto{\pgfqpoint{3.765437in}{3.198184in}}%
+\pgfpathlineto{\pgfqpoint{3.781309in}{3.109994in}}%
+\pgfpathlineto{\pgfqpoint{3.802472in}{2.969336in}}%
+\pgfpathlineto{\pgfqpoint{3.823635in}{2.805466in}}%
+\pgfpathlineto{\pgfqpoint{3.850088in}{2.574075in}}%
+\pgfpathlineto{\pgfqpoint{3.887123in}{2.216460in}}%
+\pgfpathlineto{\pgfqpoint{3.966484in}{1.434106in}}%
+\pgfpathlineto{\pgfqpoint{3.992937in}{1.203977in}}%
+\pgfpathlineto{\pgfqpoint{4.014100in}{1.041407in}}%
+\pgfpathlineto{\pgfqpoint{4.035263in}{0.902271in}}%
+\pgfpathlineto{\pgfqpoint{4.051135in}{0.815347in}}%
+\pgfpathlineto{\pgfqpoint{4.067007in}{0.744696in}}%
+\pgfpathlineto{\pgfqpoint{4.082879in}{0.691279in}}%
+\pgfpathlineto{\pgfqpoint{4.093461in}{0.665613in}}%
+\pgfpathlineto{\pgfqpoint{4.104042in}{0.648090in}}%
+\pgfpathlineto{\pgfqpoint{4.114623in}{0.638817in}}%
+\pgfpathlineto{\pgfqpoint{4.119914in}{0.637294in}}%
+\pgfpathlineto{\pgfqpoint{4.125205in}{0.637851in}}%
+\pgfpathlineto{\pgfqpoint{4.130496in}{0.640487in}}%
+\pgfpathlineto{\pgfqpoint{4.135786in}{0.645197in}}%
+\pgfpathlineto{\pgfqpoint{4.146368in}{0.660811in}}%
+\pgfpathlineto{\pgfqpoint{4.156949in}{0.684597in}}%
+\pgfpathlineto{\pgfqpoint{4.167530in}{0.716413in}}%
+\pgfpathlineto{\pgfqpoint{4.178112in}{0.756065in}}%
+\pgfpathlineto{\pgfqpoint{4.193984in}{0.829697in}}%
+\pgfpathlineto{\pgfqpoint{4.209856in}{0.919407in}}%
+\pgfpathlineto{\pgfqpoint{4.231019in}{1.061888in}}%
+\pgfpathlineto{\pgfqpoint{4.252182in}{1.227307in}}%
+\pgfpathlineto{\pgfqpoint{4.278635in}{1.460197in}}%
+\pgfpathlineto{\pgfqpoint{4.315670in}{1.818993in}}%
+\pgfpathlineto{\pgfqpoint{4.395031in}{2.600031in}}%
+\pgfpathlineto{\pgfqpoint{4.421484in}{2.828606in}}%
+\pgfpathlineto{\pgfqpoint{4.442647in}{2.989587in}}%
+\pgfpathlineto{\pgfqpoint{4.463810in}{3.126867in}}%
+\pgfpathlineto{\pgfqpoint{4.479682in}{3.212251in}}%
+\pgfpathlineto{\pgfqpoint{4.495554in}{3.281259in}}%
+\pgfpathlineto{\pgfqpoint{4.506136in}{3.317692in}}%
+\pgfpathlineto{\pgfqpoint{4.516717in}{3.346203in}}%
+\pgfpathlineto{\pgfqpoint{4.527298in}{3.366619in}}%
+\pgfpathlineto{\pgfqpoint{4.537880in}{3.378817in}}%
+\pgfpathlineto{\pgfqpoint{4.543170in}{3.381810in}}%
+\pgfpathlineto{\pgfqpoint{4.548461in}{3.382723in}}%
+\pgfpathlineto{\pgfqpoint{4.553752in}{3.381558in}}%
+\pgfpathlineto{\pgfqpoint{4.559043in}{3.378314in}}%
+\pgfpathlineto{\pgfqpoint{4.569624in}{3.365615in}}%
+\pgfpathlineto{\pgfqpoint{4.580205in}{3.344704in}}%
+\pgfpathlineto{\pgfqpoint{4.590787in}{3.315707in}}%
+\pgfpathlineto{\pgfqpoint{4.601368in}{3.278801in}}%
+\pgfpathlineto{\pgfqpoint{4.617240in}{3.209112in}}%
+\pgfpathlineto{\pgfqpoint{4.633112in}{3.123089in}}%
+\pgfpathlineto{\pgfqpoint{4.648985in}{3.021904in}}%
+\pgfpathlineto{\pgfqpoint{4.670147in}{2.865815in}}%
+\pgfpathlineto{\pgfqpoint{4.696601in}{2.642076in}}%
+\pgfpathlineto{\pgfqpoint{4.728345in}{2.342894in}}%
+\pgfpathlineto{\pgfqpoint{4.834159in}{1.311803in}}%
+\pgfpathlineto{\pgfqpoint{4.860613in}{1.096395in}}%
+\pgfpathlineto{\pgfqpoint{4.881776in}{0.948559in}}%
+\pgfpathlineto{\pgfqpoint{4.897648in}{0.854361in}}%
+\pgfpathlineto{\pgfqpoint{4.913520in}{0.775905in}}%
+\pgfpathlineto{\pgfqpoint{4.929392in}{0.714259in}}%
+\pgfpathlineto{\pgfqpoint{4.939973in}{0.682925in}}%
+\pgfpathlineto{\pgfqpoint{4.950555in}{0.659631in}}%
+\pgfpathlineto{\pgfqpoint{4.961136in}{0.644516in}}%
+\pgfpathlineto{\pgfqpoint{4.966427in}{0.640057in}}%
+\pgfpathlineto{\pgfqpoint{4.971717in}{0.637673in}}%
+\pgfpathlineto{\pgfqpoint{4.977008in}{0.637368in}}%
+\pgfpathlineto{\pgfqpoint{4.982299in}{0.639143in}}%
+\pgfpathlineto{\pgfqpoint{4.987590in}{0.642995in}}%
+\pgfpathlineto{\pgfqpoint{4.998171in}{0.656903in}}%
+\pgfpathlineto{\pgfqpoint{5.008752in}{0.679007in}}%
+\pgfpathlineto{\pgfqpoint{5.019334in}{0.709174in}}%
+\pgfpathlineto{\pgfqpoint{5.029915in}{0.747222in}}%
+\pgfpathlineto{\pgfqpoint{5.045787in}{0.818551in}}%
+\pgfpathlineto{\pgfqpoint{5.061659in}{0.906109in}}%
+\pgfpathlineto{\pgfqpoint{5.082822in}{1.046008in}}%
+\pgfpathlineto{\pgfqpoint{5.103985in}{1.209229in}}%
+\pgfpathlineto{\pgfqpoint{5.130439in}{1.439992in}}%
+\pgfpathlineto{\pgfqpoint{5.167474in}{1.797104in}}%
+\pgfpathlineto{\pgfqpoint{5.188636in}{2.009983in}}%
+\pgfpathlineto{\pgfqpoint{5.188636in}{2.009983in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}%
+\pgfpathlineto{\pgfqpoint{0.750000in}{3.520000in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{5.400000in}{0.500000in}}%
+\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}%
+\pgfpathlineto{\pgfqpoint{5.400000in}{0.500000in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.750000in}{3.520000in}}%
+\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\end{pgfpicture}%
+\makeatother%
+\endgroup%
diff --git a/buch/papers/fm/Quellen/NaT_Skript_20210920.pdf b/buch/papers/fm/Quellen/NaT_Skript_20210920.pdf
new file mode 100644
index 0000000..b9acc1f
--- /dev/null
+++ b/buch/papers/fm/Quellen/NaT_Skript_20210920.pdf
Binary files differ
diff --git a/buch/papers/fm/main.tex b/buch/papers/fm/main.tex
index 731f56f..0c98427 100644
--- a/buch/papers/fm/main.tex
+++ b/buch/papers/fm/main.tex
@@ -14,20 +14,9 @@
Die Frequenzmodulation ist eine Modulation die man auch schon im alten Radio findet.
Falls du dich an die Zeit erinnerst, konnte man zwischen \textit{FM-AM} Umschalten,
dies bedeutete so viel wie: \textit{F}requenz-\textit{M}odulation und \textit{A}mplituden-\textit{M}odulation.
-Durch die Modulation wird ein Nachrichtensignal \(m(t)\) auf ein Trägersignal (z.B. ein Sinus- oder Rechtecksignal) abgebildet (kombiniert).
-Durch dieses Auftragen vom Nachrichtensignal \(m(t)\) kann das modulierte Signal in einem gewünschten Frequenzbereich übertragen werden.
-Der ursprünglich Frequenzbereich des Nachrichtensignal \(m(t)\) erstreckt sich typischerweise von 0 Hz bis zur Bandbreite \(B_m\).
-\newline
-Beim Empfänger wird dann durch Demodulation das ursprüngliche Nachrichtensignal \(m(t)\) so originalgetreu wie möglich zurückgewonnen.
-\newline
-Beim Trägersignal \(x_c(t)\) handelt es sich um ein informationsloses Hilfssignal.
-Durch die Modulation mit dem Nachrichtensignal \(m(t)\) wird es zum modulierten zu übertragenden Signal.
-Für alle Erklärungen wird ein sinusförmiges Trägersignal benutzt, jedoch kann auch ein Rechtecksignal,
-welches Digital einfach umzusetzten ist,
-genauso als Trägersignal genutzt werden kann.
-Zuerst wird erklärt was \textit{FM-AM} ist, danach wie sich diese im Frequenzspektrum verhalten.
-Erst dann erklär ich dir wie die Besselfunktion mit der Frequenzmodulation( acro?) zusammenhängt.
-Nun zur Modulation im nächsten Abschnitt.\cite{fm:NAT}
+Um das Thema einwenig einzuschränken werde ich leider nichts über die Vertiefte, (Physikalische) zusammenhänge oder die Demodulation aufzeigen.
+Dieses Kapitel soll nurdie Frequenzmodulation und ihren zusammenhang mit der Besselfunktion erklären.
+Aber zuerst einmal zur Modulation selbst, wie funktioniert diese Mathematisch.
\input{papers/fm/00_modulation.tex}