diff options
author | Runterer <37069007+Runterer@users.noreply.github.com> | 2022-08-06 11:00:54 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-08-06 11:00:54 +0200 |
commit | 72f13d47f42a7005889532fd29bcfc870f4e5051 (patch) | |
tree | 559c39cde661ea56759051c9b7965fb28468cfb6 /buch/papers/fm | |
parent | minor presentation improvements (diff) | |
parent | Merge pull request #42 from daHugen/master (diff) | |
download | SeminarSpezielleFunktionen-72f13d47f42a7005889532fd29bcfc870f4e5051.tar.gz SeminarSpezielleFunktionen-72f13d47f42a7005889532fd29bcfc870f4e5051.zip |
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to 'buch/papers/fm')
50 files changed, 2904 insertions, 193 deletions
diff --git a/buch/papers/fm/.gitignore b/buch/papers/fm/.gitignore new file mode 100644 index 0000000..eae2913 --- /dev/null +++ b/buch/papers/fm/.gitignore @@ -0,0 +1 @@ +standalone
\ No newline at end of file diff --git a/buch/papers/fm/.vscode/settings.json b/buch/papers/fm/.vscode/settings.json new file mode 100644 index 0000000..5125289 --- /dev/null +++ b/buch/papers/fm/.vscode/settings.json @@ -0,0 +1,3 @@ +{ + "notebook.cellFocusIndicator": "border" +}
\ No newline at end of file diff --git a/buch/papers/fm/00_modulation.tex b/buch/papers/fm/00_modulation.tex new file mode 100644 index 0000000..e2ba39f --- /dev/null +++ b/buch/papers/fm/00_modulation.tex @@ -0,0 +1,32 @@ +% +% teil3.tex -- Beispiel-File für Teil 3 +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\subsection{Modulationsarten\label{fm:section:modulation}} + +Das sinusförmige Trägersignal hat die übliche Form: +\(x_c(t) = A_c \cdot \cos(\omega_c(t)+\varphi)\). +Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert wird. +Der Parameter \(\omega_c\), die Trägerkreisfrequenz bzw. die Trägerfrequenz \(f_c = \frac{\omega_c}{2\pi}\), +steht nicht für die modulation zur verfügung, statt dessen kann durch ihn die Frequenzachse frei gewählt werden. +\newblockpunct +Jedoch ist das für die Vielfalt der Modulationsarten keine Einschrenkung. +Ein Nachrichtensignal kann auch über die Momentanfrequenz (instantenous frequency) \(\omega_i\) eines trägers verändert werden. +Mathematisch wird dann daraus +\[ + \omega_i = \omega_c + \frac{d \varphi(t)}{dt} +\] +mit der Ableitung der Phase\cite{fm:NAT}. +Mit diesen drei Parameter ergeben sich auch drei Modulationsarten, die Amplitudenmodulation, welche \(A_c\) benutzt, +die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omega_i\): +\begin{itemize} + \item AM + \item PM + \item FM +\end{itemize} + +To do: Bilder jeder Modulationsart + + + diff --git a/buch/papers/fm/01_AM.tex b/buch/papers/fm/01_AM.tex new file mode 100644 index 0000000..21927f5 --- /dev/null +++ b/buch/papers/fm/01_AM.tex @@ -0,0 +1,29 @@ +% +% einleitung.tex -- Beispiel-File für die Einleitung +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Amplitudenmodulation\label{fm:section:teil0}} +\rhead{AM} + +Das Ziel ist FM zu verstehen doch dazu wird zuerst AM erklärt welches einwenig einfacher zu verstehen ist und erst dann übertragen wir die Ideen in FM. +Nun zur Amplitudenmodulation verwenden wir das bevorzugte Trägersignal +\[ + x_c(t) = A_c \cdot \cos(\omega_ct). +\] +Dies bringt den grossen Vorteil das, dass modulierend Signal sämtliche Anteile im Frequenzspektrum inanspruch nimmt +und das Trägersignal nur zwei komplexe Schwingungen besitzt. +Dies sieht man besonders in der Eulerischen Formel +\[ + x_c(t) = \frac{A_c}{2} \cdot e^{j\omega_ct}\;+\;\frac{A_c}{2} \cdot e^{-j\omega_ct}. +\] +Dabei ist die negative Frequenz der zweiten komplexen Schwingung zwingend erforderlich, damit in der Summe immer ein reellwertiges Trägersignal ergibt. +Nun wird der Parameter \(A_c\) durch das Modulierende Signal \(m(t)\) ersetzt, wobei so \(m(t) \leqslant |1|\) normiert wurde. +\newline +\newline +TODO: +Hier beschrieib ich was AmplitudenModulation ist und mache dan den link zu Frequenzmodulation inkl Formel \[\cos( \cos x)\] +so wird beschrieben das daraus eigentlich \(x_c(t) = A_c \cdot \cos(\omega_i)\) wird und somit \(x_c(t) = A_c \cdot \cos(\omega_c + \frac{d \varphi(t)}{dt})\). +Da \(\sin \) abgeleitet \(\cos \) ergibt, so wird aus dem \(m(t)\) ein \( \frac{d \varphi(t)}{dt}\) in der momentan frequenz. \[ \Rightarrow \cos( \cos x) \] + +\subsection{Frequenzspektrum}
\ No newline at end of file diff --git a/buch/papers/fm/02_FM.tex b/buch/papers/fm/02_FM.tex new file mode 100644 index 0000000..fedfaaa --- /dev/null +++ b/buch/papers/fm/02_FM.tex @@ -0,0 +1,56 @@ +% +% teil1.tex -- Beispiel-File für das Paper +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{FM +\label{fm:section:teil1}} +\rhead{FM} +\subsection{Frequenzspektrum} +TODO +Hier Beschreiben ich FM und FM im Frequenzspektrum. +%Sed ut perspiciatis unde omnis iste natus error sit voluptatem +%accusantium doloremque laudantium, totam rem aperiam, eaque ipsa +%quae ab illo inventore veritatis et quasi architecto beatae vitae +%dicta sunt explicabo. +%Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit +%aut fugit, sed quia consequuntur magni dolores eos qui ratione +%voluptatem sequi nesciunt +%\begin{equation} +%\int_a^b x^2\, dx +%= +%\left[ \frac13 x^3 \right]_a^b +%= +%\frac{b^3-a^3}3. +%\label{fm:equation1} +%\end{equation} +%Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, +%consectetur, adipisci velit, sed quia non numquam eius modi tempora +%incidunt ut labore et dolore magnam aliquam quaerat voluptatem. +% +%Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis +%suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? +%Quis autem vel eum iure reprehenderit qui in ea voluptate velit +%esse quam nihil molestiae consequatur, vel illum qui dolorem eum +%fugiat quo voluptas nulla pariatur? +% +%\subsection{De finibus bonorum et malorum +%\label{fm:subsection:finibus}} +%At vero eos et accusamus et iusto odio dignissimos ducimus qui +%blanditiis praesentium voluptatum deleniti atque corrupti quos +%dolores et quas molestias excepturi sint occaecati cupiditate non +%provident, similique sunt in culpa qui officia deserunt mollitia +%animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. +% +%Et harum quidem rerum facilis est et expedita distinctio +%\ref{fm:section:loesung}. +%Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil +%impedit quo minus id quod maxime placeat facere possimus, omnis +%voluptas assumenda est, omnis dolor repellendus +%\ref{fm:section:folgerung}. +%Temporibus autem quibusdam et aut officiis debitis aut rerum +%necessitatibus saepe eveniet ut et voluptates repudiandae sint et +%molestiae non recusandae. +%Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis +%voluptatibus maiores alias consequatur aut perferendis doloribus +%asperiores repellat. diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex new file mode 100644 index 0000000..5f85dc6 --- /dev/null +++ b/buch/papers/fm/03_bessel.tex @@ -0,0 +1,212 @@ +% +% teil2.tex -- Beispiel-File für teil2 +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{FM und Bessel-Funktion +\label{fm:section:proof}} +\rhead{Herleitung} +Die momentane Trägerkreisfrequenz \(\omega_i\), wie schon in (ref) beschrieben ist, bringt die Ableitung \(\frac{d \varphi(t)}{dt}\) mit sich. +Diese wiederum kann durch \(\beta\sin(\omega_mt)\) ausgedrückt werden, wobei es das modulierende Signal \(m(t)\) ist. +Somit haben wir unser \(x_c\) welches +\[ +\cos(\omega_c t+\beta\sin(\omega_mt)) +\] +ist. + +\subsection{Herleitung} +Das Ziel ist, unser moduliertes Signal mit der Bessel-Funktion so auszudrücken: +\begin{align} + x_c(t) + = + \cos(\omega_ct+\beta\sin(\omega_mt)) + &= + \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t) + \label{fm:eq:proof} +\end{align} + +\subsubsection{Hilfsmittel} +Doch dazu brauchen wir die Hilfe der Additionsthoerme +\begin{align} + \cos(A + B) + &= + \cos(A)\cos(B)-\sin(A)\sin(B) + \label{fm:eq:addth1} + \\ + 2\cos (A)\cos (B) + &= + \cos(A-B)+\cos(A+B) + \label{fm:eq:addth2} + \\ + 2\sin(A)\sin(B) + &= + \cos(A-B)-\cos(A+B) + \label{fm:eq:addth3} +\end{align} +und die drei Bessel-Funktionsindentitäten, +\begin{align} + \cos(\beta\sin\phi) + &= + J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos(2k\phi) + \label{fm:eq:besselid1} + \\ + \sin(\beta\sin\phi) + &= + 2\sum_{k=0}^\infty J_{2k+1}(\beta) \cos((2k+1)\phi) + \label{fm:eq:besselid2} + \\ + J_{-n}(\beta) &= (-1)^n J_n(\beta) + \label{fm:eq:besselid3} +\end{align} +welche man im Kapitel \eqref{buch:fourier:eqn:expinphireal}, \eqref{buch:fourier:eqn:expinphiimaginary}, \eqref{buch:fourier:eqn:symetrie} findet. + +\subsubsection{Anwenden des Additionstheorem} +Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal +\[ + x_c(t) + = + \cos(\omega_c t + \beta\sin(\omega_mt)) + = + \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_ct)\sin(\beta\sin(\omega_m t)). + \label{fm:eq:start} +\] +%----------------------------------------------------------------------------------------------------------- +\subsubsection{Cos-Teil} +Zu beginn wird der Cos-Teil +\begin{align*} + c(t) + &= + \cos(\omega_c t)\cdot\cos(\beta\sin(\omega_mt)) +\end{align*} +mit hilfe der Besselindentität \eqref{fm:eq:besselid1} zum +\begin{align*} + c(t) + &= + \cos(\omega_c t) \cdot \bigg[ J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos( 2k \omega_m t)\, \bigg] + \\ + &= + J_0(\beta) \cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{\text{Additionstheorem \eqref{fm:eq:addth2}}} +\end{align*} +%intertext{} Funktioniert nicht. +wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) ersetzt wurden. +\begin{align*} + c(t) + &= + J_0(\beta) \cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \underbrace{\cos((\omega_c - 2k \omega_m) t)} \,+\, \cos((\omega_c + 2k \omega_m) t) \} + \\ + &= + \sum_{k=-\infty}^{-1} J_{2k}(\beta) \overbrace{\cos((\omega_c +2k \omega_m) t)} + \,+\,J_0(\beta)\cdot \cos(\omega_c t+ 2\cdot0 \omega_m) + \,+\, \sum_{k=1}^\infty J_{2k}(\beta)\cos((\omega_c + 2k \omega_m) t) +\end{align*} +wird. +Das Minus im Ersten Term wird zur negativen Summe \(\sum_{-\infty}^{-1}\) ersetzt. +Da \(2k\) immer gerade ist, wird es durch alle negativen und positiven Ganzzahlen \(n\) ersetzt: +\begin{align*} + \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n \omega_m) t), + \label{fm:eq:gerade} +\end{align*} +%---------------------------------------------------------------------------------------------------------------- +\subsubsection{Sin-Teil} +Nun zum zweiten Teil des Term \eqref{fm:eq:start}, den Sin-Teil +\begin{align*} + s(t) + &= + -\sin(\omega_c t)\cdot\sin(\beta\sin(\omega_m t)). +\end{align*} +Dieser wird mit der \eqref{fm:eq:besselid2} Besselindentität zu +\begin{align*} + s(t) + &= + -\sin(\omega_c t) \cdot \bigg[ 2 \sum_{k=0}^\infty J_{ 2k + 1}(\beta) \cos(( 2k + 1) \omega_m t) \bigg] + \\ + &= + \sum_{k=0}^\infty -1 \cdot J_{2k+1}(\beta) 2\sin(\omega_c t)\cos((2k+1)\omega_m t). +\end{align*} +Da \(2k + 1\) alle ungeraden positiven Ganzzahlen entspricht wird es durch \(n\) ersetzt. +Wird die Besselindentität \eqref{fm:eq:besselid3} gebraucht, so ersetzten wird \(J_{-n}(\beta) = -1\cdot J_n(\beta)\) ersetzt: +\begin{align*} + s(t) + &= + \sum_{n=0}^\infty J_{-n}(\beta) \underbrace{2\sin(\omega_c t)\cos(n \omega_m t)}_{\text{Additionstheorem \eqref{fm:eq:addth3}}}. +\end{align*} +Auch hier wird ein Additionstheorem \eqref{fm:eq:addth3} gebraucht, dabei ist \(A = \omega_c t\) und \(B = n \omega_m t \), +somit wird daraus: +\begin{align*} + s(t) + &= + \sum_{n=0}^\infty J_{-n}(\beta) \{ \underbrace{\cos((\omega_c - n\omega_m) t)} \,-\, \cos((\omega_c + n\omega_m) t) \} + \\ + &= + \sum_{n=- \infty}^{0} J_{n}(\beta) \overbrace{\cos((\omega_c + n \omega_m) t)} + \,-\, \sum_{n=0}^\infty J_{-n}(\beta) \cos((\omega_c + n\omega_m) t) +\end{align*} +Auch hier wurde wieder eine zweite Summe \(\sum_{-\infty}^{-1}\) gebraucht um das Minus zu einem Plus zu wandeln. +Wenn \(n = 0 \) ist der Minuend gleich dem Subtrahend und somit dieser Teil \(=0\), das bedeutet \(n\) ended bei \(-1\) und started bei \(1\). +\begin{align*} + s(t) + &= + \sum_{n=- \infty}^{-1} J_{n}(\beta) \cos((\omega_c + n \omega_m) t) + \underbrace{\,-\, \sum_{n=1}^\infty J_{-n}(\beta)} \cos((\omega_c + n\omega_m) t) +\end{align*} +Um aus diesem Subtrahend eine Addition zu kreiernen, wird die Besselindentität \eqref{fm:eq:besselid3} gebraucht, +jedoch so \(-1 \cdot J_{-n}(\beta) = J_n(\beta)\) und daraus wird dann: +\begin{align*} + s(t) + &= + \sum_{n=- \infty}^{-1} J_{n}(\beta) \cos((\omega_c + n \omega_m) t) + \,+\, \sum_{n=1}^\infty J_{n}(\beta) \cos((\omega_c + n\omega_m) t) +\end{align*} +Da \(n\) immer ungerade ist und \(0\) nicht zu den ungeraden zahlen zählt, kann man dies so vereinfacht +\[ + s(t) + = + \sum_{n\, \text{ungerade}} -1 \cdot J_{n}(\beta) \cos((\omega_c + n\omega_m) t). + \label{fm:eq:ungerade} +\] +schreiben. +%------------------------------------------------------------------------------------------ +\subsubsection{Summe Zusammenführen} +Beide Teile \eqref{fm:eq:gerade} Gerade +\[ + \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) +\] +und \eqref{fm:eq:ungerade} Ungerade +\[ + \sum_{n\, \text{ungerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) +\] +ergeben zusammen +\[ + \cos(\omega_ct+\beta\sin(\omega_mt)) + = + \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t). +\] +Somit ist \eqref{fm:eq:proof} bewiesen. +\newpage +%----------------------------------------------------------------------------------------- +\subsection{Bessel und Frequenzspektrum} +Um sich das ganze noch einwenig Bildlicher vorzustellenhier einmal die Bessel-Funktion \(J_{k}(\beta)\) in geplottet. +\begin{figure} + \centering + \input{papers/fm/Python animation/bessel.pgf} + \caption{Bessle Funktion \(J_{k}(\beta)\)} + \label{fig:bessel} +\end{figure} +TODO Grafik einfügen, +\newline +Nun einmal das Modulierte FM signal im Frequenzspektrum mit den einzelen Summen dargestellt + +TODO +Hier wird beschrieben wie die Bessel Funktion der FM im Frequenzspektrum hilft, wieso diese gebrauch wird und ihre Vorteile. +\begin{itemize} + \item Zuerest einmal die Herleitung von FM zu der Bessel-Funktion + \item Im Frequenzspektrum darstellen mit Farben, ersichtlich machen. + \item Parameter tuing der Trägerfrequenz, Modulierende frequenz und Beta. +\end{itemize} + + +%\subsection{De finibus bonorum et malorum +%\label{fm:subsection:bonorum}} + + + diff --git a/buch/papers/fm/04_fazit.tex b/buch/papers/fm/04_fazit.tex new file mode 100644 index 0000000..8d5eca4 --- /dev/null +++ b/buch/papers/fm/04_fazit.tex @@ -0,0 +1,12 @@ +% +% teil3.tex -- Beispiel-File für Teil 3 +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Fazit +\label{fm:section:fazit}} +\rhead{Zusamenfassend} + +TODO Anwendungen erklären und Sinn des Ganzen. + + diff --git a/buch/papers/fm/FM presentation/FM_presentation.pdf b/buch/papers/fm/FM presentation/FM_presentation.pdf Binary files differnew file mode 100644 index 0000000..496e35e --- /dev/null +++ b/buch/papers/fm/FM presentation/FM_presentation.pdf diff --git a/buch/papers/fm/FM presentation/FM_presentation.tex b/buch/papers/fm/FM presentation/FM_presentation.tex new file mode 100644 index 0000000..2801e69 --- /dev/null +++ b/buch/papers/fm/FM presentation/FM_presentation.tex @@ -0,0 +1,125 @@ +%% !TeX root = .tex + +\documentclass[11pt,aspectratio=169]{beamer} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{lmodern} +\usepackage[ngerman]{babel} +\usepackage{tikz} +\usetheme{Hannover} + +\begin{document} + \author{Joshua Bär} + \title{FM - Bessel} + \subtitle{} + \logo{} + \institute{OST Ostschweizer Fachhochschule} + \date{16.5.2022} + \subject{Mathematisches Seminar - Spezielle Funktionen} + %\setbeamercovered{transparent} + \setbeamercovered{invisible} + \setbeamertemplate{navigation symbols}{} + \begin{frame}[plain] + \maketitle + \end{frame} +%------------------------------------------------------------------------------- +\section{Einführung} + \begin{frame} + \frametitle{Frequenzmodulation} + + \visible<1->{ + \begin{equation} \cos(\omega_c t+\beta\sin(\omega_mt)) + \end{equation}} + + \only<2>{\includegraphics[scale= 0.7]{images/fm_in_time.png}} + \only<3>{\includegraphics[scale= 0.7]{images/fm_frequenz.png}} + \only<4>{\includegraphics[scale= 0.7]{images/bessel_frequenz.png}} + + + \end{frame} +%------------------------------------------------------------------------------- +\section{Proof} +\begin{frame} + \frametitle{Bessel} + + \visible<1->{\begin{align} + \cos(\beta\sin\varphi) + &= + J_0(\beta) + 2\sum_{m=1}^\infty J_{2m}(\beta) \cos(2m\varphi) + \\ + \sin(\beta\sin\varphi) + &= + J_0(\beta) + 2\sum_{m=1}^\infty J_{2m}(\beta) \cos(2m\varphi) + \\ + J_{-n}(\beta) &= (-1)^n J_n(\beta) + \end{align}} + \visible<2->{\begin{align} + \cos(A + B) + &= + \cos(A)\cos(B)-\sin(A)\sin(B) + \\ + 2\cos (A)\cos (B) + &= + \cos(A-B)+\cos(A+B) + \\ + 2\sin(A)\sin(B) + &= + \cos(A-B)-\cos(A+B) + \end{align}} +\end{frame} + +%------------------------------------------------------------------------------- +\begin{frame} + \frametitle{Prof->Done} + \begin{align} + \cos(\omega_ct+\beta\sin(\omega_mt)) + &= + \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t) + \end{align} + \end{frame} +%------------------------------------------------------------------------------- + \begin{frame} + \begin{figure} + \only<1>{\includegraphics[scale = 0.75]{images/fm_frequenz.png}} + \only<2>{\includegraphics[scale = 0.75]{images/bessel_frequenz.png}} + \end{figure} + \end{frame} +%------------------------------------------------------------------------------- +\section{Input Parameter} + \begin{frame} + \frametitle{Träger-Frequenz Parameter} + \onslide<1->{\begin{equation}\cos(\omega_ct+\beta\sin(\omega_mt))\end{equation}} + \only<1>{\includegraphics[scale=0.75]{images/100HZ.png}} + \only<2>{\includegraphics[scale=0.75]{images/200HZ.png}} + \only<3>{\includegraphics[scale=0.75]{images/300HZ.png}} + \only<4>{\includegraphics[scale=0.75]{images/400HZ.png}} + \end{frame} +%------------------------------------------------------------------------------- +\begin{frame} +\frametitle{Modulations-Frequenz Parameter} +\onslide<1->{\begin{equation}\cos(\omega_ct+\beta\sin(\omega_mt))\end{equation}} +\only<1>{\includegraphics[scale=0.75]{images/fm_3Hz.png}} +\only<2>{\includegraphics[scale=0.75]{images/fm_5Hz.png}} +\only<3>{\includegraphics[scale=0.75]{images/fm_7Hz.png}} +\only<4>{\includegraphics[scale=0.75]{images/fm_10Hz.png}} +\only<5>{\includegraphics[scale=0.75]{images/fm_20Hz.png}} +\only<6>{\includegraphics[scale=0.75]{images/fm_30Hz.png}} +\end{frame} +%------------------------------------------------------------------------------- +\begin{frame} +\frametitle{Beta Parameter} + \onslide<1->{\begin{equation}\sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t)\end{equation}} + \only<1>{\includegraphics[scale=0.7]{images/beta_0.001.png}} + \only<2>{\includegraphics[scale=0.7]{images/beta_0.1.png}} + \only<3>{\includegraphics[scale=0.7]{images/beta_0.5.png}} + \only<4>{\includegraphics[scale=0.7]{images/beta_1.png}} + \only<5>{\includegraphics[scale=0.7]{images/beta_2.png}} + \only<6>{\includegraphics[scale=0.7]{images/beta_3.png}} + \only<7>{\includegraphics[scale=0.7]{images/bessel.png}} +\end{frame} +%------------------------------------------------------------------------------- +\begin{frame} + \includegraphics[scale=0.5]{images/beta_1.png} + \includegraphics[scale=0.5]{images/bessel.png} +\end{frame} +\end{document} diff --git a/buch/papers/fm/FM presentation/README.txt b/buch/papers/fm/FM presentation/README.txt new file mode 100644 index 0000000..65f390d --- /dev/null +++ b/buch/papers/fm/FM presentation/README.txt @@ -0,0 +1 @@ +Dies ist die Presentation des FM - Bessel
\ No newline at end of file diff --git a/buch/papers/fm/FM presentation/images/100HZ.png b/buch/papers/fm/FM presentation/images/100HZ.png Binary files differnew file mode 100644 index 0000000..371b9bf --- /dev/null +++ b/buch/papers/fm/FM presentation/images/100HZ.png diff --git a/buch/papers/fm/FM presentation/images/200HZ.png b/buch/papers/fm/FM presentation/images/200HZ.png Binary files differnew file mode 100644 index 0000000..f6836bd --- /dev/null +++ b/buch/papers/fm/FM presentation/images/200HZ.png diff --git a/buch/papers/fm/FM presentation/images/300HZ.png b/buch/papers/fm/FM presentation/images/300HZ.png Binary files differnew file mode 100644 index 0000000..6762c1a --- /dev/null +++ b/buch/papers/fm/FM presentation/images/300HZ.png diff --git a/buch/papers/fm/FM presentation/images/400HZ.png b/buch/papers/fm/FM presentation/images/400HZ.png Binary files differnew file mode 100644 index 0000000..236c428 --- /dev/null +++ b/buch/papers/fm/FM presentation/images/400HZ.png diff --git a/buch/papers/fm/FM presentation/images/bessel.png b/buch/papers/fm/FM presentation/images/bessel.png Binary files differnew file mode 100644 index 0000000..f4c83ea --- /dev/null +++ b/buch/papers/fm/FM presentation/images/bessel.png diff --git a/buch/papers/fm/FM presentation/images/bessel2.png b/buch/papers/fm/FM presentation/images/bessel2.png Binary files differnew file mode 100644 index 0000000..ccda3f9 --- /dev/null +++ b/buch/papers/fm/FM presentation/images/bessel2.png diff --git a/buch/papers/fm/FM presentation/images/bessel_beta1.png b/buch/papers/fm/FM presentation/images/bessel_beta1.png Binary files differnew file mode 100644 index 0000000..1f5c47e --- /dev/null +++ b/buch/papers/fm/FM presentation/images/bessel_beta1.png diff --git a/buch/papers/fm/FM presentation/images/bessel_frequenz.png b/buch/papers/fm/FM presentation/images/bessel_frequenz.png Binary files differnew file mode 100644 index 0000000..4f228b9 --- /dev/null +++ b/buch/papers/fm/FM presentation/images/bessel_frequenz.png diff --git a/buch/papers/fm/FM presentation/images/beta_0.001.png b/buch/papers/fm/FM presentation/images/beta_0.001.png Binary files differnew file mode 100644 index 0000000..7e4e276 --- /dev/null +++ b/buch/papers/fm/FM presentation/images/beta_0.001.png diff --git a/buch/papers/fm/FM presentation/images/beta_0.1.png b/buch/papers/fm/FM presentation/images/beta_0.1.png Binary files differnew file mode 100644 index 0000000..e7722b3 --- /dev/null +++ b/buch/papers/fm/FM presentation/images/beta_0.1.png diff --git a/buch/papers/fm/FM presentation/images/beta_0.5.png b/buch/papers/fm/FM presentation/images/beta_0.5.png Binary files differnew file mode 100644 index 0000000..5261b43 --- /dev/null +++ b/buch/papers/fm/FM presentation/images/beta_0.5.png diff --git a/buch/papers/fm/FM presentation/images/beta_1.png b/buch/papers/fm/FM presentation/images/beta_1.png Binary files differnew file mode 100644 index 0000000..6d3535c --- /dev/null +++ b/buch/papers/fm/FM presentation/images/beta_1.png diff --git a/buch/papers/fm/FM presentation/images/beta_2.png b/buch/papers/fm/FM presentation/images/beta_2.png Binary files differnew file mode 100644 index 0000000..6930eae --- /dev/null +++ b/buch/papers/fm/FM presentation/images/beta_2.png diff --git a/buch/papers/fm/FM presentation/images/beta_3.png b/buch/papers/fm/FM presentation/images/beta_3.png Binary files differnew file mode 100644 index 0000000..c6df82c --- /dev/null +++ b/buch/papers/fm/FM presentation/images/beta_3.png diff --git a/buch/papers/fm/FM presentation/images/fm_10Hz.png b/buch/papers/fm/FM presentation/images/fm_10Hz.png Binary files differnew file mode 100644 index 0000000..51bddc7 --- /dev/null +++ b/buch/papers/fm/FM presentation/images/fm_10Hz.png diff --git a/buch/papers/fm/FM presentation/images/fm_20hz.png b/buch/papers/fm/FM presentation/images/fm_20hz.png Binary files differnew file mode 100644 index 0000000..126ecf3 --- /dev/null +++ b/buch/papers/fm/FM presentation/images/fm_20hz.png diff --git a/buch/papers/fm/FM presentation/images/fm_30Hz.png b/buch/papers/fm/FM presentation/images/fm_30Hz.png Binary files differnew file mode 100644 index 0000000..371b9bf --- /dev/null +++ b/buch/papers/fm/FM presentation/images/fm_30Hz.png diff --git a/buch/papers/fm/FM presentation/images/fm_3Hz.png b/buch/papers/fm/FM presentation/images/fm_3Hz.png Binary files differnew file mode 100644 index 0000000..d4098af --- /dev/null +++ b/buch/papers/fm/FM presentation/images/fm_3Hz.png diff --git a/buch/papers/fm/FM presentation/images/fm_40Hz.png b/buch/papers/fm/FM presentation/images/fm_40Hz.png Binary files differnew file mode 100644 index 0000000..4cf11d4 --- /dev/null +++ b/buch/papers/fm/FM presentation/images/fm_40Hz.png diff --git a/buch/papers/fm/FM presentation/images/fm_5Hz.png b/buch/papers/fm/FM presentation/images/fm_5Hz.png Binary files differnew file mode 100644 index 0000000..e495b5c --- /dev/null +++ b/buch/papers/fm/FM presentation/images/fm_5Hz.png diff --git a/buch/papers/fm/FM presentation/images/fm_7Hz.png b/buch/papers/fm/FM presentation/images/fm_7Hz.png Binary files differnew file mode 100644 index 0000000..b3dd7e3 --- /dev/null +++ b/buch/papers/fm/FM presentation/images/fm_7Hz.png diff --git a/buch/papers/fm/FM presentation/images/fm_frequenz.png b/buch/papers/fm/FM presentation/images/fm_frequenz.png Binary files differnew file mode 100644 index 0000000..26bfd86 --- /dev/null +++ b/buch/papers/fm/FM presentation/images/fm_frequenz.png diff --git a/buch/papers/fm/FM presentation/images/fm_in_time.png b/buch/papers/fm/FM presentation/images/fm_in_time.png Binary files differnew file mode 100644 index 0000000..068eafc --- /dev/null +++ b/buch/papers/fm/FM presentation/images/fm_in_time.png diff --git a/buch/papers/fm/Makefile b/buch/papers/fm/Makefile index f43d497..f30c4a9 100644 --- a/buch/papers/fm/Makefile +++ b/buch/papers/fm/Makefile @@ -4,6 +4,37 @@ # (c) 2020 Prof Dr Andreas Mueller # -images: - @echo "no images to be created in fm" +SOURCES := \ + 00_modulation.tex \ + 01_AM.tex \ + 02_FM.tex \ + 03_bessel.tex \ + 04_fazit.tex \ + main.tex +#TIKZFIGURES := \ + tikz/atoms-grid-still.tex \ + +#FIGURES := $(patsubst tikz/%.tex, figures/%.pdf, $(TIKZFIGURES)) + +all: images standalone + +.PHONY: images +images: $(FIGURES) + +#figures/%.pdf: tikz/%.tex +# mkdir -p figures +# pdflatex --output-directory=figures $< + +.PHONY: standalone +standalone: standalone.tex $(SOURCES) $(FIGURES) + mkdir -p standalone + cd ../..; \ + pdflatex \ + --halt-on-error \ + --shell-escape \ + --output-directory=papers/fm/standalone \ + papers/fm/standalone.tex; + cd standalone; \ + bibtex standalone; \ + makeindex standalone;
\ No newline at end of file diff --git a/buch/papers/fm/Makefile.inc b/buch/papers/fm/Makefile.inc index 0f144b6..40f23b1 100644 --- a/buch/papers/fm/Makefile.inc +++ b/buch/papers/fm/Makefile.inc @@ -6,9 +6,10 @@ dependencies-fm = \ papers/fm/packages.tex \ papers/fm/main.tex \ - papers/fm/references.bib \ - papers/fm/teil0.tex \ - papers/fm/teil1.tex \ - papers/fm/teil2.tex \ - papers/fm/teil3.tex + papers/fm/00_modulation.tex \ + papers/fm/01_AM.tex \ + papers/fm/02_FM.tex \ + papers/fm/03_bessel.tex \ + papers/fm/04_fazit.tex \ + papers/fm/references.bib diff --git a/buch/papers/fm/Python animation/Bessel-FM.ipynb b/buch/papers/fm/Python animation/Bessel-FM.ipynb new file mode 100644 index 0000000..74f1011 --- /dev/null +++ b/buch/papers/fm/Python animation/Bessel-FM.ipynb @@ -0,0 +1,217 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from scipy import signal\n", + "from scipy.fft import fft, ifft, fftfreq\n", + "import scipy.special as sc\n", + "import scipy.fftpack\n", + "import matplotlib as mpl\n", + "# Use the pgf backend (must be set before pyplot imported)\n", + "mpl.use('pgf')\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.widgets import Slider\n", + "def fm(beta):\n", + " # Number of samplepoints\n", + " N = 600\n", + " # sample spacing\n", + " T = 1.0 / 1000.0\n", + " fc = 100.0\n", + " fm = 30.0\n", + " x = np.linspace(0.01, N*T, N)\n", + " #beta = 1.0\n", + " y_old = np.sin(fc * 2.0*np.pi*x+beta*np.sin(fm * 2.0*np.pi*x))\n", + " y = 0*x;\n", + " xf = fftfreq(N, 1 / 400)\n", + " for k in range (-4, 4):\n", + " y = sc.jv(k,beta)*np.sin((fc+k*fm) * 2.0*np.pi*x)\n", + " yf = fft(y)/(fc*np.pi)\n", + " plt.plot(xf, np.abs(yf))\n", + " plt.xlim(-150, 150)\n", + " plt.show()\n", + " #yf_old = fft(y_old)\n", + " #plt.plot(xf, np.abs(yf_old))\n", + " #plt.show()\n", + " \n" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD6CAYAAACxrrxPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcIUlEQVR4nO3de5Bc5Xnn8e+jGd01uqEBZI2EBAgbOQ4LjLmEmFDYiQV2oVR8KXA5xolj1a6N1y6zu8bxFuslySZA7TqbMjHROk5CYlsW9m6sxYpl7OBy1gZZEheBJCCDBLoije7SzGiuz/7Rp3vO9PT0nJFOd59++/epmuo+F/W8b2vm1+885z3nmLsjIiL1b1KtGyAiIulQoIuIBEKBLiISCAW6iEggFOgiIoFQoIuIBGLcQDezb5jZYTN7aYztZmZ/YWYdZrbNzK5Jv5kiIjKe5gT7/C3wVeCxMbbfBiyPvq4HvhY9lrVgwQJfunRpokaKiEjO1q1bj7h7a6lt4wa6u//MzJaW2WUV8JjnzlB6xszmmtlCdz9Y7nWXLl3Kli1bxvv2IiISY2ZvjLUtjRr6ImBvbHlftE5ERKqoqgdFzWy1mW0xsy2dnZ3V/NYiIsFLI9D3A4tjy23RulHcfY27t7t7e2tryRKQiIicozQCfT3wsWi2yw3AyfHq5yIikr5xD4qa2beBW4AFZrYP+C/AZAB3fxTYANwOdADdwO9VqrEiIjK2JLNc7hpnuwOfTq1FIiJyTnSmqIhIIBTokknuzne37uNs/2Ctm1I1P95xiEOnzta6GVLHFOiSST/ZeZj/8PgL/PcfvVLrplTNHzy2hd/5y1/UuhlSxxTokkmnzvYDcORMX41bUl37T/TUuglSxxToIiKBUKCLZIBu1i5pUKCLiARCgS6SARqgSxoU6CIigVCgi2SABuiSBgW6iEggFOgiGaBZLpIGBbqISCAU6CIZoPG5pEGBLpmmUoRIcgp0kQzQ55akQYEumWZmtW5CVbiKLpICBbqISCAU6CIZoJKLpEGBLiISCAW6iEggFOgiIoFQoItkgGrokgYFuohIIBToIhmgeeiSBgW6iEggFOgiGaAauqRBgS4iEggFukgGaIAuaVCgi2SALhMsaVCgi4gEQoEukgEan0saEgW6ma00s1fMrMPM7iuxfYmZPWVmz5nZNjO7Pf2miohIOeMGupk1AY8AtwErgLvMbEXRbv8ZWOfuVwN3An+ZdkNFQqYSuqQhyQj9OqDD3Xe5ex+wFlhVtI8Ds6Pnc4AD6TVRRESSaE6wzyJgb2x5H3B90T5fBn5kZp8BZgLvSaV1Io1CI3RJQVoHRe8C/tbd24Dbgb83s1GvbWarzWyLmW3p7OxM6VuLiAgkC/T9wOLYclu0Lu4TwDoAd38amAYsKH4hd1/j7u3u3t7a2npuLRYJkC7OJWlIEuibgeVmtszMppA76Lm+aJ89wLsBzOxKcoGuIbiISBWNG+juPgDcA2wEdpKbzbLdzB4wszui3e4FPmlmLwDfBj7uOvVNJDH9tkgakhwUxd03ABuK1t0fe74DuCndpok0DuW5pEFnioqIBEKBLpIBqlBKGhToIiKBUKCLZIDG55IGBbpkmkoRIskp0EUyQJ9bkgYFumSamdW6CSJ1Q4EukgE69V/SoEAXEQmEAl0kCzRAlxQo0EUyQHkuaVCgi4gEQoEukgGatihpUKCLiARCgS6SAZq2KGlQoEum6dR/keQU6CIZoM8tSYMCXTJNp/6LJKdAF8kADdAlDQp0EZFAKNBFMkAHfyUNCnSRDFCeSxoU6CIigVCgi4gEQoEumabaskhyCnSRDNDnlqRBgS4iEggFukgG6OJckgYFumSaTv0XSU6BLpIBqqFLGhToIiKBUKCLZIAG6JKGRIFuZivN7BUz6zCz+8bY58NmtsPMtpvZt9JtpoiIjKd5vB3MrAl4BPhNYB+w2czWu/uO2D7LgS8CN7n7cTO7sFINFgmRTqCSNCQZoV8HdLj7LnfvA9YCq4r2+STwiLsfB3D3w+k2UyRsinNJQ5JAXwTsjS3vi9bFXQFcYWY/N7NnzGxlWg2UxqaRq0hy45ZcJvA6y4FbgDbgZ2b2Dnc/Ed/JzFYDqwGWLFmS0rcWqX/63JI0JBmh7wcWx5bbonVx+4D17t7v7ruBV8kF/Ajuvsbd2929vbW19VzbLA1EJxaJJJck0DcDy81smZlNAe4E1hft84/kRueY2QJyJZhd6TVTJHQaosv5GzfQ3X0AuAfYCOwE1rn7djN7wMzuiHbbCBw1sx3AU8B/dPejlWq0iIiMlqiG7u4bgA1F6+6PPXfg89GXiEyQauiSBp0pKiISCAW6SAZogC5pUKCLiARCgS6Z4O4NfRJRqa43+nsiE6dAl0y4/r/9hBv+9Ce1bkbNlLpj0df/ZTfLvriBk939NWiR1KO0zhQVOS+HT/eWXN/II9S1m/cA0HnmLHNmTK5xa6QeaIQumdRoOd5o/ZXKUKBLJuXzrZFP/VfGy0Qp0EUyQCN0SYMCXTKpkWvneY37t4mcKwW6SAaUmuUiMlEKdMkkxZvIxCnQRTJAFSZJgwJdsqlEwH1n8x7uXfdC9dtSAd9/fj+f/taztW6GBEaBLpkWPzj6he+9yPee3VfD1qTns2uf5wfbDta6GRIYBbpkUqMdJCx5LZfqN0PqnAJdJPM0gVGSUaBLJjXaQcJG+4tEKkOBLpmkU/9FJk6BLpIB5f8i0ehdklGgSyY1WsmlFP1tIhOlQBfJAH1+SRoU6JJJOkgoMnEKdJEMKHV1SX2kyUQp0CWTVEMXmTgFumRao1wXvXwvdXhUklGgSyY1RowPf2A1yOeWVJgCXbKpQRJuKFE3G+O9kPOnQBepoeGS0tih3SCfbZICBbpkUqOc+p8kq5XnkpQCXaSGhhLU0DVCl6QU6JJJjRJiSfqpk6wkqUSBbmYrzewVM+sws/vK7PcBM3Mza0+viSLhU2RLGsYNdDNrAh4BbgNWAHeZ2YoS+7UAnwU2pd1IaTyNMv98KEE/G+StkBQkGaFfB3S4+y537wPWAqtK7PdHwIPA2RTbJxK0fFirhi5pSBLoi4C9seV90boCM7sGWOzuP0ixbdLAGiXDEo3QG+bdkPN13gdFzWwS8D+AexPsu9rMtpjZls7OzvP91tIAQi+9FGahl+ln4G+BpChJoO8HFseW26J1eS3ArwA/NbPXgRuA9aUOjLr7Gndvd/f21tbWc2+1BK9RQqxR+inVkSTQNwPLzWyZmU0B7gTW5ze6+0l3X+DuS919KfAMcIe7b6lIi6UhlDuxKKRRe+FaLmX3qU5bpP6NG+juPgDcA2wEdgLr3H27mT1gZndUuoEixUIKuEQHRVVDl4Sak+zk7huADUXr7h9j31vOv1nS6MrWlKvYjkrTvaElTTpTVOpOkpkh9aJw6r8uziUpUKBL3Qkp4JKd+i+SjAJd6k5INeVCaalUl6xoH5FxKNAlkxrlzEldPlfSpECXTAt9dFpugF68j8h4FOiSSY1ykDDZAd6AOiwVpUCXuhNUDT3/2CAlJqksBbpkUrkQS3Zj5fpQtqQUUD+lOhTokkmNc+p/9FiuxFSltkj9U6BL3Qkp4HQ9dEmTAl0yqVECLtkdiwLqsFSUAl3qT0D55kWP5fYRGY8CXTKpfE05nIhLMvrWAF2SUqBL3Qkp4IYKNfQSncqf+h/QB5hUlgJdMqn8tMWQAk5X55L0KNAl00qNXEPKt8IIvdTGkDoqVaFAl7oT0gBdl8+VNCnQpe6EVFMu9KVBpmlKZSnQJZMa5ZT4oaHx9wnpA0wqS4EumZTP85Kn/le5LZWUD+tGubqkVJYCXepOSAGX6NT/6jRFAqBAl0wqF2IhTVtMdFA0oP5KZSnQpe6EFG+FkotG6JICBbpkUvmLc4UTceWu7e6jnoiUp0CXTCt5YlFAAZfvX0BdkhpSoEsmNcpUvXK9tMI+jfFeyPlToEvdCXKEXqZTIfVXKkuBLplU/iBhOAmXbJZL5dshYVCgS90J6ibRRY/l9hEZjwJdMqlswAU0ZB1K8OkUUn+lshTokk1lZn+EFG+FEbrmoUsKFOhSd0IasA6f9aqDonL+EgW6ma00s1fMrMPM7iux/fNmtsPMtpnZT8zskvSbKo2k/Mg1oITTyFxSNG6gm1kT8AhwG7ACuMvMVhTt9hzQ7u6/CnwXeCjthorkhTRiTVJyUbRLUklG6NcBHe6+y937gLXAqvgO7v6Uu3dHi88Abek2UxrF8LzsaLnUPtVrTsUludBYSB9gUllJAn0RsDe2vC9aN5ZPAP90Po0SySs1wyPEqy1q2qKkoTnNFzOzjwLtwG+MsX01sBpgyZIlaX5rqWPx0HYHs8a54UOiU/8D6q9UVpIR+n5gcWy5LVo3gpm9B/gScIe795Z6IXdf4+7t7t7e2tp6Lu2VAMUDqzi7SpZcAgq4oaISUykhnRkrlZUk0DcDy81smZlNAe4E1sd3MLOrgb8iF+aH02+mhCweV8U19NL7BxRwOvVfUjRuoLv7AHAPsBHYCaxz9+1m9oCZ3RHt9jAwC3jczJ43s/VjvJzIKCNKLkWPpQIvpIArjNDLlZiq1Ripe4lq6O6+AdhQtO7+2PP3pNwuaVAhhXUSOkNU0qQzRaXmRpRcim7JVmrkGtQsl/xjg9yhSSpLgS41N+KgaIPVlEP6cJLaU6BLzZUahZe7eXJIEZhoHnpIHZaKUqBLzSUZoY+cqx5Owg0OJbhjUVAfYVJJCnTJlEJ45R+ix/7B0TNhQjAwNDTuPgF9fkmFKdCl5pLMOY8HX0gBF/+gGktI/ZXKUqBL1bk7e452Dy8TL6fk143UPzByLkwo+gfHHqEXTv2PrTt6ppczvQMVbZPULwW6VN0/bNrDzQ8/xfN7T4zaNurU/3zJJTZCD+Geohal9UAU6EkP/l77xz/mlod/WrF2SX1ToEvVbXn9GAC7j5wBig+Klj5IGB/JhlCCaJ6US/S+RCWXkfscOVPyUkkiCnSpvVLFlOLSy0D8oGgAid48KferVxih69R/SYECXWqu+PK5pYwYoVe6QVWQH6EPJKkfhdBhqQoFulSdFS17iYXikfqIaYsBBFxTU1RyGRi7hp6neeiSlAJdqs5sZKSPvB566fAaOUIf3mfrG8c4fbY/3QZWwC9eO1II7zjNQ5c0KdCl6kbdiafEmaLDIZZ7MmJ6X7Tt1Nl+PvC1p/nMt5+rUEvTsePAKT7yvzbxJz/YUVhX/JeHrrooaVCgS82NmIdevC1aEa8155929w4CucDMsvxfEDsODrczf1Gu/sJB0bFphC5JKdCl5kpNWyy+CmH/wOiSS09/LtAnN2X7x3hyc659I0ouhRH62CWXwhROjdEloWz/JkiYoppLuZFn78DIkWt/iRF6V3TG5NTmbP8YN0XHDHoH4idHRZc0KJRcxg/toRDOqJKKyvZvgjSEUvPQe6PRd+9A7nEgNpI9G23r7ss9Tsl4oOcPfBbKK+6cHcivy/W4t8QB0/zB41JlJ5FSsv2bIEEbnpo4ekri2SjIu6I6ebw00dOX35YboWc90Pui69D0RX3oGxwqXDY336/uvuHrsxSP1vNLgwp0GUe2fxMkSBbVXPIlhFK3oDvbPzLo4vPQu6J1+ces19DzoZ2voecP5sLw6L0rtm7UaD1fnkkwxVEaW7Z/EyRoA4WbO8RWRs97JzJCz3ig54O4EOj9w+GdH73HR+jFgV7q8gcipWT7N0GCNjg0+jom+WfFI/T4JWO7+0aGfb2UXPJ/ZfTEwvtMb25KY1dfbIQeC3xQDV2Sy/ZvggQpf6JooYxS4sSi/IHPfNAdPdMHQNMkKwR6d72WXKL2N08yjnflAr079oGV/zDLy9fUVUOX8TTXugHSuAbL1tBzodc3MET/4BDHu/uYO2My7sMj3DPRCN2KLw6TMYWSy+DIQF80bzpHu3IfVPERev6A8PA89Jxyc9ZFQCN0qYF8/pYqIXihhj4cXt29gxzt6mP+jCnMmNI0aoSe9aAbebel4WMAbfOmc7y7D3cfWUPvL90fjdBlPAp0qZlSd+uJ19BnTc39AXno9FmOnull/swptExr5mRPrkyRr6tnPdD7itqXb/+S+TMZHHJOdPfz5smztET9zY/Q84Zr6Nnup9SeAl2qrjBro1ByGX3zip6+Aa5c2ALA7iNddBw+w7IFM1k4ZzoHTvYAw9P/ktxouZbiJ0UNDjn7T+Taf9PlFwDw8pun2XushysXzgaGZ+/kFb9fImNRoEvV5eefD5aYtuieu5hVV98g71w6H4CfvdrJkTN9XLlwNovmTefAibPA8Dz0rI/Q4x84Pf2DHDjRw7wZk7n2knkAPLHtAH2DQ7xzWW758KmRt5jzossEiIxFgS5Vlx9p9hemLY508GQusN96cQtXtc3hm5v2AHDzFa20zZvOsa4+Tvb0F0ayWQ/0eMmlq3eAN4520zZvBhfPnsZbL2op9O+D1y4GKPwFUkwjdBmPAl2qLj8yH+vCVPmSxFvmTudzv3kFLdOaufvGS7j8wln8m7a5QO7GFnuO9Yx4nayKt29XZxfP7TnOVYvnYGZ84ba30jK1mY//2lKWLZhJa8tUDkT9H3Utl4x/cEntadqiVNwvdx9j4ZxpLJ4/Axg+uHc8mrIXz/OTPf1s23sSM7jiwhbmzJjMi19+b2H71Uvm0TK1mT/5wU6OnMmVJrr7Rh5EzJru/uGa+Jf+8UW6+ga5eXkrALe+7SJe/K/D/XvrRS1s23cSGL6Oev4Yw7Ho/YJc2WrSJGNgcIgNL73J+9+xkEmTMj5/UypOI3SpuA//1dP8xsNPFZbzI9b8SDxu58FTPLnzTVYsnM2cGZNHbZ8+pYnVN1/Ka51dzJjSxO9cs4gDJ3oKZZdXD53m4Bgli2rpGxjiFx1HCst7j3Vz6YKZ/PrlC9jV2cXb3zKbW992Ycl/e+NlF/Dym6d5af9JjpwZ+YGXL0XBcBnnr//fbv79t5/j/247UKHeSD1JFOhmttLMXjGzDjO7r8T2qWb2nWj7JjNbmnpLpS7l51zHy7+vH+0CSgf6/d/fzkv7T3H3jUvHfM17br2cx37/Otbf8+v82mULGBhy9h7rBuC3vvIzbvzTf67pnO17H3+Bj3x9Ey/tz420d3V2sWzBTL720Wt49KPX8K1P3kDzGGe3fujaNqZPbuJDjz49atuB2Pu1J+pv/jEf/tLYxg10M2sCHgFuA1YAd5nZiqLdPgEcd/fLga8AD6bdUKlPxQf4jnX1setIF9MmT2Lf8R46Dp/h8Olc6eQj1y/hyoUtfPbdy/lQe9uYr2lm3HxFa66mvngOABu3H+JU7GbR+Q+NWvjR9jeB3K3xdh/p4pVDp7lq8Vxapk1m5a8sZM700X955F04exprPnYtb3/LbFbffClTmifRebqXoSHnX/71SOFmHlvfOA4MH4+IXx9GGleSGvp1QIe77wIws7XAKmBHbJ9VwJej598Fvmpm5kluwyJ1zd3pHRiiu2+Qnv5BDp06y67OLtovmceBkz08se1gYd/vP7+f72zeC8DXP/ZOPvXNrXz8b37JZa2zAPjMrZezcM70CX3/yy9s4eYrWnlo48s8vnVvYf1TLx+mbd50DOPnrx3hxksvYNrkphR6PJK7s/WN47TNm0Fry1T2HOsunOX64A9fZsidWVOay35AFXvX8lbeFdXYN+0+xhPbDrL3eDc7Dp7ioQ/8Kt/4+W4e+uHLTG6axHN7TgCw4cU3uXLhbJbMn8G+Ez0MDDpXLZ7DrKnNNE0ymidNYpINH2iVMNl4mWtmHwRWuvsfRMu/C1zv7vfE9nkp2mdftPxatM+RUq8J0N7e7lu2bJlwg5/fe4LffuTnE/53ki2XXDCDN452j1i3ZP6Mc7ouy+mzAyMOGGbRJRfMOKd/V+o9ypdZpH798HPv4m0Xzz6nf2tmW929vdS2qs5yMbPVwGqAJUuWnNNrzJ8xJc0mScom2XC9vLVlKpe1zuTi2dPYfuAUB070cONlFxRO6b968Vz6B52ndx3l6sVzaZmWzo/jmd4BfrzzcCqvdS7esWgOl7XOTOW1rmqby6bdR7n8wlm0zpoKwDVL5jLk8Oye4xzv6uPWKy+ip2+QVw+dZt/xbjRdPfvKld3OR5LfoP3A4thyW7Su1D77zKwZmAMcLX4hd18DrIHcCP1cGrzkghm8/mfvO5d/KiIStCSzXDYDy81smZlNAe4E1hftsx64O3r+QeCfVT8XEamucUfo7j5gZvcAG4Em4Bvuvt3MHgC2uPt64K+BvzezDuAYudAXEZEqSlS0dPcNwIaidffHnp8FPpRu00REZCJ0pqiISCAU6CIigVCgi4gEQoEuIhIIBbqISCDGPfW/Yt/YrBN4oybf/PwsAMa8pEGg1OfGoD7Xh0vcvbXUhpoFer0ysy1jXUchVOpzY1Cf659KLiIigVCgi4gEQoE+cWtq3YAaUJ8bg/pc51RDFxEJhEboIiKBUKCPw8zuNTM3swXRspnZX0Q3xN5mZtfE9r3bzP41+rp77FfNJjN72Mxejvr1f8xsbmzbF6M+v2Jm742tL3sD8XoTWn/yzGyxmT1lZjvMbLuZfTZaP9/Mnox+Zp80s3nR+jF/zuuNmTWZ2XNm9kS0vCy6mX1HdHP7KdH6+r/Zvbvra4wvcjft2EhuvvyCaN3twD8BBtwAbIrWzwd2RY/zoufzat2HCfb3t4Dm6PmDwIPR8xXAC8BUYBnwGrlLKTdFzy8FpkT7rKh1P86j/0H1p6hvC4FrouctwKvR/+tDwH3R+vti/+clf87r8Qv4PPAt4IloeR1wZ/T8UeDfRc8/BTwaPb8T+E6t2z7RL43Qy/sK8J+A+IGGVcBjnvMMMNfMFgLvBZ5092Pufhx4ElhZ9RafB3f/kbvnbx//DLm7U0Guz2vdvdfddwMd5G4eXriBuLv3AfkbiNer0PpT4O4H3f3Z6PlpYCewiFz//i7a7e+A346ej/VzXlfMrA14H/D1aNmAW8ndzB5G9zn/XnwXeLfV2V21FehjMLNVwH53f6Fo0yJgb2x5X7RurPX16vfJjdCgcfocWn9KikoJVwObgIvc/WC06U3gouh5KO/Fn5MblA1FyxcAJ2IDl3i/Cn2Otp+M9q8bVb1JdNaY2Y+Bi0ts+hLwh+RKEEEp12d3/360z5eAAeCb1WybVJ6ZzQK+B3zO3U/FB6Du7mYWzLQ3M3s/cNjdt5rZLTVuTlU0dKC7+3tKrTezd5CrFb8Q/cC3Ac+a2XWMfdPs/cAtRet/mnqjz9NYfc4zs48D7wfe7VExkfI3Ch/vBuL1JMkN0euWmU0mF+bfdPf/Ha0+ZGYL3f1gVFI5HK0P4b24CbjDzG4HpgGzgf9JrnzUHI3C4/1KdLP7TKt1Eb8evoDXGT4o+j5GHiz6ZbR+PrCb3AHRedHz+bVu+wT7uRLYAbQWrX87Iw+K7iJ3ALE5er6M4YOIb691P86j/0H1p6hvBjwG/HnR+ocZeVD0oeh5yZ/zev0iN9jKHxR9nJEHRT8VPf80Iw+Krqt1uyf61dAj9HO0gdwMgA6gG/g9AHc/ZmZ/BGyO9nvA3Y/Vponn7KvkQvvJ6C+TZ9z933rupuDryIX9APBpdx8EKHUD8do0/fz5GDdEr3Gz0nIT8LvAi2b2fLTuD4E/A9aZ2SfIzeb6cLSt5M95IL4ArDWzPwaeI3eTewjgZvc6U1REJBCa5SIiEggFuohIIBToIiKBUKCLiARCgS4iEggFuohIIBToIiKBUKCLiATi/wO3Cq7Lzsky6gAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Number of samplepoints\n", + "N = 800\n", + "# sample spacing\n", + "T = 1.0 / 1000.0\n", + "x = np.linspace(0.01, N*T, N)\n", + "\n", + "y_old = np.sin(100* 2.0*np.pi*x+1*np.sin(15* 2.0*np.pi*x))\n", + "yf_old = fft(y_old)/(100*np.pi)\n", + "xf = fftfreq(N, 1 / 1000)\n", + "plt.plot(xf, np.abs(yf_old))\n", + "#plt.xlim(-150, 150)\n", + "plt.show()\n", + "\n", + "fm(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.7651976865579666\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEHCAIAAAACoPcnAAAAAXNSR0IB2cksfwAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeNrsXWdAFFfXPrO9L0tZei/SpKuIWFHsGqNJLNGoSSzE8iVRozGJJcWYqEneJPbYNTYiYgGNIiqCClKkCdI7S9vKsnW+H2tQcVl2V8A2zy+YmVvmzsyz55577nMQFEUBAwYMGF5N4LAhwIABA0ZhGDBgwIBRGAYMGDBgFIYBAwaMwjBgwIABozAMGDBg6DEQXtqeIQiCPR4MGN4QGB3dhXvJ7+pFISYmBmsda/3Naf3F3jg2kcSAAQPmC8OAAQMGzBeGAQOGXkZbW5tKpXqeGkgkkkQi6SXSIRDIZDJGYRgwYAAURSsqKtRqNR6Pf556HB0dm5qaeqfPCoWCQqHY2tq+7BQml8tzcnIUCsWAAQO0XpCYmNjU1DRy5Eg2m429ixgwGAGxWAwAzs7Oz1kPn883MTHptW4XFxfLZLJuscV6kMIGDRpEo9EEAkFmZuazZ5cvX15bW+vn57dx48akpCQmk4m9jhgwGAqVSkUikV65bpNIJIVC8bJTWGpq6oMHD6ZPn/7sqfr6+piYmNLSUhwOV19ff/To0UWLFmGvIwYMRkwkX8UIym7s9ovxheXm5vr5+eFwOADo379/UlIS9i6+4VCj6qTqpOSa5JzWnPL08hEOI3zNfbFheaVRUFCQlpbGZDJHjx7djf77l4LCBAIBnU7X/M1gMAQCQfup9evXb9iwQfP32bNnX+ADwFrvNVSpqs60nqlX1ZMRMhWhZmdn78ne40n0nESdxMKxsJHXASqV6uLiwufzn7/pbqmkHenp6WvXrh0xYkRNTc3q1auvXr1KpVLbz4rF4ry8PJlM1j0WXc8hPz/f39//2eNJSUkjR47U/L1nz56lS5dqDdjForTfhNbjS+ODDwdHno6ML41XqBQxMTEiuWh/zv5+R/qNODniYctDbOR1oLm5uba29vmbbmlp6eyURCI5ePBgcnLyl19+qX8P1Wp1+9+DBw9OSEh48mx5eblYLO6Wj71XrbDbt28HBwcTicTAwMCCgoKWlhYOh3P+/Pl58+ZhVvebicTKxNU3V/tb+P86/FcT8qMVMQaRMddnbrht+KJ/F310+aMjY4/YMe2wseoS/+bVFzWIjSsrlUqtTYUz+js8e0ooFC5duvTzzz8fOXLk8uXLLS0tQ0NDN2zYIJVKn7xs7ty5np6e7f+2u7qkUmlpaamrq+urN5GcM2fO7du3KysrfX19165dO2PGjDFjxjx48MDKyopGo/34449DhgyxsLCwsbGZMGEC9v69gSgXlq++udrL1Gv7yO00Aq3DWTcTt72Re2fHzV6SsOT4+OMUAgUbMd2Izao5l1VjdHEXC7pWCgMAExOTb775RvNR37lzJzQ0NDQ0VKFQPHmNqampZjaqmZDa29vj8Xi1Wj137tyoqCgHB4dXj8IOHTqkY7I9c+bMadOmtba29mY0CoaXB3KVfMX1FSQc6ZfhvzzLXxo4sZ1+Hvrzwn8Xbk3bujZ0LTZourF5qt93bxm5BiIQCEw5nX6JHA5H8weFQtFEoiUlJXWwwlxdXblcbnx8/OnTpwFg9+7dHA7nww8/dHJyWrNmTc/d9YuMzieRSK9iSAuGbsG+nH0Pmh/8GfGnJc1Sx2Wh1qGzvWcfyj00wmHEQJuB2LjpAI2EBzAyRh+VERhkA9hg2LBhHawwc3NzAJg+fbomjgpF0YULF3I4nM2bN/foXWMbjDC8AFSKKvdm7x3rPHaI3ZAuL14WuCyxMnHT3U3/TPqHgMPe2JcCERERui+4fv363r17vb29fX19AWDLli1jxozBKAzDa4ItaVuIOOKKkBV6Wet40qp+qz65+smxB8fmeM/BRq+XYWVl1b7BZsmSJfqbaWq1uhe6h4ntYOht5DTmXKu4Ntd3LpfG1bPIELsh4bbhe+7vkSgk2ABiwCgMw4vEHxl/mJBN3vd636BSywKXCWSC4w+OYwOIAaMwDC8M2Y3Zt2puzfOdRyfSDSroZeY1xG7IwdyDrcpWbBgxYBSG4cXgSN4RBonxbp93jSi7wH9Bi6wl5mEMNowYMArD8ALAa+VdLr88zX2aoSaYBn7mfgHcgKP5R9WoGhtMDBiFYeh1Eyz/iBpVT/ecbnQNMz1nVogqkmuSscF8+SGXy9PT0+/cudOjrWBBFRh6CTKVLLoweqTjSFuG8YrDoxxHcWnco/lHw23DsSF9yaFb9BSzwjC8YrhaflUoF07vM/15KiHgCO/2efdW9a1KUSU2pL2D1tbWQ4cOpaSkrF271iAtoNTU1F27dvV09zArDEMv4Z+if2wZtiFWIc9ZzxS3Kdszt8cWx34S8Ak2qr0A45Qqeg0YhWHoDdSIa1LrUj8J+ASB55Ub5tK4YTZhscWxi/0X4xBsGvGkobsBihOMK8pUqcDUCd47ovWs0UoVGIVheE1wpugMAExyndQttU1ynbTqxqrUutQB1gOwsX0MIh0oRuq+oEolkDsVyDVOqUJDahiFYXjlgQIaWxwbZhNmRbfqlgpHOIxgkphni89iFPYUhqyAISuMKyo2MAlbl0oV2EQSw+uD7IbsGnFNN7quyHjyGKcx50vOfxP6DSaF+ELQpVIFaBM9ffUoTEeyW7lcHh8fLxKJhg4dameHyQq/zogviyfhSSPsR3RjneNcxp0qPHWj+kakYyQ2wj0K45QqQJvoaU+gB72hy5cv3759e35+/pAhQ0Qi0ZOn1Gp1WFhYQkICj8cLDw/PycnBXpTXFWpUfansUrhtOIPE6MZqg7hBFlSLy2WXsRF+w9FTVpjuZLfV1dVNTU2//vqr5sorV65odNEwvH7I5GXyWnljnLpZ7g6H4CIcImKKY6RKKZVAxcb5jUVPWWEdkt1mZGQ8edbW1tbV1XX37t3x8fFJSUk9JOeI4SWZRVIIlKH2Q7u95kinyDZlW1I1lkcZs8J6ADqS3QIADocLCgo6d+6cpaUlg8F40lOGpcJ9nVpHAT0vOO9GcPv3wr/d3joKKAPH2H9rf2tm6xs78i9tKlzdeAVS4epOdnvjxo3Q0FDN39u2bVu+fDmWCve1bD2Tl+l7wPdiycUeav3blG/7H+kvVUixVLg9lwq3J9CNqXB7aiLZnuwWAM6fP69Zgr19+7YmlgSHw7W1tWm6LpVKNfNNDK8fEisTCTjCYNvBPVT/KMdRrcrWlNoUbKixiWQ3Q2uy2/ZUuGFhYX379u3Xr5+VlVV5efm5c+ewJ/G6UliwZXD3rkU+iWDLYCaJeaPqxnD74dhov0TPvfNoqleGwkBbstv2yTaCIIcOHRKJRK2trZaWltgjfy1RJaoq4hdN9Zjag68vjhBmE3a98jo6EH3+3ZcYugXLly+vra318/PbuHFjUlISk8l8VSkMukp2y2Qye/r2MLzIn+KqRADQJ1Pk82CY/bBLZZfymvJ8zHywMe8JtLa2nj592t3d/fz58/379588ebKOi3VHU716FIbhDZ9Fupm4OTAderSVwbaD8Qj+euV1jMKkSqlCrTCurEghIigIDKKWKb9BYjsdoqmSkno85AWjMAw9ArFcnF6fPsenxzPXsslsfwv/xKrEqICoN3zM1yWviyuNM7q4E9vp3FvavdL6i+3ojqbCKAzDK4OkmiSFWjHMblgvtDXUfuiv936tb623pL3RftWp7lP7W/U3erZoadLp6OkvtsPlcpuamjRHmpqauFxuT981RmEYegQ3q25yKBw/C7/eoDC7ob/c++Vm1c1pHtPe5DEfYD3AaPUhfjeJ7bRHU3E4nPPnz8+bNw+jMAyvHlBAU2pSwmzCekdV1dXE1ZpunVKb8oZTWG+iM7EdrdFUGIVheMVQ2FzYIG0YaDOw11ocaDPwSvkVNarGpKi7HYaK7TwbTdWjwJ43hu5Hck0yAshA616lMKFcmNOEqTa9FCCRSL3DXxiFYegRpNSmuHHcuDRur7WombSmVGM7jd44YBSGoZshU8nS69PDbMJ6s1EWieVt5p1ci2X5xigMA4bnQ1p9mkwl601HWLshlsXLEsvF2CPAKAwDhueYRdakkPHkYG5w71OYClXdrbuLPQKMwjBgMB7JNclBlkG9n1gogBvAIDJSajB3GEZhGDAYiwZpQ1FLUW+uRbYDj+D7WfVLrsHcYS8Ycrk8PT39zp07vdMcFheGoTuRWpuKAhpqE/pCWg+1Dr1Wea1GXGPDsMGexYvCoEGDaDSaQCBojybDrDAMrwzu1t1lk9l9OH1eSOv9rfsDQGp9KvYguhGtra2HDh1KSUlZu3atPtL+qampu3bt6rXuvbBUuABQVFSUlJRkbm4eERFBpWJ5tF4TCgu2DH5RIfKuJq5mVLPUutTJrpPfwMGXpNxWVFYYzVM4S0vW2LHPnjJIbKf377oHKUy3eOPJkyc3bNgwc+bM3Nxce3t7f39/7Pt/1VHfWl8pqpzlNetFdQABJNgy+G7tG7ooyT99SnjhotHFpc7OWikMDBHbeX0oTLd4o1wuX7Nmzc2bN21sMJ/Fa2SC1d4FgH5W/V5gH/pZ9btcdrlaXG3LsH3Txt/6u++s1q0zrqxAIDD5T1HnWegvtvP6UJhu8cb8/HwzM7Nt27ZlZGQMHz589erVBAK2sPA6zCJNyCZuJm4vsA8away7tXenuE9508YfR6WCsQ4ZnFqNYxiQpaUzsZ3Xh8J0izc2NDSkpaVt3Ljxu+++mzVr1p9//rl8+XLNKSwV7qvb+nXhdVu87bnYcy/23lk4VnRqNC4P9yaMfC+kwhUKhSqVSnNWKpW2tbXx+fzg4ODOali0aFFaWlpVVZWXl9eKFSumTtWS/+WVT4WblZVlY2Oj+Ts6Onrq1KlYKtxXo/XWFvTBRTTtAJp3FhXVP3mmRlzje8D3WP6xF37vK6+vHHFyRIeDspISwblzLdHR4pQUtUyGpcJ9bVLh9pQVplW88fbt28HBwUQi0cvLi0QiNTY2mpub5+fnOzo6YrOwlx2CKkj4FrJPg1r56AiCA48xMHI9WPR5SRxh7XPJuNK4cmG5I8sRACRJSbxtv7Tl5T2eNDGZpu+/b7bgYxy2Dv7q48WkwiUSib///ntERISDg0N9fT2WCvdlR14sxH4CaiUMWATek4BlBxIeFMTB3V2weyiM2QzBH6TWpZpSTF1NXF94ZzU0mlqX6kC3q//++5Zjf5McHKy++YbWvx+OzpAVFgpiYhp37RJeuGD3x+9kDw/s8WIUph06UuECwIQJE8aOHdvY2Iilwn3ZkboXLq4E+/7w9h4w+S+jGtsWbAKh/8cQsxjOLQNxfWpjaj+rfi9DPlpHlqMlzTKt6nbo79dF/14xmz/f4tP/Q4hEzVmitRVj6BBO2r3qFSvK33/fbscOWnAw9pBfXfRsCKJu8UY8Ho/x18uOrL/hwgroMw7mnH3MX+2gW8CMExAwq+rm5hpxzcswi3w0l7Ts570zQXTlquVXa7mrVrbz1+NZQkiw099/Eyy4lQsXyQoLseeMURiG1xHlyRC7DFyGwDsHoDPlCRweJv2e6hQCAP2UyEvS8dFJrf3uS0lR80zff7+za4jWVg779+GZjMqFC5WNjdjTxigMw+sFaQtEfwgcR3j3MOCJOl8i/D2HQDMUcb60DlqbX3zHMzO5R68meePuj+7CMUfgcu137lS18GtWrwEUxZ45RmEYXiOcWwaSRpi6DyjsLq+915gVZNUPkTTChU9fbK/VbW01q9cQraxOv2WW3pDR5fXkPn24a1ZLkpKaDx3Gnnm3oKCg4OjRo7Gxsd0T9oVRGAZj8OAC5MXCiK/Auutcto3SxipRVaDDMBi2GnJjoOjKC+x44/bt8ooKm00/eNoHpten61OE8957jOHDG375RVFdjT3550RqaupHH31UUlJy4cKFkJCQ1tZWjMIw9DbwajlcWgNcbwiN0uf6e/X3ACDIMgjCloK5B1xcCcq2F9JzRVVV88FD7MmTaf37B1sGV4gqeK08fQpaffMN4HB1GzZiT/9ZGCS2ExIScvPmza+//nrXrl0cDqcXhA+xnYkYOsKjPhZaKmB+XBcusP+QzkunEqiepp6A4GHsT3D4LUjdCwOX9H7PeVu2Ijgc9/+WA0AQNwgAMnmZkU6RXRYkWltZLF1Sv/knupvrq/vg0uLKagqN3GmkVCrZ5vSID7yePWWQ2A6CPFrSkUqlpaWlrq49Pp4YhWHo8MLWuPLiwf89cNBXPDqjPsPfwh+P4AEAXIeD63BI+hWC5wGJ3psdl2ZmCi9dsli6lGBpCQBeZl50Iv0e754+FAYAnNmzW46fMI+LhxUrAIfNTp6CoWI7arV67ty5UVFRDg4OGIVh6E60CNpuJFXxalsVCiWDTfbyNg/xs3xKoPDGzwiqhmFr9KxQrBAXtBQs8n+spAQR62D3cLizEwZ/3pu31vjndoKpqen8eY+mwwi+r3lfPd1hAIAQCBbLl8s/+0x48SJrwoT2420y5a2UmvIyQZtUQaESHV3ZgwfYkUgvI8eFjHWCsUaW5fP5OkI4DRLbQVH0ww8/dHJyWrNmTS/cNUZhbwruptcnnHlIb5C3f3wigLs36hMJuQxf05mzvNhMMrSUQcbhcvNhzhwnPavNashSo2rNrO0RbAKhzxhI/h/0XwBkZu/cXVtOjvjmTe7nn+Moj+PXgi2Dd2TtEMlFTJJe3WCNHVOydSvvt/8xx4xBCISiMv7Z4wW4cgnpv3ALKcCD2w33jxWhLoxpM70dbBlv7OvUmdgOiqILFy7kcDibN2/unZ5gFPb6Q9yq2PVHOqlEQsaBwpXhP8DKx9vMhEkurxSmptYKMhrVmc27sm+5j3OYotgGOEKh5SRnvSvPqM/AI/i+Fn2fOjp0NeweCvcOQNjSXjLBduzEs9mcmTOePBhkGaRG1VkNWeG24fpZYkhjZCR5//6Ws7HHG5wUWXwSgMSS5BRiFRxoxTWnNDS1pWXUFdytoxeLo7+7yw61mP9B3zfzpYqIiNB6/Pr163v37vX29vb19QWALVu2jBkzBqMwDMajpEJ4fNs9VhsqdaR9FBXAYT82Uvq4mfZxM4UZcON2za3jBTXnKm7SKQMj5rUpTPSvP52X7mXmRSPQnjpqEwDOg+HOTghdDLgef8dkRcWihASLJUtw9Ke8b/4W/kQc8V79PX0pDEDSxwO8/M//04wyTSSmxOmL+ro4PB4NexuGvY0bjHfLe9gcsyeblNLwY+mtZV8MoFFf5+/IysqqPRfRkiVLurTO1Gp1b3YPc1u+zsh72Bz9UxpVhjpMdly5JvRJ/noSQ0JtPv9pqIXFw/uSCb/eGKFQ6lu/Uq3Mbsx+ahbZjoFLQFAFeb0hH9hy5AhCJJpMf6/DcTKe7GXmpb87DACahLjLlh9I6A4WdqIvfxj8JH89CW930zU/DgU/E0ad7Nevb4kkcuxle1HAKOy1RVEZ//yvmTgUHbzIZ9LYLta2SWrxu7RvfR2SKHx8bhJdz28ytym3TdkWyA3Ucs59NJh7QPLvPX2bapFIEBvLnjCBYGb27Nlgy+CcphyZSq8w8YelfN4dugohBVT/3T/raBeTThx8EhVkPtKGKVb9b32KtE2JvXIYhWHoNghEslO/ZhBQdOgC3xB/PeRA7u0DmWjovLc4w61Npbg/vrutVHY9HdAYOAHcAG2fOAKhi6EmA6rTe/RO+f+cUbe2cjrZzh3EDZKr5LmNuV3WU1Mn+WdrOglFwj709pw9WpqdLdUjk+v0aZ7mETZskeq3zXewt+6FQNccPiUlJTo6ur6+nsFgSKVSS0vLyZMnh4WFYaP2kkOlVv+56Q6rDXV9x0Uv/lIr4c4ucBkG1n6z3oNvi8pNK+GXn+6s/LKL0LAMXoYjy9Gc2kneh77vwuWv4N4BsA3qqVtF0ZZjx6hBQRRvL+0UZhmEQ3D3ePeCLHX1QdyqOPDTXboKcP6S0BBrtfck3tZtzUeO2gYEdNmFGe94/lHfyszh79iZuXjRo+t56YUNNwqBp6QqqXiEpAaVHNoULCXNh+swth+BTMTe0p61wmQy2bZt2wQCwaZNmw4fPrxjx44DBw78+OOPKIoeOXKkrU3f7SOJiYnR0dEdcn88icLCwnv37mGPoXuxd28Wu1lJGWA+NkK/pcWCiyCsgQGPYrv8fGVydwatQrr/cI4u9gA0syEz2LJzvUAyA/pOg5zTIBP10J22pqXJy8tNn16IfBIsEsuF7dKlO+yPzXdYraj9OHsHazUA4Gg0k7eniC5d0lOE55OoIKEFSZXZfP1mZWlsSv7qWPnJemYtE0FxrWypmCuSmEkUZAVNwCDdVlV8nZC/+5JSKsNe1B6ksMbGxqVLl44ZM4b4hFYcgiCDBg2aMWNGQ0ODPlUvX758+/bt+fn5Q4YMEYm0vMRNTU3jx4///PPPscfQjbibXi9LbxGYET+a56dvmbR9wLYF98dR7Ms+DRGYEITJvNvpdZ0VKhWUtrS1aHeEPbaC5oJcAtmnemoWGR2NYzIZI0fquCbEMiSTl6lGO50X7z+UzayXI34mb090bz/ImTULVan4J07q0w0EB1Er+uHxIsY/d4jJSjxKEPdpM//cz3vTJN+1b/l8Psl31WTfjVOcfxiuHEqWktqYJbSi9VdqUnJeyzcwNTX10KFDp06d6pa8SkZSmK2tbVxc3GeffZaZmSkQCBITExv/+znC4/H29vZd1qtJhXv8+PGvvvpqyJAhR49qcY5++umnS5cuxUinG9EmUyYczJPjYf6nes/dmkugOBGC5gIO334Mj8PN+yxYhoMb+/OaW9p0OMK6oDDbILD2h3sHeuJm1WKx6NJl9vjxT4azPotAbqBmC4F29s6qF6Y0CNiERYuemjOSHBwYgwa1nDyJKvXy09fFJo1jsEyJJqnKarfvIj3njaJxO2aWRQh4p7H9fb6brBpGwQNOGdP0YP+/r5sTQ6X67bff6urqUlNT/f396+rqXgyFoShqamq6devW1NTU7du3V1dX//jjj1euGCCi0iEVbkZGR+Wmc+fOWVlZBQUFYbzTvVNIpgztM9HJylzv/Ylp+wGHh6DZHQ5bc+mhsz2pCtj9273OHGFmVDNNliBdCJgJtVnAy+v2mxXGxaulUvbbXaS8DbYKBoCM+gytLrArf+UqcDD3s2D8M/siObNmKuvrxdev665fKZVl/xBDzyWJCYJLprhqMfdqcheiPY5j+tmvGSwitzAKKDk/nQX1S622aJBSBR6PP3LkyKpVq3766acBAwZ0yIHdE9DuzkcQRCKRIAji6elJJpP79+8/a9asY8eO6V+v7lS4fD7/559/jo+PT0/v6KTAUuEa3XojH6fKpjXR1Xay7LNns/X6BVMrRufub2QFpibc1dp6oyWFWwebt130dFV0KHtTeNMWb9tlP8lK+mgEXxT9fZ7Nu9177/Z79+ItLS+XlkJpqe4rTXAm5zPO0ws70vq9uxSunCjzkabevqKldbXahcUq2L6jWizudADlKrtUlQXOsoRYwg9im6nFRZW01FMPBY2ZxK7CXZFgnOndUqdm5+S1Rxv6MwCHwPOlwlXKZSql8bEdDW1SIkVLVjoej7dkyZIlS5YMHDhw9erVdDo9JCRk8+bNHXziM2fOdHd/NBNPSEiorq4uKSnx9/fXOp3sxlS4nQ5z//79L168aGlp6ePjozni5ubW1tZG0Wm0t4PL5TY1NbX7vDT7P9uxfft2Mpm8cePGqqqqkpKS7du3R0VFtVPY+vXrNTQ6efLkF8ggr1zrP6y+QUUU8/9vgJM9S29rOQayRDYT1052Ha619bFj1VtXXScVU/q/P9Sa+5gCeK28llMtHwd/PNlbj362xbrzMt0nHQYE1133Li8rKy4vt/ziC389Lk6+mZxWl9ah2pu3qy2aCqT21JVLR3TWOq+0tPmvfeMHDSKYa1l1lTbwy7beYODM2gLQIdM/0ByMY5WWRJfW1dkt+USPxEiTIfeXcw71jqyHzb6rJhvx3FtaWmQymWaH9oXffnqQfMPot87Uxm7eLzu1PL22Ng6H88MPPwBAQUFBbm7uyJEjn90j6ejo2L5RPDMzs6ysjMvlmpmZad09LhQKBw8eTKfTe5DCOBzOuHHjamtrb9++jSAIj8draGjo37+/nvXqToX7zjvvaKaQubm59+/fx6aTz4/YuGI2X0kMNjOAvwAg6xiwbMB5SGfnSSTcqHneyTtyD/6ZuXrDoMeOMF46AOhajnwSfu9B9IdQngxO4d11v8LzFwCHY40fp9fbyA28WHKxWlxty7B9xD5tylvHCnEEWLhE17tn8vbbTXv2Cs6eNfvww4781SIs23qTjrJU4WS3iaHtx8eOct6UWEnJ4VfViu2su94H7vPpxJyfz5o0mT7Ycxm4zzUmnoOGWji5GFdWKpVyLLg62EDzhz5KFQCwceNGAFixYsXu3btXr179AiaSjx0i1tbW1taavysqKhITE8lk8sCBXStJ6U6F6+7urrE5GQzGuXPnQkNDMQ56HiiV6rz4CoQEn37gZ0AxSQMUJ0DY0icd+c8ixN8y2buSmSe8dK189PBHnq/0+nQagdbHtI9+39Z4oLDg/snupLD4OFq/fgSuXh+9ZgtUen16O4Xt3pXBkKOuU53ZbLKOgiQnJ1pQEP90tNn8+YA8zs8kF0tLf77GQNnocLrTmI6p5ybP9b26LfPvfdkr1+qluebz+aTc9THsYjOyuPZ5xsQ1ZIBryADjyuoW23kWnSlVyGQyEomkET7k8XjOzs49/fITOrNO23m3HQ4ODhoBM61nn4XuVLgahIeHJyYmYhz0nDh+6gFThnLH2BqmY3X/JKgU4D+jyws/+jjg95U3Mv4pHjLQlkohAEAGL8Of+5/MYZcgUsFzAuTFwLifgUB+/vuVFRTIioqtZs/W83o3Ezc2mZ3By5joOhEA8h42I/kisRVp7KiuPzD221Nq134lzcqi/hfmqpIrCn+8xFabKgbgXMZoSZ3p7W560YlKLZXyGqsSAAAgAElEQVRm5TX4e1t02QSCQzxWRhZ/n+BRayMoq2U7Wb/8r1xnShX5+fkzZsxwdHSsqalxdnaeP39+T/dE+xuPIMjBgwcrKys7HK+srDxw4ID+tetOhYuhWyBuVdQk1QloyLRJfQwrmXUM7ELA3KNrm5pK8J3szFTAX3vvA4BYIS5sKewinKIDfKdBmwBKrnWPCRYXj+DxrFGj9H3LEZy/hb9m8gsAMX/lqBCYtSBAn7KssWNxNBr/n3/aj+RtuWiiNG31Vri83alROWuenwIHF47k6/ulMOncD/wQBFe95w6qVL1UL1gHpQrdE8OAgICsrKw9e/akpKScPXuWSqW+GCvMxMRkzpw5J06cSE9Pb2hooFKpUqmUy+X27dv3gw8+QBAEI45umP01NgpiY8UJCfLSMlSpJNra0vr3M5k6lezublA9R4/k0FXg+ZYrYtCG17ocqMuB8Vv1vHz8KOdNN6poOS0PS/g8Sm5HmcMu4TwEqBzIiwWPblCPEl68SAsNxT+hdNwlArgBN6tu8mX8a1ca2XwlMdjU3kYvwUIcjcaMjBTFx1t99RVCIj346zJHaCqw5PvMmajLA8OlE33YxGzB7bTa0BC9rCozL8d0k2teAte8bcd9PJKg8i60NgKRBlZ9wXMC9H0HiNRX4sUmkUj6hI72uC8MQZDp06dPnz4d45puByqXN+7a1bxvv1oqpfbtyxw1ChBEXlHRcuzv5kOH2ZMm4gL0NXBapUphVrOCRYgYYqBIedYxIJDBd6r+JWYs8D/7Q9rp/dnMqVlaZA51A0+EPuOg4AKoFHpmFekMbbm58ooKs4ULDCoVxA1CAb1dmV4YB2oSfD7PAKche+IEQUyM+PqNZpRNKyTzKY0+y9/qstSs9332r0m+Fv1QTwoDAJxLW8u9HJNmL15GMdfHG5g20MaHqlSIXQqJm2DkevB7D/t89KWwZ6FWq/Py8jRijBiMhqK6umr5/7Xl5rLGjbVYtozk+Dg0VCUUNv+1r+mvv5wSE9v8/Drbuvwkjh3Po6kQj/FOhnVCrYTsU+AxGqgc/Qs52bNw3ixmrjAzs8zT3LOjzGGX8J4EmUeh9Aa4RTyfCRaHEIlMvWeRGvQ170vGkxNjSu2Uzn1muJIIBpis9NBQgplZ7bkrROpIGSL1+DwSwXU9EeGwKSRvE1IO/3Z6XWiQVdfNZJ8aVvC1nGNX07JJIltiPmUcrj20rCwJrqyHfxZA0RWY8BuQaNh31IUvrOOUR6lcv379F198cfjw4V6WZHzNICsqKps+Q1FRYffnH7Zbtz7JXwCAZ7EsPv0/pxPHUQRX/sEHralpXdgjMmXLvUYBAz9qqKNh/Si7BWKeET/pc+f7teLBLscvwCLQ4Jt3GQ4U1vOLIAovX6YPCsOzWAaVIuFJ3tRAy1JbkTnJ4OHC4xljxyuQQBRQ64+DSSx9o5lmzvKW49CE04VdX3pnJ0R/3EJ3pS6NRwYyGMB58NcTe4+cwuHDyzDia8iJhsNvQdvjQHEcDvcqfpIoinaXP4qg3xPER0ZGhoWFKZVKHJafymj+Ki4unz0HIZGcjv9Ncuk0fofi41O5eJHXyVOVixc7HjlM8fTs7MoTpx/QlOAUabjfIf8skOjgarA1xKST6AOBnmQnyWOBocv3BDJ4jIGCC6DeZrQataywUFFZab5ggRFl7XIHE1D82NluRpRtRF04VGuRWSnb1QDrz5RDIXqxSbnCjNyGQJ/OlyYzj0HcavCemEKcPJFh6TLFMiczhlnKEhTXsF1t/vPs4GDICuB6wun5cGgyfHAeyAwAoFKpPB5PKBQSicTnIQWFQqG/As1zoq2tTS6X6xkk3z0UplarDx48eOrUKU9PzwULFryx7nyhXNgkbVKhKnumPRlvWHCAsqmpcuEiBI93OnKY2JWzU8lmO+z7q+y99yoXLnI+fYpgYaHNNFbXpfBUNNz4SAOjGdUqyD8PHqONcw+zAmseZsmZaQ6CaXI2k2TgXHIy3D8J5ck6gml1Q3T1KuBwjBHDDS2YlddgU2ObY30jzMQUwMqgsuXxdzkSa15LhnljDsAHBpV9Z4bXia/vXI4u7JTCypLg3DJwHQZT96nPX9Qcs583oGXHg4pDd/pueHoHqOcEeO8IHJ8Jp+bAjBOAJ5JIJBsbGz6fr1AoULSLvZYKtUKhUiAIQsFTOnzFPB6Py+X2zndEIpHs7Oy6yxjqlMKeDHXD4/Fz584NDQ2tqKh4nfhLIWlTtsmpZqwumSu6MPpcyblifrFGswWH4Pws/Ca6TJziPoWI69o5jSoUVVGfqJqaHA8fIuq3WEPgcu137y57972alasc9v31bHLWsxeKGUqwHGVr8G1XpIC4HrzfMm7QMhszyt2bh6XPPrj//rJlIYYVdo0AEh3yzhpNYeKEa1R/f60a07px8XA+BQfptpfTeXb6birQkGZ1g/IaX4rIbDyBvzdF2dRkUOtW5nS5A41a3lpRLdaStE3SANEfgqkLvHv4yVUOtpN1lX06p8q8KjHTbtjTwR/ukTDhFzi7FK6sg9E/AACdTte9U6elreV4wfG40rhSwaPNpDgE18+q3yTXSeNdxmuC++7fvz9gwIBX8SvulAi/++67GzdutO/DHDhwIIIgjo6OrzxtSduKjl/P/SameNXl+m9Tm37OqvgiMX9NbO5v5wUlNR2pB9DThafH/TNu271tLBLrk4BPtg7dunnw5oV+C6VK6be3v50UM+lWza0uG+Vt+0V6/77NT5sphiyGkN3drdZ9I7l9u3H37mfPFtysERPgrfGGJ3zPjwUiFdxGGUlhvEx3LyuxBQnNE5RUGCgIRaSC6wgojAPUGG0GZX29NCeHGWHw/PfqjQpWi5Lsx7G1sMrgZRjgslGjFdtv4YFoPsuHM3ECqlIJ4+IMbX3SOx44gH9O5j/rEIIzi6BNANP2P5tw02NehFQtFsVXagkTC5wNoYsgZTs8uNCFwY2q/37w95joMTuzdlrTrT8L/mzr0K2bBm+a7zuf18pbm7T2rbNv3a27+0p/0Z1aYQQCITo6esWKFQwGY+jQoWPHjtV/g+RL6kFUqgqPXCPkqykIFUXJUpZEZqpECHiVSIZrQpk1TMGuh5Wsuy4fDqZZmQGARCFZm7T2asXV/lb9v+j/hQfnqRDQqIColJqUn1J/iroS9VHfj5YELkFAu30qvnmz+cABzsyZhi6iAQD7rbfEN5Mat+9gRUY+6T5LSatli1XEfqYEgoHWOKqG/HPgPsq4Va0qURWvlRfIDfT/wPvSlszTB/NWfW2gEHmfsZB/DupzwMrgDIyihARAUWbECEPv+E5MCZEAi2b7Nt4PjC+LV6NqnH5BdPk74tgqs9a+SvO+LgBA8fQUxcWbdqLT3+kdu5n+Y0EkPxQKRDI28wn/w/3jUHQFxm0BSx8tbE+n4Acwqalo4dHEPh88w9qjNkLlXTgbBda3gG2ntd1WZeuq66uuV10Ptw3/ot8XTmynJ88uD1p+rfLa1rStH1/++KO+H9mD/etGYfPnz/fw8ACAxsbG69ev7969+8KFC+0yOK+EuQUFcVB0BZqKQCYUKGyqq99l4WyF+GbSCDP3EeHw9Lq4oKy28tRdVqNJ3bYM3BCGBJXMjptdKihd3X/1TK+ZWulpoM3A4xOOb7qzaff93bxW3oawDc9+GCqhqPbLtZQ+fSxXrTTuPiy/XCNJSqpdt87x0KH2bXrXz5WQEZg5zdNwEkoFYQ14GSnCoTFhArmB7hzTC64MarE4LateL3n+J+dBCA4K4oyhsKsJJGdnkoHb7k7884DdqjYZbs2kkwK5gacKTxXxizr8IGlFTVI2o4LOpzX6vv/IIcUcM7rhf78reTyCgW6j8PEu9w8UnDxR8PFH/8WjtTbD5a/AfgD0+7CzUi5Tw/PunSXlkuViKYnxtOMST4Jp+2FnGJxbBu//82xZgUzw8eWPC1sKvxzw5QxP7XvIhtsPH2g98Me7P+6+v9uP5DdePV4fr4hKIBDGx7feTVVUVKBqNY7BoPTpw4wYQQsJATy+9z/0Tn+LNPwFAObm5lOnTt27d29ERES7fs5LDWUb3NgCv/jA6Xnw8BIQyFXyQU3Vi2hgLlX+5W26wp51D6Cjcc52svZdOZk+20GGkxKS5Kq04ipR1c6RO2d5zerMvAIAMp68Pmx9VEBUTFHM+pT1KHScH/G2bFE1N1tv2oSQjdwbSDAz465a2Zqa1r7HpaxSSK+XqZ1oneWF1IW8s0CgGB0in8HLYJKYriauADD7w74KHFw+9sCwKugWYBcChQZPx9RiceudO4aaYNI2ZcX1WiEFmf5OHwDQJAFp32mkq2CTUBJb1QYSt+WPbWfW6NGgVov+NVhqdXCorYCOa77f+Fj++t9voE0IE3/VLUDEHutMwdGLDidqOcdxhJEboOgqZHaURBYrxIuuLCoRlPwR8Udn/KUBhUBZH7b+s+DPsuXZq2+s1iHPrSGv+s2bHw4ZWrduvTQ9HW9mSrK3R+Vy/qlT5R/MLR4/QXjhgnEugh6hsA7YsmXLgwcPejmi4tdtd3fszDx7oaiWJ9G3TPU92DEIEr4D+wEw9wKseFjC+kJdO1GByFnz3d0XzQauF1xcCXtGQLMWnTwzXxfbteEPIG+4ctgfZZ8NsNRr7rzYf/Fi/8VnHp7ZkbnjKUv+3j3+qVOmc+dSvDyfZxxM3n6bGhjY8Nv/1FIpAJw59QAAJkz1MLgiFIX8WHAdoVmPN47CArgBGmPTwpTKCDRlC1QX/i01rBaPsVCTCSLDJInFN26iCoWhjrBDh7LpCjRworNGlNWWYWtJs9THHVb8+1UyQmVOcaKYPB4rkrMz2cNDGH/JiKFzGWjFkMPFq6UAAHU5kHkUQhcD11t3KdvBfnxSI6WMIG0RajkdMh8cB8GlL0HS+KT/a9WNVQXNBb8M+0XPNObzfOeNpY69XH5Z68+wBpLk5JIJE5sPHWZPmOB85ozbtQT7nTttf/3F6e9jHinJttu24SiU6s9XVC5YqKyv13NMCoqa/z714M/t6b1BYfPnz4+MjNRHoKIbQSwUqzObq85VRH9z54c1NxKSKrpyNR+D/eNArYA5Z2HG3+AUXhKTQryjFuMFDivCTT0dwS0C5sTCu4dBUAm7h0BJ4rPuz69S163y3FWAe2Ajss3ZGqtnV6MCoqa4T9mZtfN61fX/XG/KunXriLa25kuXPO9AIIjlqpVKHq/5wIFWqRItEovNCH3cTA2upyYd+JXgbeQsUigXlghKAiweL5DNmeMrJsD982X6JJ18gsJGA6qGh4YRgSghgWBmRvX3179IQ7NUktkiMCGMiXjsBgqyDNIqQv3Up3XwqkmbucRZah3akWJYo0e3pqcrDZ+OvDXRTYqDrIRKAIAr3wDVBAbrlfiG+5YPESGXHNSmZYjgYOJvIG+FhI3tx/7I+ONm1c0vB3w52G6w/t0LI4d9EvDJmYdn9ufsf/Zs84GDFR99jGeznaNPW3//XYefZIRCYY0b6/xPtNW6b1rv3SudOk2alaXLmlOrj57M3/Rp4pUtmc1Xa+A+vzcozNTU1MnJqZdNxE92jpizNdx3tofCg0EUKvKPFP3w5c3Kmk5UgG9sgZjF4BAKC66Dy1AAKL+cSritECEtbmtGUi2eEMzwngQLbwLbHo69C/nnnqxje9b2a5XXVoauEg/g8k1bTJpM83fp+6V9NeArTzPPr5K+qpPUAUDL8eOyomKrr77CdUcIHzUwkDlqZNNf+86duk9WQ+AIB2NqyYsFPAn6jDWuD1m8LDWqfjIhI4VMcBlpy5KhR08YIo1v6QMmDlBoCIWp1ZJbt+iDB4Mh84DD++6T1BA54ykBj0BuYK2ktlbSqTJXQ1YxJQ8nIDR5LdAy3WaOHg0qlejyZUNHj0ImEPswmS3K8luXoegqDP4cKGy9KCzIQ0BtotfQJDXaMsKZu8OAhZB+GGrvA8CNqht7s/dO85g2zWOaoT1c5L9onPO439J/S6lJecoZsu2X+h9/ZEVGOp8+pSPQGnA4zowZTqdO4mi08jkfSDpRzU9Jq/3ps+v8hFpEjRJDzAYs9vn4j2G9QWEvCkw6aeggu08/67/45yGIvwm9WX7yu7txV5+Zudz4GRK+Bf8Z8H60Zt9fY3YJekUoQUTOK4aTmM9EzbDtYO5FsPaH6A+h9NHvW1p92p77e6a4T9G4D3xWTGyhNDFKqWXnb+vTVRKetGXoFqVaufrmaoVA0PjndnrYQMawod01FNxPP1VLpc03iyVEGD3cqJ+T/LPgMkzPL0frLJKII/qaPRUXMm1SHwEd15DME4jkhhhiY6DkGiikel7elpenamlhhA/Sv4WiMj6+WCK2JndYbdBoBHVmiCEKdfOxfCUonKI6Lvg88n66uZLdXEWXLhsxgJPf7oMAFJ67AyYO0O9j/QvavBuIxxFK/07WfnrIKqCbQ/wX/LaW9cnrPUw9vhzwpXGPeEPYBneO+6obq3itPM2Rpt17mnbv5rz3nu22rYgeP8ZkV1enkyfIri6Vnyx5lsV2781K25tPUKIWo22/+GX4go/8Q/wtSQTcy0thOlLhFhQUHD16NDY2Vs8UAAwaMWpx0IjlAXIiUnSq9ODRJ3Lwpe2HhO/Afwa8tV2zc0XaJGw+8kCFqGyj+ncauUo1gVmnwcwNjs+EumyBTLD6xmoHlsOa/mv+M9IRzy/GSICP3hC3PKzSp5MOTIcv+n9xr/5eyo+fqwQC7qpV3TiYJBcX2Ygparwp042GGPHcau9Dc6nRs0gNhXmZelEIlA5TmUHT3CgqOLT/vgF19RkL8lYou6mvI+zWLcDh6IZkkj99MBcA3p3XMV7Bg+PBIDE6c4dZ3BPTEBZxpBndxrzTn9XRo1tTU1XNzYYOoJM9C+W0Vgj8ZAM+NUj60dTLSUBrpvPo0gZtcy4KC0Z8DeXJP1xZwpfxvx/0vT4Li9pNRQJl69CtMpVsXfI6FFBBTAzvl19YEyZYrftGf/sXb2LisH8/2dWlaslSafajNDRypfrnH1IUaU1ic9K8jQPfndIH6Sbu6UEK05EKNzU19aOPPiopKblw4UJISEhra6uedfb1MovaGCZiE8Q3eXv23gcAKEmEuJXgMRom/6lZ3EHVaMkvVylAo060YjnoXO+nsGHWaaCw4fjMb2993SJr+WnwT1TC49VrIpVi+WEQiqD1f6UrZQq9fmndJkeSA0zOJVMmjNFldRuFZIthCIqOaDMq/3lezCPFG6OgUCuyG7MDuFpkAocOtBNZEFX5wopqsb7VOQ4CMgMK4/W8XJJ0i+Lpqb9AWFpWPaNWpnZluDh0VNzEIbgAiwCti5Il0Un2qJPQUuAwSlf4Pmv0aFSlEl25asQwjrY414YyT5cGG1rQcnJfAkIsOdZJTrPA95Os+8Q13V/sv1BfNfDOngzL8bOQz5Kqk85f/K123Xr6wFCbHzeBget4eDbbYe9evIVF1eIoRW2tUqneujGZViFVeDBWbww3N+1O4TPtPfvhhx98tUH/enWnwg0JCbl58+bXX3+9a9cuDodz584d/Wtms8krvg8XmBFlaY0n9l2HUx+AuQdM3dcuAJ+/5xJbad7mpbAJ10MTimUD7x5KVPIvVV5b7LfIy6yjvg3H3Q4XzmQAp2CHXr4bBJDFd0zUCLp/UDdvmpXL1dJ6hCqrQqIPqcVig8vnx4LTYKCZGtd6flO+TCXrTKl1ygc+eIDj+/Q2xAhkcB4KRXplJlVLJNLMTLohs8jLxwrkOHh/vvbQswBuQBG/SCh/ao2PX1yF3G1rVjV4LenCV0j28CA5OwsvGb4uWZ3uITyOEIUVqQZbcBb+rgJyM62GonVpUoGqfjShu8gV81TdkBPovT7vRbD7m2zYjZia2G7dihCM2ZOPNzW137kDlcuqoj7Z9t0tFk+OBJj832f9ke62mrTX9+mnnyZpg/716k6F277RUiqVlpaWuroatkuGRMB99s1AkQmu6a6ypNUPZpxojxLgpRcySih8cpPHXH1D4SVcz+9t7Dzkirli7a4Zp4mhfEYjs5ZZd6drHWF5aani8jXe2OAY/k2D9rJ0iXNxxRQVWA51VgmFT+og6/eTkguND59zFgmd5+72dDNVODOo1W3p2Tx9a3QbCS3l0FTU5YWtd++iCgUjXN/UIZeulbMFSnoAx6KTX/sgbpAaVWfyMtuPqOSKmr33AKDcR44jdv3FsiIjW+/cUfENXEpL2gZUDjXAjiVFb6cbnObaYqInESGVHtXyGR7OO1ze1rgaMSdc3wwq+XO+aQggyxIoJhL4e449/jmCEMiurjY/b8mXOtPrFCpvVtSiHklUpv1pUalUjeh1RkbGyZMnw8PDIyMj4+PjJ06cqGe9ulPhPvp1Vavnzp0bFRWlySqigf6pcKfYnsiWDLvAW0aMzrI2TwcAUKo8bhOICKmkj6JY75Si56Xn6xWStTIL5Mq3VytJYor1s60j7irPtFbJ6Yd3KvOBqCsE2fr4CQYeL/EbyULLvrz85ULmQh2RsTrw7L1nJ9JoeJzMhC91dqrasTOJyUT1Nu896854ILhLZXhZ1VnjWr8ouWiON0+63OnPmJUjUltKj92fVTlUL7cATaYeBZB95pcSi0jdrXPPxrJJpCuVlWht1wl+UDVkJ9BJOMTVrOLsWe1ROApUgQf8yVsnWygtmiNmdwVOqHOeebGaw9EnGS2ZTHZUKm9u2Srop+9Gd5qsYeSDCw8tJ1KZtQKEfuFkVn3lHX1G/knYqaUmFWZnT0UD6fGXK1QL/xT+6U30RnF+UPXT/f2fl1qMfJ5XjpmZZX05IWukVzQuk3TqBx+Sj9H88qCYyHAab1V319RadvZsdY94rNDOkZqa2q9fv3Xr1n377bcoioaHh8vlclQ/JCUljRw5UvP3nj17li5d2uECDX+tWrWqsxp09w0tvISuY9f9vXZL1NVNSxOEYhmKotk/xVR+cb3s0l1UbxQ0F/gd9Nt0ZxMqqkM3O6F7IlCVEkXRmJiYDleWxd2t/OJGzv/O66hNVlKS5+1T//PPKIqeKz7ne8D3fPF51HA823phScvvC6/+9lsqiqLCS5fy+ngKr141oMY/B6AHxhvduhpVDzk+ZG3SWt0Fd+3J/GPh1Yv/lujbq9+D0SPTumy9aPSYioWL9Kzy71P5fyy8euR4nu7LZl6YOSdujubv0nMplV9cz/4xRmvrnaFoVGTFxwsMeASX1qIbzVBBNYqim9YlbVt0VfPS6r73DqhOyq784kbuzrgnD25I3hB0OKhKVIWiKLp/HLqlD6poM/qVUzQ0FAwILX33PaVCNi122shTIyUKCWoU0nN42xZd+f7/Eh6+O+tBSD95ba2RH7tO6PoZP3PmzLZt28aOfeQasLGx4fH0nSa0p8IFgPPnz2tSNt2+fVuTew5F0YULF3I4nM2bNxvDu20CiF0GVj6W0772m+bKkKM7fkmru5vPbuLw2c2Okf30r+mn1J/YJHZUQBQwLGHsz1CVCql7tbs5x/TjUxoZVTQdq5ONO3biSCSz+fMBYLzLeB8zn/9l/E+hVjz/L01cbBEKMG6SGwAwIiKINjYthw7rW7ixEHj5RqvrAECFsKK5rbnLlEVzZvtIiJB5vkylp46oawSU3QSlLqehorpaXlampyOsVfrUdiIdCOIG5TbmylVyQVmt+oZYBALPZYZtumJGjpKkpKiEIv1WQ6SQcRi8JgLLBgD6RdiTUDgbW2Tog7AZ5CvAN5NKQCV/9FJViarOFJ2Z5jHtUYrMoatBVPvsliMDXA4//KBua7P5cROeQPo69GteK2/3/d1G1CNtU8bvyVEhyMzPgh23/ggqVd26dT1hhOmiMDMzs/Lyco0/S6lUFhQUWFrqu6G3PRXuiBEjGAxGeypczS7L69ev79279/Lly5pVgvj4eMN6ffkrkDTApD+BQB413FHhwWBUSRtPFcrRNtcFBuyhS6hIuFN7JyowikViAQD0nQbuoyDhWxBr3yFhPzcURdGaw2mdecEEFy5wZs7ULJwhgCwNWlojrokpinnOh6RUqmUPhSITgpuTCQAgeDxn1kzJ7duywkK9yufGAIIDz/FGdyC9Ph3+SyirAxQywWmELasNPXpcv+RjbhGgkEJ5ii5P5a1bAMAYpBeF7fvrPl2BhkxxwXc1xQ7kBspUsry6nOpdd3GA4872JVDJBlJYJKpQiBMS9Lo66zhI+TBgkea/iMEOIhJSkcYz4lnQw60pCL0k+pHE0/as7XgE/6Hvf3vFnQeDQyjc+hXUSiMql9y+LbwYZ75ggWYvvZ+F33iX8UfyjtSIawytasfv6cw21GOio5M9i2hnx/38M/H1G4KYmF6lsPnz52/ZsuX777+/fPnywIED33//fYIhaxMzZ868d+/eP//8c+TIETweDwB8Pt/KygoAhg0bplarc/7DmDGG/ACWXIf0wxC2FGweLfB/siTEjlRrgjcV+xC71C98/LuoVmy7t82F7fKOxzuPj47eBEoZXP1WaxG2k7XUWcaWm5XFaZFYaty9B0cimc6f135kkM2gIG7Qnvt7ntMQu/hvKU0JnoMeJ8IxeecdhEJp+fu4fquJseAQCkzjE6xmNGRwyJwOai1a8c7kPgIarv5WvV6Rrk6DgUDRvS4pTrpFtLHRR52irFKozOUL9ZPGD7QMRADh78tkoaaq/kQzH4OTTlP79iVaW+sbpn93N1j7g/1jTUGOrwlbos7IbTC0XafR/SSoQJUlAjVaJii7WHJxltcsLu0J5YzwT6GlHLJPG+xTUirrv/ue5OBg9uHj/LX/F/R/CIL8lvGbQVVdulZOKhZLHWmTxj5aqePMmEHrF1L/wyZlQ0PvUZiJiUlKSsrs2bNnzpy5c+fOFStWGFp796fCVUjh3DIwd4Nhj/NxSqvq/Cg2NW01cQ8NiOg7ln+sXFi+qv+qp1JSm7vDwMpNzHoAACAASURBVCjIPMqRaDfy3eePlKBCWSKvgxCdsqFBeOGCydSpHSQ9F/ovrJXUPqchlnOzWoqDCaMfr9viWSzW6EjB+fPqLvXOm0ugLhu8Jj1PBzJ5mQHcAH3WJRAcDJrqRlXB4QPZXddLpIJjmA4KQ1Wq1tspes4ij/+VjaDotPl6hf5wyJx5dWPcJG58TrPrtMHGDAqCMCNHiW/dUku60iCovAO8POj/VDj+xMkeagQSzhcb/skiiB+dASbll9N2ZO2gEqjzfOc9/Y6OBqu+kLQNUMPSgrQcPiIrKrL8cs2TqipcGneO95y4krjsxmw96xG3KjKji8UkWLTsCbMdh7P+7jtULq///ofeo7DCwsKcnJypU6c6ODhs2bLlypUr8MJxcyu0lMPE3+CJGPGKg3cAINuWy2yQn7mgl39BLBfvvr97sN3gQTbPfB5DVgHD0rdGu4FDIBOJoWw6wn54/Kltt82Hj6AqlekHczpcH2YTFsAN2HN/j9Iowx4AKmvEzGYl3o1BIj31sEymvaMWiURdqibknQVAniecormtuUxQpjWoVSuGDrITWRCVeQK9Il3dRkLDAxBoX6tqu39fJRTR9ZhFXk+pYtTJwIvl7qLXT2Z9WsGU5jG1qirPT8caPTLMyEhUJhMnXu/KiD0CZAb4PJWy08aSLjYnIuWt0jaDXwyXaeFtaonwRuWlskvv9nnXhGzSgVth8OfQUAD55w0gAqm0cccOxtAhjGHDOs7GfOebUc22pG7Rs6o9OzPoSgie4sqkP5VageToaLZ4kTA+XpKc0ksUduTIEU1agaVLl7733ntr1qzROONfGFrKIPl38HsXHB+/07UpuRyZmcReOnv5UBEZeXixQiDoesfS0fyjIrloaeBSbaYjHYatMRUXQoF2TSuXKeFCpBl3Xyb/L45M3dbGP3mSNWqUVl38hX4LayW1caVxxt107JkCBGD0xI55d2j9Qsiurvzo011TmF2IxotsHNLq01BAQywNkMmfPMcHD3Bcny1HmpySnRhi4lu3AI+nh4bqrkOlVt86VSQlwNz5eulYSBv4wlPFSlT+tfPustYKo0eGFhhIsLDoQj5MLoGcaPCZ+qxMbsBQO7IaYi8Y7NQnkIkKZ5Sjtghpcn3fW5uErNckMHeHpK3612l2LVElkXBXahHmpBPpUQFR6bz0G1U3unabZvMIhWKJDXnUcC3TebP580nOznUbNqByeW9QWGtrq4mJyd27d8PCwt566y1PT896vZWAegTxawBPgFFPKce2nCuSqaXuc4eRSLhBMzxoKti3N6tLE+xQ3qHhDsO9TDvJNRv4vohiA/9+05lPlDXGkYKjFx26pvmXf+qUis83nTdX68XhtuF9TPvsz93fmRKT7o9TnC8QMvHe7lqi6tlTprSmpsmKO5+M8CugJvN5TDAAuFd/j0qgept561/E291U7kynVrWlZnb1wlh4AtsOirVTmCTpFrVvXzy7i33pBw/lslvVdkNt9MmopJIrSn69TgaabDy9mt70XOHHOBxz1EhxYqJGx60TL0A0yCUQNPvZM5EjHCVEpPiOMd8UZ5KPQi2b2zjRgqotMRIOD2FLoSYTyvQKR1fW15skJ7MnTSK7ac9QN8Vtij3T/o/MP3S/w6ga4g/kyfHoB1HabXaESLT6aq28vLz5yJHeoLDQ0NCvv/565cqVU6ZMAYDy8nIzwzPHdBuKr0HBRRiy6km3dMnZFJbaVOlL0GhRDA61ldiQ8Q/FeQ91beA4nH9YJBct8Os8FyEO/8B6GjQWwv2TWs/bDQ0QkJpo5WRpkwBUqpbDR2jBwTqkrGZ7zX7Y8rCDhok+uHytnKEElwHaF4LZU95CCATBP2c6N8FiAFDwmvg8A59WlxbADSAYmPnx/fl95Xj491B+11JibhFQfA1UHQ18lVDUlp3dpSOsrFIouNMgYOFnvKPHjlQ1mrf5PFvFkQeCz9DBFlSL59xBwYyMVLe1SZJu6ZpFmnuAnZZAHzwOR/NksYQq3a+rVpysj0nDpzmqnJ/NWfMIftOBYQnJv+tTW8P/fgcAi2VLO7X7cIRF/ovym/KvlOvyJh09kcuWqC3DrazMO93nRB80iDliROOf25XdZA/porBp06YtW7Zs9erVb7/9tlKpnDdvniZk/wVAJYe4lWDuDqGLH7+NCqUiuVmCCjxmPp69z/zIX4VAzP6czmoSyUWH8w6PcBjhY6Yr5riGHQy2wZD4Ayi1T0u5U3zwCLHkyE3hlSvyigrTuXN11DbOZRyXxj2Qe8DQ+85MrJLhYPIE7b+NBDMzxvDhgpgYVNmJPyUvFmwCgeNk9MAL5cIifpFBWcs0sDSn2UXYsFvVf+3L6todJhNBdcdQldbbKahKxehKneLvnZk4FH3rY72U+HP/d54jMRfYidymDwOAQMtATbyI8XPJfv3wHE6n65KNhVB5B4LmdFZ8wiR3ALh8zrC5pEQhOVFw4kE/PgBURqd2NtuEfh9C4SVo7CLyRl5Swo+J4Q8MJVrrWrOe4DLB1cT1z8w/OxOnFknktUn1Qipu1ntdRPNbfrkGVal427b1OIUVFhZaWFhMmjTp4sWLs2fPtrd/cTlO0vZB40MYvQnwj2cKhUeu0REWebA5Qni8pGhvwyD7m7CblXFXtKshH847LJaLF/sv7qJFBIGIb4BfCZnHtE+AAt0F5GZ6DbX+4DGSg4NuTXcijjjLa9btmtsFzQX633RNvYTRqEAdaVRKpxaQydS3lU1N2uXlhDVQlfacs8j0+nQ1qjbIEdaO9972FHAIbRktBUU6rQznYYAjQHHHACtx0i0ck0nRKdN65nwRq0lJ9OdonWh3QMGBK+w6kxZWs8+SRyFygdzAanF1uzaWEUDweGbECFFionbnTsYRwJPAf3pnxZ3sWUIOQVkslhsiextbHCuUCycPmSmgtTAaGNo1qQGg30dApEDKH7pra9yxE0cmNz/jxe/IFAguKiCqmF98sfSi1gsO7LtPVUHoNLcuN3IT7exM58wRnDvflpfXsxT2srjzZSK48TO4DAX3xzu3ZXwxKV8twDU5Tejo650/z09MgMzY0menMEK58HD+4QjHCL0ESVyGgf0ASNr27BznkSE22YeAEPk4J9N5c7tUI3nH4x0akXY477D+933ubCEOhRETdO2Bp4eH4zkcwTlta095ZwHQ53eEkfFkX3Nf44pPX+ynBojena1rfZ/CAruQZylMkpxMDw1FOk+KU8uTFMWVCynIRx92vVr68O9E2gMSn9jou2pC+0FNsK4+2UC6mEuKRFpW2VA1ZJ8C91FAt9BR3CvchqqCC5dK9GwOBfTvB3/7mfv5mftZjPMk4EhlJzqZxtLMwH8GZJ0ASaehWPKKCuHFi5yZM1T0riUuRjmO8jL12p65/dnl9YpqsSpPKDInDR9kp89dmC9cQOBw6n/c3LMU9rK485O2gaQJRm588ljRgUQSjmo2WQsTUcgE11H2LDkcP/XgWRNMIpd0bYK1Y+gq4FfA/RPaKSzIvamtxMJmMGlI11sCmCTmJNdJ8WXxLbIWvd5UNbTktAjouE4T2WusAAKBNXaM6OpVtUikhcKs/cDU5TkpzNfcl4w3Mv2Si4MJJ4zLFqp279XpcnIZDjUZIH08MvKyMkVVlW5H2P5f08kqZNQ87w7hJlr8qKdvkjMRIaGlz+qxT9rsfUz70In053SH0cPC8CyWlrlk2S34f/auM6CKc2nP7umcfui9V8ECiCgEURR7RaNGjSUmJrZUzU2iiSmmehPjNZYk1xhjr2DvioICUkSkN+n1cHov+/2AIODplNzk4/mlZ3dftrw7OzPvzPMI6yHkRcOHT5vkJcNBYYqp5e8P6h9UCipfCnwJAOzDAwS4NkIF0tlv1BOj14FGqa9nDgC4e/cBHs9ZtswklxOQdSPW1Yhqksp79qIf2/8YxWDWMlPXfFAq1WbNGmlGhvjOnX40Yf8T6XxRA6TtgaEvdtbiA4CwppnaQOVTuA6jdC8pJszwFVih9amNXYtuRErR4cLDE90nmqIh+CxN4xwK97brXJpU1dRoH53Go8SnpzNNckkCFio1yjMlJvHk3EqtpivBLdy4XiFzxgxMLhfd7M7AJ26CmnSL9SI7vmFqaQG3INwhvDeDLF8aLOAQFNm8jGz93z/v8aDVQEVylygyBQAMJMIOHslntqlIoWyjKpalR+8QMzERnuf3wSQCtRvlLA7BhdiEGFUDMfJi4/G0cbGiGzewHjFK3gkg0cFvkuHDiXgU70Nn8NRPa4Sm/LnDhYc5ZM5E946IhBblQEapFWf1cFJbe4P/FEjfB0od9CGqhgbB+fPsBQvwtrYmXmyMS8xQ26E/P/65a8NJdl4zpU6u9qaZEs4/y4EsXEDy8W769jtMo+kvE/Y/kc6/tQ20GhjXjQu8+uB9FBDnl/S2cyMojJjmTlXDH134qX/P/12sFK8ettq8E4jZCG2V8OS0ji/Yb79R2qr5hBarWpKCb7yM04vpFeEYcbz4uNaEsumHN2uUCMya6WN0T8qIEUR3d8G58z1dMEzby7XInOYcDaaxLBHWLbR/J1SBg1sHCvSW7DmHAYXdNZaUpKQS3d0JetKvmblNvHtNAgZu1SojhWCFey5TclEhrs33OfvVmQ4r5hWLleLeXCA9Pl4jFEofdsmsqxVQkASBM4Fg/JWJn+4NABfOlRrds0ZUk1KXssB/AfHPpLD75AgJJlDn6Dd/o9eBjKczkuDu+xkA9BUD6cOa4WvqxfVJZc8csasnitUILF5hXrYBweFs33pbWVHBP3Wqv0wYADg4ODx48ODixYsYhtnY2Ay0/WouhNwjEPFa1zW1ltxypogjtBGwfQ1F3VPiPAUMnDCrrf21ESlFR4qOxHvEm+GCtcNvCjiEwN3tPdo1NHy+4Gwic+YMm+lBBJRUftykApxFAYsaJA2dQm163R8ZQmmUq10pPeqb9YExfZokPV3dlUek8BzYBYJtrziIsxqzcAhuqO3QXj5GBxvq8Be9aUps97cZukksUBx4xkB5hyOJqVTSjAx9UWRLm+zWr/lKFJa+FWagnVurUj/5JoleReNbtfl/PK2nGnZnOsw+VItpc1tze3OBtOholErtpglSehXkAgiZb8rhQb4cIR0nKRQY/bQdLTqKImg3dSIUQYIpdGDV3NST0XMfA86hkPZTjwmsbmrinznDmjvX8ELk84hyigq1D/358c9KjbL9c0JvUaEBdHsbK7NN/4Q4q5Hhrf/Z1V8mLDMzc/Xq1SQSKScnh0AgfPvttwOdzr+xFYi0HnJ7Tafy1Fql93LjykBj5/mQtXDw9zwAOJB/QKKSvD7sdfPjBAReeA9aS6DoYtefeceOaeVyzvLlDqMCBTgusRxMIdePdY11pDoeLTpqJPYpI+ABeWGyqb3HzBkzQKMRXvxzqUjSAlX3e5nIb0+EDbEZYoW36v2TnDjWnTiSw+Cqdv1HD/G/dxwIaqGlGABkjx5ppVKdfUVqtfaXbx6SVTBqaYCrk15BX3F9S+HWiyweh2/DC948C0/S2zw7zHYYDsH1NpYkkWhjY0Q3bkBnTJR3EugO4BljatJwlD1NDRW1horvZGpZYllivEd8t6ZuAM95UUqtVJBcpd8RWw+tpT2UCri//QZarfVrr1pwvW8Me6NB0nC27CwAXD9ZqkLgpaUWLvjYbdqk5Av7y4T1hi+sb1ByBV54pyvde83NbJbKWu6l6qYLqe9zEeEsssarCwUltQ1HCo9MdJ/ow/Kx5DQCZwDbA+7v7PwBUyp5hw7TYl5or2amjXUmo9SKk8YdMRyCm+8/P60+7angqaHdmghCChIZ6mDiCRI9PChDhwrO/xlLFl0EraaXrd0KjeIJ90nvo8hOvPbKcIkzGVcoOnS0QHc6DKA9lpSkpCJ4PHXUqB67YFr495cPmAI1M9ouJlJvy1TNjazGHVk0NV02TBP83kydWmrPwnA8Jcg66GHTw15eHT0+Xs3lSrOzAQDkAii5BkPmduo5GMXMaT4KFPhVhpzuq0+vipSihf49SzQIFLLMVc1SWrfm6VnWDJoJLDd48NOzGEIo4p88xZg2leDsbMHFRjpGhtqH/vL4lwePaumtSjSAbmupogclJEQ5bml/mbDe8IX1DZjOENEldaXFxNdrZVqx7zJTScGmLg7EY8j+Q1elaqklLlhnmDN6HdRkQHWHoKTg/Hl1aytneQdDgHv8SBHwtXlSTGu8hSjBN4GAIxwvPq5vh5T0OpYKdRhhXtjOmD5NXlCgrKrqSITZ+IL9kN7c+8ctj5UapQVFrQawYVOEgInjJTeeOPtcfRzLFWx8202YODWVMmI4+twy/w/bM2j1Ck0QY9kS3d98OV+c92UickOiQTSUBa6+i2JNOauRDiPzWvLk6l7JtdDGjkXI5I5YsiAJ1HIY+qLph1tR8Jgb1UaMa2zVy3txquSUN8tbJ/Gk54ujNZi68byeplQUD6Neh6cpUN/hbPJPntBKJJ0T2AKsHb62Sdp05WR6b1wwAJDxhEyrYf1lwnrJF9YHGLe5aza09ORdOrCRUCvT2emGBdkK7VCHavsJttMsdME6sr5LwMq6wxHDsLbfDpD8/amRz9wEQhiThjAqLxhvIeKQOXFucecrzis0unPb969XqRGYPcvXPBM2ZQqgqPDyZZByofJuL10wAMhsykQR1ChTq1kgk/AbPh4toqFNV+sOHsnX4YhVpRBEAnlBQY8oUq3WfvvFfVKFWOZJ2bAhXGfmq+TA9fovU1lCjsCG77U1zi7U1Bs4ynGUSqvqZXUYSqHQXogWXr8OGAb5Z8HaG5zMu3Vjp3jgAM4l6U7ql/HLclty5/rO1W0B7TlCppAhYOlW/AaA0GVAZrSXuWJqNe/QIeqY0eRAy0UCIxwiIgjjbdtYqD/VtheiauW/JRMQUn+ZsN7zhRmQwjW6FQC6ljWrZQrIkoqB5/1ijFnnoI18jNcSbfPjevXyESgwchUUX4bWUvG9e4qyMutXVgLyLELxnhMlw0TyBybRuSX4JggUAp3tZgKRglAna6Wr2UyyWSeIt7W1GjFCdOUqFF4ArRqGzOmluXnY+NCf408n0vv2q0SnEtduGS1i4kR3m3Z8n9Gt/Nh7PCildvkpoNV2NWFNrdJvt6RQa+XqAPq7G0f3GFAlkRcfuFG2+ZpVEVmOlxPm2A55byaBYsbdC7ULJaCE9Ib03l5afLy6qUmWkQJP71nwCQkfZs8larm5ujsZzpSeIeKIM7z1LjE7zxmOIOjTU3qU50k0CFsB+YkgqBVevqxqaDTcEmcK3PMnqVAFNarE4hEETxvoTTS+VVt/mTAAIJPJCQkJCxYsCDBf1dWAFK7RrX+mSZ+dXsnB2xSURp3gjKBmCALxFfyL/CN1NjWkcjDgopv23XkV8CR4sKvtt9/wDg6Mqd00ZRE8TuNPYGCc2uRHxkdyjHBnuJ8u1VGokZhUSsQQG09Llk3okyfJi4qUKcfB2gccQnpzrXK1PLclN9Ixsl/SA0zSe9tekLhQCCXib9+/+4y51OMFwBFpRQU4FosypCMKTrpUfnBrGo2npoy2ffOtkZ0zQqtS1956lPdlYs1n96hFJA2qVo3BB305S1+poKFJjieH2IY8bOx1Oiw2FiEShSf2g0Zl2VoK4qhiKOFuWs8yV6VGeaH8QpxbHJukVxKNE+ghJLaRa4kqiZ6IOGI1IAik72377TeSjw/thRd6c7GZuU0cLrnSteBw5X6LY/CaQ2kIIK6Lw/vFhO3atSsyMvLTTz/98ccf3dzcbGxsDpnDj2FYCtfwVh0BM1dArsDx8VzXCealZn578ptMLYudPZyAIccO5vdqhlJtYdhCxZ0TkrR0zstLn9cH9V7wggKT8W9WGp+pgMzxmZPZmFkl7LmKVJ/VKiIhHk6W8CMyJk8GFBWm5vXeBctuzlZqlKMcR/VThoCIRzdtHm0T70SWaVP+k/f11tTk1FoNngKuEUh1GzVqjFiuOXOudNvG5NpzVRoUGbkq8OUX/XiltU/PpxX8dOnJx2erNifDNRGdz5BQJTCZHvjVTM+Zoy0+n1EOo/K5+SKlqFfvEp1OHTNalJoNTDdwHG7BCH7eKhUCadef9vj9RtUNnoKX4Jtg5NsQ50FCKZUn7+nNLAfNllw4KC8o5KxY3jWGsADXTpSoUJiXMLZV1nqi5IQFIzTnljLF1iIbIcvbpe9NWF1d3d69e3fu3FlaWnr58mUul1tUVPT111+bPq5hKVzDW59Hxf5kAkKym29efpqn4B0vPj7Fc8qk8OEiWyJWKuqtIzZ6PTefjJLw7Pk66n0IVLLcRWVoYagLZvvMxqG4M6XdKvXTshsZMq3NcAtbIPC2tla+zsJqcm/EitqR3pBOQAlG9T4sgFqhaskrr0h6ULT/WnBt2XhnwTBq81heDfF4SubbJ7Jyl0miP27UjCr5KMn3Tv5MDW8sTTiHIrE/kd/4aYbkv5X4VBWjhkZQECVskXIU4rRlVMjHs11ih/fyrCIcI7SYNrMps5fj0MfHqPhKOT3GMgNBJmFKJzKxXt6jBvh06WlnmvNIByPSXC5jh4uAhxUq9S4rjVnf9gSHZ1CY06f3KsnwqInBVeECGDG+I0c7jf718a9StdRsE3YqX61Vei2P6eU9152eLy0tnTBhQkRExJIlS27evEkkEt3d3c3K5RuWwjWw9XkpXJQnG9bqUIdWNz3lwVMzWtuvyq9KVVKfFp+kpCS2B07dYrX7x5SwcFOd3udFSfF8gXc1meEvuXTjigbVsf6NWCuH1VLKjtxPjTRONO6H8ztRcMKj1gP980OS9YDCQfAcylMwJomqDyNsuIpi/OULaUrb8t5MiyuFV5xR52sXr/WR3dJQnoqoPISpoDNQDoqgRAAiUDAgKzUyCkoEIqi1Gg1oEAwwVKsCtQbBtIgSRTENqpEBKPFtKoJWTQYlE6+2pmBkPAACwM271Tdk6BrQEBHisdRjUylTLbvz7XDlZlkhWP4Dbq2thYOQbHj4OsrO3beGBnVQX/C0vIfChxPIE873aMDQBQqHH9Tmde37g3JfHVVHxOZmjwYya5j4/OWLGIIzOuH1IeuuFRtFHezqk5KShmqGPlA8+Pj0xy+QzYhMiVXCEJVHGbXi8X1Jv5gwtVrdbrDweDwOh7NgXDs7u3a9NQDgcrl2dnYmbt26devWrVsBAEGQWbNmAcCTzxIx0AatiY90tTP9BNrkbdtOb5vmNW3VC6vaf/n6aQqnFUZGRjvZU02xX+1/vVv8+/XXPARn68ub7iKAkat0HvikOtGJ5zIkfAjd2UjfmXWd9Rs33qAOp8a7xwOAQKSouJKqcCQtWjhe5183DilXnV5ditqNVKlsZlle13os8VijtvH1Ya/PGtbb4tjaO494d5/SxUw8aqvB1GKiUGgjJDkx6J52NBcbqoNNj8xm9apVqrx73h+Mh9l7YGBx5fqVFlkLYDCrF7cOjp+sdkIItfwwiwZJSkp6841pX711G9dCnjWrox7zh6wf0Hz0g5kf6CZo7Q6tSl3+0XVXHjNI1wk0bNkiJBLsPBtn+mAQPMvohNedZMhrrrn8BAtiLFrYsUSWfyM/g5vx2bTPTK2C1mKFH56XacVRmxaYtfBiXi5sx44dZDJ56tSp27dvJ5PJZDL58ePHpo9rWApX51adaEwvZEk5Ykcpwxz7BQD7n+xXapRda8HiX/TDY3DyiIUURRqhiH/qNGPqVIJ/GDz4SZ88jNPsUARBq0+mGR1wjNMYR6pjZ9f32cRSIgaj4z0tf5iF5/FEpVWwv9CoJohBVKortZi2V4kwLVZxJqXwX+fhiogqoYqZIm2clfPWMUO2zQp+e4bvgrEOEYE0J9se9gtTKKSZWeDBhPJbgGEDbMJGOYwq45VJsF44BSoZlN2gjwlRVlUpSkstHsY6hM2UYpm5TQCg1qrPlZ+LcYkxxX4BAErAq31Qhsa6Mb2nlKeayxWcO8+ck4Bz9jGRzVW3rT9arEJh0ZJnWZ01w9fw5LyjhUdNHKH8TAod2DCM3Hv7pdeExcXFyeVysVgslUrb/yEWi5XmMPYblsLVuVUHMKwtqUSByX2Wx5p1Va2y1uPFx6d7T3dnPNMgCA2xE9kStCWiplapBXeKf+KEVizmrFwJo9dBW0WPfqNOcALcBKQ2SgNZKTLyMqAIOsd3zoOGB+06ow3ZLUISYqDo3IQE5Fmw8aXPnKsoLlZWVFg8TIW6wgpvNdTGwtbI2juPCj86T8zAUAyRBCldP34h+KPZbhPDjFbzSbOyMLlc5BcIokZoLhhgEzbScSQGWKW60vIhSq+DSkafuwxwuG79kmZi5ixfDUDy5acAcKfmTqustZvUqTF4vRilwhStV3oyTfGOHsVUKs7yZTB6LdTnQFWqBeeWkd3EaFPhAxk2XWrBQmxCYlxi2nv4TEmGah6KxMD3WRTbJw9OtwlDEASvC2YNbUAKV+fW51H041GGlqMOREksmll/+pe8X9Ra9etDe5bjT14YQMDg2CGzlyYxlart4MGOasCA6cDxNECGyYn3ISLkihPGp0h7peKZsjMZ2U0MGWY/oheN9FIuPE2BIXMY8fGAor1xxMrV5WEOYeaS5QOAjCfM+zIRrgjxGoJsmMbvq2n+L8fp5IfQCUlKKkIiNQXFACCdLd8DhmDrYDqRXqG23PRDQSJYWeOHTbIKDRVetfz+O9hQJbZEpFoilalPl562t7KPco4y/XASiya1lTKkHEH5s+IMTC7nHTlKj40lenjAsEVAs4P7ljRX3zxdokJg0eKeC2vrhq8TKASHCw8bHaHs0G0rhE6JtTerOsqSQLJPYFgK16hQLlJDlWAC38XmWesmadPpktOzfWa70Hsu1o4YYiuyJWiLzXbEhBcuqJubrV95BQAAxcGoN6A6DWp1VxI5RQUL0TZciaaHXO7zsLeyAi5OmgAAIABJREFUj3aOPlt69s6lcgsq8ru/P+dAq4ag2Xg7O6swy1+hZmlzi6ZllIPZUWTdvce1X91nCtgCG77HJ+N8F8WaO0fFqalWYaFyKxuwD3qexLW/gSJomH1YucrSZRC1HEqvQuB0QPGMyZMVpaW9iSVHxLqQtHA0Kft+/f05vnNQxLz31GXeSASBmjPP5qfg3DlNWxtnxQoAADwJwldCyRXgmsfZn5bdSOeq8EHdXLB2BFoHxrrGHiw4aJi2SM4XE4pBgOO6T4549qseFdH/CRPWS1AJHIzTiBLMcwd+fvwzBpg+gaJJL/oTMDh22BxHDMO4/91P8vendjLwjVgKFLaBhAI50paC0CoS7xsdO8E3gS8SEuolckcSh92L1EDeSbD1b++LpMfHK4qLlZWWxETtRermJcK0WOG+q9qLPAzRdhTHU82+EHVrq6KkpKMo33s8VD0AlWyg02GOo7habntcb77vehsU4naOScaUyQger5sN3DRMGuchJiC1mbUAMMfH7Co/pocjvyutPoa1/X6QHBxsNfLPItKRqwBH7Nr4bQpunSpRothiPQ2qa4avESqEhwoNVY+WH7hNQsk9yZbvfPWPNWFtsircuQNaqRkeU724/mzp2QTfBEeqbhak0BA7kQ1RWyRqaTP1DRHffa6jiGgF4Sug6ALwnuo8xHP6aAkmVGYa55ge6zp2SFsMUYuLmuRh+Z3i10D1g06OY/rEiYAgRiRa9X1pG9KoCNV0VjW1TPHk80R6pZWAxHP9V7RjZJBlVyBJSQUMe2bC1HLLkjW9QbRTNACk1KVYcnDhOaCw2tl1cBwONWqM8MIFixclEBRYw1k2YtZo3CQnmiXpUbsutPri5GRFebn1ii5N3VRbGLYQHh0BUaPpLhijTU0MZOn70AZwAuLc4w4WHNRXISysaaY20PgUrkNElw6KliLIPfKPNWGcWHt1Wxt3/37TD9n7eC+KoKtCVhn6xC3wI2Bw9A9THbHWffsITk49OoogYjUgOEjbrWcKIhBEpgO79paRfiMcgvOvi2mh1viFECy/U09OAYZ1EuwRHBwow4YJzc8oazFtan2qN8HbxMhFxhMWf3GFJbMWuouDP5lFYTMsvgJJairexobs7w8A4DYaCJSBjyU9mB5slJ1ab77p1Kig+BL4TwVcx0Nkzpihqq+XZlneOu4ZLVDi5A6lUZYd3kGrX4moZQru/t8ITk70yd0psKPeAq3aqL5RJ26fLFGhsHCxoU/UG8PekKgkBwsO6tzaTrbssqR7ge71T4BI+8eaMJc5ExmTJ7ft/03dYlL7dBm/LKksaYH/gh6ccDocMWu8pkhoiiMmSUuTZWdbv/Zqz44iugOEzIfsgyDV3aTqNS9Kgcn4t41Ec5dvVLJk9DzH5MSyRMvv1OMT4D4a2M+WXxmTJsnz85XV1WYNU9RWxJVx/fAmuWCiupaqb5LpaqZsBBb0xhToTXYWwyT371Ojozr8XAIF3EZD+e2Bn3K+BN/0hnS11swGr8pkkPG79kXS4uJQKyvhBctjyUv1iRV2jzmN9PpGC+s86LEuZIRa8vMFaUYG5+WXe2pBcTwhZB5k/hckrSZlwXhqQhDLxiAphR/bb4L7hEOFhwSKntwN7WTLPduJnqZAyRWIee8fa8IAwO7ddzCVqvWn3abs/H3W91QC9dWhxokoJ77oT8DgqAlLk6279+AdHFhzdZGcjFkHKjlkHdB5YEe/kcpIv9GjmzVyHLCG4M6UnjGFU18HGh5Dc0EPpRz65MkWxJL36u6hCOpLML6qIKlvrd+ZTtZSkYl03wVje/mU5YWFai6X2lXsw3s8NBf0MtFriQnD+0pUkkctj8w7rOAckGjgFfvsvaJQaOPHCy9fxiwiOubKuMm1yTYjrFCAxMRiy67FbWKYEGkj1JCByWYl6JrAL7wLKrm+SKJbFuxkiRKFxUuNZwneGPaGVCV9XmywnWzZa2WXqYJp4dpHwHLrxgn4zzNhBBcX9oIFvJMnFWVGlorSG9Lv1d57behrLJJxQtfwYfZCa4Km0IgjJsvJkWZkWK96BSHqotO0CwKf8ZC+B/R06nstjFJjmsZzekuCSyv4NJ6a4M+YFzC3TlxnId9L3gnAEXtQIxAcHSjBwXpVpvUgtS41yDqIihjpXpA2cmt+TCODFW4Sy9zGe72JMAShjh7dzYQBQMVAO2JeeC8CSjAvHabVQPEl8JsC+G5JIuaMGRqBQLdKsTEkliVqtJrlsbOEdJzkCV+t1lp2OeRwBgXPUMYuQum6SJNs/CBoFmT8DDK+gUEeZDYweGpSMMsUAigfls8kj0mHCg/xFc/GrLmdw1JZy701FGvms11zj0H9I5iwFfCkf7IJAwCbtWtQCqXlxx2Gkzj/zvq3E81pUcAiE4edvNDfaI1Yy3924W1s2PPm6d1j9HoQN8MT3bpqFFuWmC1gCFmiOt2B8LmTRQAwc45fnFsci8TSSb9jLATTwpPT4BvflZ67wxGLj5c9zlM1NJg4klApzG3JNVqCJOeLq3bcp4AVGs9yjeubPnBxaio5MKCbFJhdENAdB96EkRDScLvhqXXmpMOqUkHSAkE9CcKo0VF4a2uB+bEkBtjp0tPhDuHuDHf/aCcrNZy7ZGGpB7Usgy+ttcJ89ApNjn0flBLI2GcwC1aqQGHJYlNJFl4f9rpMLfv58c+dL6fkao1MK/Z9+ZmXCmo53N4GzmEwZG4vH9nfwITh2GzrVa+Irt+QZetNjl6suFjILXwz9E3TRVtDQ+yEHIK6SNjG0+1DyXJzJffvW7+yEiHr//h4xYL9EHiwS9/ak4F+I4FIgVZJJfZED1dGO5vdrepbPDnPvLtTeReE9To5jumT4gHDRNdMjSXv19/XYtoYZ0PMARqlqnz7TRowYBy9r+yXViaT5eRQe0hGIgh4j4fy24BpB3i+RTlFFbcVt8haTD2g8BwQKOAzscfPCA7HmDJFdPOWRmgeh09GQ0aNqGae7zwAmDHNW4qHonuW1HloxWL+yVMYWkZBaeXH7+rJ1ASC/xRI24PX6A5HklNrmQK11TA2k2nqm+XF9JrrO/dI4ZEyfhkAlJ68SwM2hHUnW36wGwS1EP95Lzl//h4mDAA4y5cTHB0av9gGuiS8pGrpzpydQ6yHTPGcYtawE+b5EbRw+NAT3S7YDzvw1tashQsNDYEgMGY9NOXr8xcM9BudOFlM1ELUlI6myATfBJVWda78nHm35tERIDN16q0S3dzIQYGmx5IpdSksEivYJtiAr1vwzQWmmi0P0bpPHtlXD1eano4pldSo6J4bvMeDlAsNuQM82aKdozHA7tffN2lvTAuFF8B3ok69SObcuZhcLrxoniN2quQUk8SMc48DACIeZQxlM0WaB5kN5l4I/+RJrVjs+1qCCHjIE6UhR0zG92m+rDu3kFQuQ2HJEvN4rjaM2GBFsNr+cLtKIodsqQh4vvO7fBrFTZDyPQRMB/eo3j+vv4cJQ8lku42b5AUFOlUz9zza0yxt/nDUhwiYZ9EjQu1F1gRVoeB5R4xaUiJJS7NZswY1qv4bPA8YTgbKXHX2GynV2rbsVgEVfSGyQ0KmXdnBvFhSLoDCczB0QY8sTNdYUpqTozZBdwoD7H7d/dFOow2UU+TvvMiW2AhdxL6Lx/XhwxXfS0EpFKuw53w673GAoANfWuHH8bOzsrtbe9ekvWvSQdSgj6CNHBRIDgrknzLjmfIUvFs1t2Z4zeiMJxYuCFKikJxkXiyJaTRtB/+gRkaSg4IoYx0oCK308B3duzoOgyGzvZsvg7in3PrNO9VMoYYRxjFRz7QTbDJ7zfA1qfWpGT+doiA0erxbtwXr6x+DRgkTP+0b4wB/EzCmTrEaNar5399r+N1Sj2X8skOFh+b6zrVMsTUuwY+oRf440J3eC8NsrlwluLiwXjShvRZHgIjXoPwWNOrmCHOKChYibbgSddd+o5NnimlqGBLXTa06wTehUlBphg5F7jFQyWCEXg0rxuTJoNWasi5ZxC1qkbVEO0fr26HiTAqzkcFncIPWTe3bJyu5d88qMlLHgomVNTiEDLwJQwAZ6zI2tS61XerVCArOAZ4EvvH6trMSEuT5+fLCIhP/+rmyc0qNMsHvGUErk0lCfGjUFmVRmRkc86LLl1UNDe0dRR5TIoRoG6EIUwr11GdM2IpiGri7vcfP6RcqpDhY8pIlAkWLAhZFYyNcuM48cqvL+C6clNVpkHscot4Ea5//XyYMABw++lArFrf85z9dfYfP0z6nE+hvhr5p2ZgRofZiexKUiJ7WPNPjFF66RKqrs3vrTYRgWrlp+EogUg0sTpMj7SgIvbPfCNNCTWqjiITMnOzddbdJHpNoRNrpEpM/2jl/gNMIcNRru4keHiRfX1NqXG/V3MIhuBgX3Ymw5uxSNF0lRHgB707r22eqrK5WVlfTovWYTp84qEkHhWiAZ9o413ESlSSjMcOYq4NB0XnwjgOSXpEUxowZCIkkOG3SM21P5A+3G95DbSthYZAWgfMnTRbawDDu/v0kb29aTAcNIXuGDwkhlx7Q44ixPaqsYyDrN2h7VsZ48XolU6y1HmlrRbFEtwyH4F4tm45hWFpEF3Z1rQYuvQdMJ4h6u89CtL+RCSP5+bFfeol37Li8oIML6Wzp2eym7LfD3jalkEIf5iwNRDA48XtHRgxTKlt+3KlwcuxZjm8AZCaMWAp5p0CkO2HhNSNS3KXf6PzVcroCc41y6BG0kfHkaZ7TrlVdk2MmUMvW50BjHoS+bMR7nTRJmpWl/pNgUq8Jq74Vah+q8zbKWvj846UaTOmyZrQBWWxLXbAUAKC+oMeEeceBRgVPUwZ4pkU4RljhrW7X3Db+CPg1EDjD0JvMYNAnTBCcP4+ZwFVVra6uFFS2J/K7wtWJpnAmE6ul9U0mlbmK796TFxRav7qqM1nuOHoIn8yl1lL0LY6XOMwGHAFufd7+X41W+/jiUzEeXloUaNk9rLmRZad2zGMU/NR6oKjtTyc087/QmAeTvwai1f9HEwYANuvX49nshs2bMY2mXlz/3cPvRjmOmu3bK6p4fx+OyotqVSvPLWgFgLYDB5TV1S1TpwFqzs2JXAOYBtL1LE6jCBpIpAO79s4jAHhys1aCh/mz/Z/fMcE3Qa6WP1KaUFqZ/TsQrSB4nuG96JPiQaMR3TBE0Fwrqi3hlYx30yEwjKk1FTvukMHKao6LuayTJr1sKSlENzeim5vuza4RQKQOfCxJwpGinKPu1NzBwGCTY+E5wBHA38injjVvnkYgEF03zpH9UPmQRqRN8tCxODN1nj+KwXHTeKJa9+4lODszutPwOS4IxaG4qj9014vICSwYswGenGlvTT16vJAhxzzjnMkkS1wwtUIlvd4gxUTR6xdyyJyP73+swTQgrIdbX4D3+N6LnP6NTRiOQXf45GN5QQH31/9uSd0CCHwe9bm5Wfzn8dLyYBUClw4XqhoaW/fspcfHS33NDNTZ7hA4AzL3g1yoc7vn/A59o8s3K5liDSfMhkjUcfMDrQODrIOylFnGAjAJ5J2CoDlANtKWSPL1JXp5GWbgu1VzCwDGu+owYQV7rjA11vIQzHH0kD5/mphSKU1P1+uCAQCOCB4vDDx3GADEusY2S5sLuAVGTJhnDFCMRADUURFENzfeESPNzEKl8InyyXTP6WRdizPBAdYSBxJaJjbabyTNyJDl5FiveqVHS5x1oLuAzWfw2M3ZegLSqLeA7QaXNorFsvqUJoEVMn+Wv2V3r/jna1SESRprzWbafBT5USG3cE/uHrjwNmhVMO37vn1S/WvCDIjdFhcXHz58+Ny5cwqFwqwx6RMnMiZNatq1s/5Jxr9G/ksfI4VZcLSjEoOZDK7q4cc/YRhm//4mS0aJfhfkQkjXTfre2W9UeS5XiofFi/T2aiT4JjRoGvK5Br+3j46AQgThJgnKMyZNkqana9r0JoNvVt8M4AQ8z4hQm/yYXkvjk1v9lozrj+khzcrWSqVGBA29xwO3HHhVA2zCYlxicAjudrX+WLIpH7jl7ew6xl4ylP3SS9KsLPmTJwb2Ol9+Xg3qron8Hpi+KACHgVEtwda9e/E2Nqw5Oih6fFbHqTB568lC0ClxRKDApK+gKf/qf45RNRA51xuxyDxw8yvptVS+Fdd96igAiHOLm+M755fcnx9W34bxHwPH829jwgyI3T58+HDVqlUVFRUXL14MDw+XSs0jIGx5Y7YUp3n/NmOW5/S+OtuXl4eoQFUm9eKsfo3g7GyRIRwKAdMgbbc+R8xrYZQaU4dopXaRdhSyXv98qtdUIkI8VXJKv/eCQcY+cAkHF5OKs+jx8ZhGI7qt+23kyXmPmh89H0XKuELZxTo5SHzemthPM0SSkoIQiVajRhkxYQADH0uySKxQ+9Cb1fodwIIkQHEQYFLClDl3LmplxTuil10eA+x48XFXnGsAR6/mdLC/tcSJhKvotvTU86k9fiy5/4CzcoXOemwyi6YdRmRgnJKjd3QfHzBN6DqdW20r42jHR7tZ4llrsabDj9WY2nPVM+f6gyGveKg1/3J04g1/sc+fVH+ZMMNit+Hh4ffu3duyZcu+ffvYbHZ6uhm9ga2y1nfzPj83y86+rK11776+OmErjWJodZKI7n6ZMsbyUca+DzIBpO/VuZFszaqUN7hZOc4cayipRCPQhhGHXai4IFTqmallN6C1FEa9YeJJkQMDiG5u+mLJWzW3tJj2+SiyfOctEkJhJHiSWbR+miTilBSrsFAjlXc2vsBy/UtiyXiP+DJ+WXuJue4o0n0MUE1S5cAx6MxZswQXL2p4ursv0urTKgWVo0hGmCZnvxSIAnLykN7wtnX3HhyLxdZfj+27KFaItuFyVTKuQOcO/61eoQXSEpeDlpGdFe+/ztByNCPwVCebTqtGOf/Ot1yBAMW9m7zRbBaQv8qEGRa7Rf5cKJHJZJWVld7e3qZ+t1WSNTfXiJXiZW//lzl7Vsvu3dKsrD454aYvv3SquicjqVozuJbpg/zpiE2FB7tArmN+HDlV+FRBQxFc/WkjJnsUcZRcLe8hlNtlvu8GuqNZkvf0SfGSBw90drpcrrzswfTw53TLepQcuM5SWIu95N3Y6foU6qYmRUkJNTra+K7e46HyLvT11DduwtzjUQS9UnlFl6koheZCCDKDT5W9eDGmVPJPntS59WjRUQ6ZE0wwUoHl78ORu1LI1dInxTqWmGWPHonv3LFeuRK10r/ehyK284OIKKlstw7H9lZKNaEJZTo3OzQnQdZv5t6xlrxySimBT+D6dpX2SP0Rym74j//806jPMhszP0v7rG8fE76fHr9hKdx2aLXa5cuXr1mzxq3LgtTzUrid0IDmoPhgpbpyKW1pfnI+GhbmnpJavnZd9Yb1aiq1N2fLyM11SExsi4ujhShVmYRd2++Fj7ZQjJaJRcbKLxX9/naxQzcTo1BBXTJNQaA2auus623OnzyjJeoV6HTAOXjgPPZn72eVsXosVtDldePLbxc6zSu5cMn0syKRSO4q1d3t24Xdi+BFmChDkDGOPK7rxeKaJKRyegvWUG1HLO2FLqyRe56Z6YBhD9VqxXN/osedd+IzRsoF947taKP6DoDl6vrXPXGep/NPu1a79jQljUn+gFyrwsvrzbg/zj4+9b/8msrhYN3rDfla/h3hnbHksXgEb3TWOXqizbXUk/uyy8f2/NC6/PwLiU5PZbMwY4OwiHxvide1b3+X+T9bizh9NqnoFpWAQ2z9qM01wZxL/0quUIlJDqZenkrjk46SEEqFn6L8zxPgiEuiy76qZ4/KrONAnTqWHHu29GxbTdtEct9lJ7DeQaVSHThw4NcuuHjxIoZhKSkpEyZMaN/nl19+Wb9+fY8D2+3Xpk2b9I3c49ykKulr114LORCSWJbY+aMsv6Bo2PDKRS9pFQqLL0FeVlY0IvTpS4u1ajWGYdu/Sdu5+uaPu89bflOOvoR95YpJuF1/2/FDxn9W30x+UFd373HN+3cLf7lqYIDExMRrT68FHwi+VX2r57Yzr2HbHDBJq3mnpNWWjo+rfv2NHj//UfBH8IHgSn5l5y9KsSz/3aSyTVfFdS1Yf6L2rbdLYsZiWu3z195zVykP+5SN3f4S63/0+OunSk4FHwguaC3oud/u0dj+KeYOLklPL/APaDt6tMfv32d+P+z3YY2SRh3Xrgu792bvWn3z0rWKrj+KU+8X+Ae0HTpkyggaparg/aTyTdeEtc2dF753X/au1TfPnC/FMAwT1GHfemE/jcIUYhOvLu+bxJr3kysvpT/7iV+LbffDdo7A5MKOaYhpP73/afCB4B1ZOwy87Gaht4EkHo9ftmzZK10wdepUMCaFi2HY6tWr2Wz2N998Y5KDKmtZdW1VekP659Gfz/J+5t2QgwIdv/lalpPTsGWLZaG7Riis2/AmSqE4//B9O63lqtXDZXgQ55PFUpWFNyVuCyglkPzs0kor+FAkFDuQYiKdnKJDhEgbrlRtWN9ovNt4B6rDkcLuK/G8p5B3CsJWgpW1eaeEIPT4iZL797XibgIzlysuB1oHejA9On8p+vEKHc/Cj2c/y2X0AzCNRpKaSouONomogMIC57CBz+gDwAS3CXgUf+Vp91iSWwZN+WYF8h351ogIyogR3F//i2mePXqFRnGm9EycW5y9lb2J46xYHiImILnnnyqV2k5PpGXHDoKzM+tFk/LlKAFvtyQYB/jqPffb52FzG06ewxOw8XOm+wAAMJxg3m/QWgpJa0x5s0qP3mG1cfjWPI8pf0oTKcRwZD6opLDwSGf3AgLIltFb5vvN/zXv149SPlJoFL1/Rv2VCzMshZucnPzrr79eu3YtODg4ODj4ypUrBoZKrk2ef35+Ka/0h3E/dLVfHfHIpEm2b24QJJ1r/m672S+SXF77xhplba3zjz/i7TpS7EwmaegcL4Ya/fmnHAsv3jYAQl+GzP8CtxwAMC2c2JerRWDhKyEdljfSjoLQy04bKjrHIbgF/gvSG9IrBF1IX1N+ABQPY9ZbErhNmoQpFOI7z5aiakW1ea15Uz2fralVnE1lC62f4ivdJ43sV9Mgy87WCIW0WJPpXr3HQ12WYWa+/gCTxBztNPrK0yvdalwLzgGCGi7K17s4sfo1VW2t8MIzHeVLFZf4Cv7CgIWmD0Im4QOnutGV2M/7Oqao8OpV2ePHNmvXmNoSB2Ad7KUIAaaaU/DjRbVa25BD1iDw0pouzYyeMTDxU8hPhKsfGh6qMb2Q9AgEuLagt/7sP1PJ4NhCaC2B+QfBttsaa7sVWzdi3YWKC8suL9O7WvKXmzAwKIUbGxur1Wqf/InJkyfrHCG7KXvtzbXrbq7jkDnHph8b5zpOz7RYzV68mLt/f/O335nui2EKRe1bb0lzcpy+/cYqvBv16OQ4j2aWmlAuvnmv2sKLj/0A8CS48QkA/HEsnyXQMCPtPFw7ylA9Z0SKga/NFmtVhlLUCX4JRBzxmbyooBZyj8KIJUB3sOCMKMOG4R0cuvZLXqq8hCDIZI+Omy+oqEceyETA44Ux+9s0iG/fQYjEDr0iE02YVgOVd2HAMd1zer24/mFjF83QgkRwGQkMS4SFaGPHkgMCWvftA40GADDAfi/4PZATONLBvG/GzCneInsiViDIzmvG5PLmb78jBwWyZpnnGPotGcdjcJktrHOfnbVWos5xTp1TtAOj18HotZC2G25/qW8Qfnmt+HSVAmSeb8Z06CUqpXBkPlTdh9l7wFvHO4sAsnro6h/H/dggaZh/fv4XaV/8j5owMEHs1jCWXVn2uOXxe+HvnZh+wovpZSBKctj8UbsVq3tvIyY33mCo4fOrV70qvnvPcetWxiQd/RxDwuVSIuQcK6ttEFty6jQ7iHobCs9Xpd3mpjTx6bgVS0OenS+KkMbYUBFG2fF7htawSOyZ3jOTypK4Mi4AwK0vAEEh+h0L7yaCMCZOlNy7p5XJ2l+exLLEcPtwB6oDAGhV6rpfHyII4rByBNZHMssGILp9mzpqlKGFs56Z8DAgM/+S0oo49zgGkXG29GzH/9sqoSHXgiiy8ynYrF2rrKjgnz4DAMk1yeX88uXByy15O9aOUCBwdX9+48/7VQ0N9h98CDicuYMEvjuNq20NV1iTyY0LEnSVpMVvg9CXIfkbuPQeaHumPkR1Lc0/P0YBz3rJz8qODQAgrIffJkPVfZizr1NSS/dX3jU2aXbSPN95Z8vO/u+asF7i86jPb8y/sWzIMjyKNzozHDZ/ZPfuu8LLl58uWiQvMsRtIs3KqpwzV5ab67x9uz46HTIBi3tlCEELB7/PspC5fPRaNdMj5UglYJCwOqRHobPn9EgRwkPy5GqFoYzb8uDlKq3qUOEhaHwCj49DxGpgOlt8P+nx8Vq5XJycDH9Sgyb4dtSCF+6+wtBy1OEEtp9rfz9W5dOnyspKWmysOfMUD15joey6xcqMFoOEI031nHq96nqHTnVhEgBiuQkDoE+cQAkNbdm1SyuX//bkN2eas86mSKNwtKN6TXaly7CMG82MKZOfydyag8Y2xW0JRaASxJEcam5k6XyzYMZOiHoLMn6B32cAv6Zzi6C8vn5nBgFIlDmOtsO8AQAKz8O+GGirgEXHDNuvdrBIrI8iP7qScOUfa8Jm+8w2nUgaEMT61VWue/eoW1qfzpvf8PEnz8tZywuL6jduqlqyFPB4j6NHGFMNsbyGD7O3GevAFGl2fp9pydkTKAdEn/CV7hHBBQE+nOduPGI1zpGC0MoOG6JDcKO7xbvHHys6JrqxGchMeOGd3txPq7BQvI1Ne43r6dLTndSgtbceMRoYfFqrz/yYAXis4tt3AIA2Lta8w/yngqAOGh8P/Dyc4ztHoVFcfnoZAKAgCVzCgOnSmwHtN76nbm4u+Omr7ObsZUOW4RCcZePMnenLkebXOsWkD19oweFSmfrHJs/BAAAb7ElEQVTgvzMRLUk6I0CqFWHXRWUn7+q2YhM/hbm/QONj+Gkk3PwMhPVNmUUt+x4TMRJhqq1jZBA8TYE/ZsPxJcB0gVU3DRCo6UgdU2z/sSbMkgAuJsbr0kX2woWCpKTyKVMrpk+v37ip8bPP6t9/v3zK1Mo5c0Q3btisXu11Lok8xHjf8uKFQXIvKqlCvO9ns1P7+w/kKepZrta5UbzP2/P6PeAeP1KItuGLtCqJoch3ZchKsUp8siULxm4Ccu+yVChKj58oTk7mC5puVt9spwaVNvPkVxulmMjvzfiBeUai27dJ/v4EJzNzSb6TAMVD0cWBn1RB1kH+HP9TJaeAXw11Ob1xwTrykiNG0OPjsQOnfKWMOT5zLB5HeOHC8If7MExY80Cc/KDWrGPVau2OLx4wxFrHeOdR4/zLQlUiHJ+cBU++PaeW6VooHPoivPEAAqZjKTuLtm5TnGzAMA3N/4ZL03fwQxAcmAaNeTDpS1h1A2z9B/Lp/NNMGADgGAz7zR/53Lpp/+EHBEcn6aNHwgsXpdk5JE9P+80f+STfsX3rTeN00n/irfdGCm2Jqmze/gN5pp/DibPFkrQWIRs/deMiIJAhaa3O4nLGJE8ySi39zVC5QKCV8xgldojNUYQt6/3NocfHa6XS5NM/dlCDarGKXXeIQGbN9yHSqQPwdDRCoSwriz7O/L5xKw64RULxxb9kUr3o92IBtyAnax8A6KOZNguStQtUKPbuHToZT7ZsBDWX27jtS6thIXO3TpATIOuPkuy8ZtPt1/ZtD5hcFSnC5sU5/gCAWRH8t0zhc3isNlbF1ptlp+7pWGtiuFTRVhdJ/0sjLhRqq5zZn9i2HoXmInCLhIRf4a0nMHotoPgBfjR4+IcCb23Nefllzssv99YgoujbmyN/2HofSWvZKcxcvy7caPv+wSP5grtNIhq6fnMknkqEqf+G069A8rcwrufitMvYoU9uJdKqGaLaZrqLnsbJm1tX8bgr7W1OlJ5ZGrS0l5dDHTkSx+GIrl6LWBnhw/Ip+vkKS2kj9pe5hQ/Ql1Ny7x6m0ZgdRXbGklc/BH41sNwGeDrN9J65M2fnoZqrI5yG98lf/6nuGHM85aXLVYLz55kzzK/P0GrrN27CZDKnL7cRHWlz3wpN/Hf27T1PxC8HxEQacW8FIuVPX6Uz21RYMOvVlc8of/EUUvCmWTU3srQ3BFaZUJlxU8aS4R2oBAZZLVGqmsRELsEKoROAJB+uDX5xGaDL/xfedBQGYQxkEv7dz6PFTiRcgfDrj+42NEsMJBe++ypNdLdJxMSv/3RMh2hCyDwYsQTubYdKHeuPzovDUAStOqBHuLD4EjzcP3L4qkjHyF8e/yJRSXp7MTgcf5RfYJFkud/ixvRCq3Iyn8QNWBk/YDdTdOs23tqaEhJiycEB0wDgL4klyXhyguuEGyCv85/Q+9EKuAV3au64LnuVMmJE42efq2przR2hdc9eyf379h9vIXp5AYCvF2vG28PVOCTnQOH+3w2FC5m5TXs2p9LbVKRRNuvW6ZDRc50Q5v/ldHUUQUaRWQmotBIyKROohUQal6EiKOTDNR5bx/ksHAv9v2w9aML6EkQ8umlzFCGMQ+Wpj25N37Mvp7W7DLhMrj56smjXpnuUKqnCh/retuhuoi9TvgMbPzixFFpLe4zM9nMV2gmZYuumjOdWUfnVkLgGnIZD3JY3Q9/kK/jP67xbgCTXZisFBBWrhWcqFZjMe8O4AbuNmEoluXeXFhtrHiPus5vlAfZD/qpYcpECEIBjeE3vh9qZvZNFZi0estR5+3cIAnXvvIuZw5onunmzZfdu5uzZrLnPdGQDfDgvb4mQsAiyBy3bNt65ebe6hwJnaQV/+zcP0vbkE9SY3wLvVSv0Si4gKOIxIzL409leX01grPGjLHNjrPFz++KFIV/M8VkY200O8n8h3ho0TyYCQeG1V4dnRzZfOVREyuEdfvRAQseROGQEB3KegsxXk7SgISP+c70njnN/zgRawaLj8N8JcGQ+rLwGtG4xo88r4+u+ui9KLLYP93/2cZPx4fA8AID5BwBHDLYJnuA+4ff83xcGLOyNUEBGY8ZFdvUiGqX2Sj2H7Imbad1NI76/o8gHDzRCET2+F06f/1RI+QFkPKCwB3gCOBRenkyjnnh6aWXYBjbZ8r/+sPFhan3qu+HvUglUcKY6fvVV7foN9R984LzdpPYS2aNH9e++RwkOdtz6SY9NjnbUD76MOXD4iSytuehIWeaJMi2HSGYQVTK1mqdkSLUkAJkb5eXXhtnbmFaRhyIMN/v/8Rdz0AszD6Ehdh9+EzPytSEaTxqoMaRaApViVKxR2pM8Ejw3fT9Wh/3q8CDcYdExEDfBgWkg7CbOTGbRNEMJDC2n+FBHXp+glsCRF4H3FBYeBrZH+4/rRqyTqWU/5fzUm/PflbPLhmavil5sTfYWuUucooIH8u6Jrl3DMejUMaMtHyJgGmjVUHJ1oB98Yx60FL3hu0Cuke9/st/iYbSY9uuMr51pzosCFrX/Qo+Ls9/4nvDS5cbPPkeMVb1JH2ZWr3oV7+Dgume3TlJDBIUVS4Nf/+4F1jhHLZOAtimhQoxrlAGKQAhzxkfhGz8cbar9+ptg0AuzBBGh9hGh5n+dnMNgyVk4Mh9+jYP5B8D1Gb+d36LY/IIkaj5dWNPMoEmjy74EVTPM299V7tiL6bUwYOHRoqMzfWaG2FiSS0qpS8lpzvmS9q41yaNVUOQTNKCL35hGI7p5izZunOl9fDrgOBwYTlB8EYYtHNBHnncKcET34cuna7lHi44uDVpqZ2WJGMrx4uMlvJId43Z0LXjkrFih4Qta9+1zLCjQTpyI6mGO4p863fjFF0QXZ7f9+3EcjoG/QrMiLF4QCAv+X7yMg17YwMItElZcATwZDkyDqx+CtK3TY3dYMgIFXNWea7A3iqJqg8WnIKAnrfa64es4ZM7XGV9rMbMbBrSYdkf2jlBNwJB0RylISLmHhBcHNKkkTc/Q8Hi9iiIBAEEgcAaUXgelZOBOHdPCk5PgEwdWnNXDVqu16p8f/2zBMFwZ96dHP0U6Rsa5xfXYZPv2W/b/+hftyZOK2XNEt271aEJQVlbWrlnbsHmzVWio+x9/dFISDGLQC/srYD8EVt+Fa5shfS88/BW8xoHTcMARrbllTRo2G5lSpl5SERgY76mjUJ5GpL0T9s6HKR8eKTqyJHCJud//6qbK/aWbUcDbvuynsooTJCZqJR+jVOrAXLfo2jWUSqWZQtNqGEPmQPo+KL5kSgtL36D6AQjqYMJnAOBGd1sUsOhI0ZEE34RAa/MobT998KlcLf9wlG7iB87yZZkiofely7Vr1hLd3anRUQR7B41YJMvOlmbnoFZWdps2Wi9fbuFKyKAXNoi+BIkOM36ENx7AyFeBWwrJ38LNz6D8VkBEkxBrwYknKsV6K29neM8Y5zpuR9YOs1hKWmWtu3N2f1+2nolYY9FW1kM8mbNnaWUy4dWBSippNKLr12mxYxFSr9ezXCOB6QxPzgxoFEmkdupFrh2+lkPmfJH2hVm+8Lnyc7drbm8I3eDJ1CvhI3Nz87pw3um7bwmuroKkc83ff9+2/zetXGG7Yb3PtavWK1cO2q9BL+x/Cbb+MGkbTNrW9XviOKJW8GuxWwEeU2sQvO7WuU/HfDrn3Jx/3fvX4amHTekhxQDbkrrlzcczPMBb7C0NmBkDAJRhw4ienoKziV0X5vsxiszOVnO5vY0iO2PJoDnw8BeQC3rbcWUK1HLIPwsB0zsFqGlE2saRG9+/+/4veb+sHrralDGeCp5+lfFVmH2YUd8ZweGYM2a0F7tiGg2Cww2+KINe2N8JbF8XdTiBg9rl79CbqGKT2duit5XySj9M+dCI3DQAAPxR8EdwMiMSG83n8AJefUaKwJw9S5qZqaqrG4DrEl68hFIotJg+aiMPTgC1AoouDMQjKbwAMh6M6GZ6pnpOneY1bc+jPY+ajeuui1XiDbc3EFHi1y98jZojzThov/56E2ZACrcdJSUlWX0kQfSPgc/8mCq0ktXKLtUn9gcQ5RT1Ttg7155e++7hd4at2K3qW23HH81STeORWoe8162RhTlrFqCoIOlcf18RplIJr1yhT5xoemuqETiHAsdrgGLJR4eA5QYePVN4m0dtdqG7bLi9oUpoSKZXppatvbG2RlTzfez37dRsg/jbmDADUrjt4HK506ZNe/fddwcfQw+0htMFOC7pEeimcAIAgGVDli0NWvpHwR9fpH2hT5svuTY5d//FeYrZfAI36KPpSPemEIKDA3XkSEFiYn+TcInvJGv4fMaM6X056JDZUHEHJC397D3WQ+VdGLEEnvOeaETangl7EEBeu/5aOb9c59Ft8rbXr7+e25L7bcy3YfZhgxP772TCDEvhtuPtt99ev3794DPQARzq9c44KSLSXBfWp+hlyNo0ctOqkFUnik8su7KsG8U+gEKj+OnRT+V7bs6Xz+LhWwM2T8cRdVRjMWfPVlZXS7Oz+/VqBOfP462tqWPG9OWgQxJAq4aCfnYhc/4ADINhL+nc6Ep33Ttxr0qjWnp56aWKnpp4KXUpL55/saCt4Nux3050nzg4qfsJ/ZXO7yGFm5LSU+ri/PnzDg4OoaGhZ86cGXwMz4NizXTdMLr2x3TsvLZK/NB9sm5u9TdD3wy0Dvz0/qdzkuZEO0dHOERQ8JQKQcXN8hvrH00LRSa2UVuHvD9Dp/0CAPqkePSLL/gnT1qF9ZePoBGKxMnJ7AUL+jiz4xAMDiHw6BCMfKXfAmAMco+CVyyw9DLZBnICj04/+s6dd96/9/4veb9McJ9gb2XfKmtNrk1+0vrEk+m5K25XACdgcD73HxCsf4KIs2fPHj9+/NixYz3+3Q4+nz9z5swrV65kZ2dv3rz5ThdZna5SuImJif/fH49Q4f2YyMCxS2iV4hC9fXkSTJKmSHukfMTT8gDAX+S8ueoVG5x9JeFpWyjDMKmAXWIi82Fm5YcfqPunQIyZnmF/5kz1hvVyZ+e+Hdmr5XpI7R+3A7YJKf1Clm0rKhhT9nWmx5o6dqQRWwdYrjI3XZFep6nTghYBxBHnGE4KDyeGo4MrZiZg9uzZlhuiv0QKd9u2bRMmTHj//fcXL17s6ur6008/GZXCHWCYKEo6AH9dzhPlfXS25v27T7ac7RQu1Qe+qC1nV2LlplsVG6+XJ6WapARcXFzgH8Ddv7+frr1y0UvlU6f1y52XcLHPbbErH/TXcz+2GPvGE1PJzJBVVstrhDUycw75H5l1f+2E783L3ttAsl0K9/nfO6Vw2Wz2hQsXVqxYAQBpaWlhYWEEAmH+/PmhoaHt8ebjx4/b/z0InSCxaMGfzSr89RqtnMn9Ma/aSeIyO5zp4dhjNxlPWHUmDVeisUE4AhLXZXkE08skZmeSnx8lNJR39Bhn+XKThGnNgaK8XJaTY79pU7/cGisO+E+BxydgwqeAI/Tx4IJaKL4MURvAHFZVEo7kQncZnLT/hFxYpxSura2tk5NTpxRuUVGRg4ODr6+vr68vANBotPPnz0dGRg4+CUNAkcDXJnELqxqOZzMbrYV7S+uQDC0bwTFJmFaLSVTAw+hqJg2hCNE24ljSkMnmMSOzFy6o3/S+JC2dOrqPHwT/2HGEQGDOmtlfd2bEUshPhJIrlgnTGkLmfgAMwlYOzr7/pyYMAF566aV58+ZJpdJOKUk+v6cac3R0dNdE2CAMwDrQ3XqrO6+0tv5KLtIANC4d34YHAC2mkSJCka2QE+0TFPmCBSMzJk9u+vob3qFDfWvCMLlckJREj483TKvQu3zYOGA6Q+b+PjZhagVk/w5+Uwwk8gfxzzdhAEAkEolE4uBd7kOwfV3Yvh2hilIo0WoxMovWyzERIpG9aGHrnr3Kiop2IuM+gfDKVY1QyF7wYn/6pzgIfwVufg6tJWDj12fD5p8BSStEvDY43/4GIcrgLfj7gsig9t5+tYOzeDFCJHIPHOjD02s7eJDk42MVHt6/dyF0GeBJkPFznw2IYXD/P2AXCJ4xg3Ns0IQN4u8BHIfDmjNHkJikbumbendJWpq8oICzou+XCHqCagPBc+HREZAL+2bA0qvQlA9Rb/X7mQ9i0IQNog/BWbEc02h4hw73jQt24He8tTVz+vSBOPWI1aCUQPbvfTNayg/AcoXghMEpMWjCBvG3Ckvd3BgTJrQdOYKTyXo5lKK8XJyczF68uA/YwUyB03DwioUHu0At7+VI1uJiqE6DMRv6vkpjEIMmbBD9DZv167QSCTs5uZfjtO7eg1Io7EUDSG8fsxFEjZB9sJfDBDacBroDjFg6OBkGTdgg/n4g+fgwp09np95Xt7Za7oKVlQkvX+YsXYpjD6BOmkc0uI+B1B2gUVo+SOk1a3ERjH0fCJTByTBowgbx93TE1q0Ftbp1zx6LR2j5cSdKpXJWrhjoU4/ZBII6ePirhYdjWrj5qYQ86IINmrBB/J1BdHMTREbyjh2XFxZZcLgsN1d044b1smU4JnOgT917HPjEQfI3z3ShzELOH9D4pNBx3mAWbNCEDeLvDe6keDyL1fjZZ2ZTIWo0jZ99jrez46xY/tec+qSvQCmBO1+ZfaC0DW58Cu5j6pgjByfAoAkbxN8bGjLZbuNGWU4O/+Qpsw7kHT8hz8+3f//9ARN26wlbfwhdBpn7of6ReQde/QAUIpj+w2At2KAJG8Q/AcxZM6mjI5u+/lpZVWXiIcqqqubt26lRUYypU/7KU4/7GGh2kPi6GQUW+YmQewxeeAdsB7kJB03YIP4ZQBCnr79GiMS6d9/D5MZtAaZS1W/chBAITl9u+4vPnMyEmbuguQiubTbNdayCC2+CawTEbBx87IMmbBD/HODt7Z2+/kpeUFD/rw9Aa1DzFcMatmyR5eU5fvEF3t7+rz91nzgYsx4yfoEsY/X6Mj4cmQ8ICnN/BXRQU3XQhA3inwVabKz9xo3CK1caPvkENBp99qv53/8WJCbZblhPnzjhf+XUJ2wFnzi49C7kn9Vvv3hwOAF4VbDwCLDdBx/33/VbO3gLBmEAnBXLNSJh6+496lbu/7V3fjFNXXEcP6UUWigjzsK0pBUmhpASSjSIoiINiNURNRKm0pm5EVEJgeiTJMuiPEg2DDHxwQczWEbKEhibk0TNQqBRwp+UpLLIGqIZCUFLS4s2QSptoXu4syFAr1fovb2F7+fp9pxyf+d7fuf+uPf03POT198Qvt/6jWJhdnayrs55789NujLZpUt8+tcsJKW/kF9PkY5y4pwge6uWztPbzKT9a/JmnJT+TJR74WiEsJUxGAwOh6OwsDB+pVVCL1686O3tlclkBQUFEgnWQ/OUhOrqyIQE6436f78o/vTbb+IOHYpKSvJMTc109zju3vXYbAnV1bLKS7xrd7SU6H4jf1SQv74j/9wjuTUkJY+IJGRqlAy3kqFmIv6EfPU72ZYLFyOErUxNTY3FYsnMzKyrq+vt7Y2Li1tc29bWdv369bKyspGREYVCoVar4QzesunMmZidO60//GhruGlruOkvl6jV8psN7CVwWysiCfmyhTxtJYYbpG3RmnthFFGfIQXfk1gZnIsQtjJUKtyxsbGIiAir1arX6y9evOivdbvdtbW1T548kcvl8EFYEJ2Wpmz6yT0+PjswMP/GGSGVxuzaGZ2WFgZNzyojmafIeD+Z/Jt450i8gnyej+CFEPYB6FPhms3mzZs3NzY2mkwmjUZz9erVyEjMyoUBUUpllFIZfu2OEJLk/SR5Pzy4/ghNKtyurq6ioqIHDx7k5+frdLq8vLyamhqqCqlwAdhohF8q3OHhYblcTh13dHSUlJQgFS6swzpS4YZNKtz09PSoqCi73S6Tycxm87ZtWJUDAODTXBh9KlyRSHT79u2CggKlUmm1Wjs7O+EJAACPQhj5UCrc4uLiI0eO2O32z/jwSgoAACFsOfSpcIVCIeIXAGAt4B1JAADuwthBgP3nAADhG8JYWrPGMHrCOqxvHOshF44HSQDARgQhDAAQxgivXbvGz5a9e/eusLAQ1mEd1iGc7iE0hA/AAACAB0kAwMaFR79Iut3uZ8+eeTyenJwcfyH9vq/0tatgZmZmYGDA/zE1NTU5Odn/8fHjx263mxAiEokOHjzIRifQmwi63sWMjo4ODQ3FxcUdPnw4Ojr6oxq2ajj2b8j1Mj8/e9rpBzl72lm6wHn0IJmdnR0TE+N0Op8+/T+PqX/f1/b29uX7vtLXro6XL182NDRQx21tbY2NjadPn/bXbtmyhfookUjq6+vZ6AQaE2zo9WM0Gq9cuVJUVDQxMdHX1zc4OBgTE8OwYauGe/+GVi/z87OqnX6Qs6edrQvcxyfMZrNaraaOJycnlUrl/Py8z+erqqq6c+fO4m/S164d6uVNl8u1uDApKYntHghkgm29CwsL/uMDBw50d3czbNiqCa1/udfL/Pxsa6cf5KxqZ+MC5+9c2JJ9X00mE/PatdPS0lJSUiIWixcXejye/Pz8EydOdHV1saQ6kAm29frXFrpcrrGxse3btzNsWJj6l3u9zM/Ptnb6Qc7NOA/iAODv6nyn0xkbG0sdS6VSp9PJvHbtNDU1NTc3Lyns7OxMT08fGRkpLS199OiRSqUKuupAJtjWS7GwsHDu3LnKykrlst2lg649tP7lXi/z83OjPdAg52acB3EAcB3CvF6vXq/3er3+kq1btx49enT5NxMTEx0OB3XscDgSExOZ166xGUajUSAQ7FqWmGf37t2EkD179pw8edJgMKzatTTWA5lYo14m1n0+X3l5eXJycm1t7fK/CpZ2bvzLBI71Mj8/B9ppBjkH2oM8AHg7F/b27VuFQjE9Pe3z+Y4fP05tjNvf3+92uwPVBosLFy7cunXL/5EyOjc3R02geDye3Nzc+/fvB13+iiYo66zqpeaGzp8/f/ny5SXl7GkPpGi96mXoaLbHNv0gD9Q2Pl/gPAphZ8+e3bFjh1gsVqlUra2tPp9Pr9dnZGRoNBqdTuf1en0+X3x8vMViob6/vDYozM7OJiQk2O12fwlldGhoKC0tTavVpqamVlRULJ4PDhYrmvBLZkkvRU9Pj0AgUL3n4cOHHGhfUdE61svQ0WxrpxnkgdrG5wuc76vz3W734n1fP6qWjcZYrVaZTMZe7nF6Exzr5UA7r/zLpa8/eP51rD24AwAvGAEAwhi8YAQAQAgDAACEMAAAQAgDYQwmZ8FHEYkuADzh9evXg4ODUql0enr62LFj6BCAuzAQTvT19Wm12n379hkMBvQGYAgWVQBeYLFYXr165XK5zGZzdnZ2VlYW+gTgLgyEDaOjoyqVSiQSORyOlJQUdAhACANh9TggEIjF4pycHIVCwd72MgAhDABWsNls1IHJZMrIyECHAIbgF0kQesbHx6empoxG4/Pnz7VarUwmQ58ApvfvmM4HIaenp0ej0bhcLg7eKwZ4kAQgyFB7HyN+AdyFAQBwFwYAAAhhAACAEAYAAAhhAACEMAAAQAgDAACEMAAAQhi6AAAQvvwHJ68WM++hvMYAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "for n in range (-2,4):\n", + " x = np.linspace(-11,11,1000)\n", + " y = sc.jv(n,x)\n", + " plt.plot(x, y, '-',label='n='+str(n))\n", + "#plt.plot([1,1],[sc.jv(0,1),sc.jv(-1,1)],)\n", + "plt.xlim(-10,10)\n", + "plt.grid(True)\n", + "plt.ylabel('Bessel $J_n(\\\\beta)$')\n", + "plt.xlabel(' $ \\\\beta $ ')\n", + "plt.plot(x, y)\n", + "plt.legend()\n", + "#plt.show()\n", + "plt.savefig('bessel.pgf', format='pgf')\n", + "print(sc.jv(0,1))" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATwAAAElCAYAAAB53F5VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACz6ElEQVR4nOz9eZRk237XB372PlPMETlnVmbN860731ulJ+QntECDeeoWg0FChkZyQ7NYxt3CxsgPmYXbyBjJtrxkwA3GAiMs3G6EEBKDnniahcR77753h5rnIYfKOSJjPuPe/ceJiIzIzMrKqaZ747tW3VsVcWKfEyfO+Z7f+P0JrTV99NFHH58FyBd9AH300Ucfzwt9wuujjz4+M+gTXh999PGZQZ/w+uijj88M+oTXRx99fGZgPuX9fgq3jz762C/Eiz6ANvoWXh999PGZQZ/w+uijj88M+oTXRx99fGbQJ7w++ujjM4M+4fXRRx+fGfQJr48++vjMoE94ffTRx2cGfcLro48+PjPoE14fffTxmUGf8Proo4/PDPqE10cffXxm0Ce8Pvro4zODPuH10Ucfnxn0Ca+PPvr4zKBPeH300cdnBn3C66OPPj4z6BNeH3308ZlBn/D66KOPzwz6hNdHH318ZtAnvE8ZtNZo3R9F0kcfW+FpQ3z6eIWglMLzPFzXxbIsLMvCNE2klAjx0sxR6aOPF4Y+4X0KoLUmiiKCIEAphRCCKIoIwxCtNUIITNPsE2Afn3n0Ce8Vh9aaIAiIogghROePlLJnmzYBAriui2EY5HK5PgH28ZlCn/BeYSil8H2/Y8U9ibQ2vlcul4miCMuyOu+bptn50yfAPj6t6BPeKwitNWEYcufOHU6cONFjze2EqNrbGIbRWS8IAoIg6LzfdoENw+gTYB+fGvQJ7xWD1hrf91FKsbi4yMmTJ/e9phCiQ37tfWwkwHb8r0+AfbzK6BPeK4QwDHsSEXuFEGLb0pWtCND3fTzPA0BK2SFA0zS3daf76ONlQp/wXgG0XdgwDDclJJ4HtiPANtm1y2AMw+gTYB8vLfqE95JDKdVTbnIQRPI0C28nn++O/wH4vo/v+0BsAW6MAfbRx8uAPuG9pOiurQMOlDT2S3gb1wL6BNjHK4E+4b2E2Kq27lXBTggwDENM0ySdTvcJsI/nij7hvWTYaW3dfnCQFt5O9gW9BLi0tIQQgomJCaA3CdInwD6eJfqE95LgRScmnhe6O0EMw+iIHXie18kCG4bRcX/bWeA++jgI9AnvJUB3bd3zcGGfp4X3NGz8vlprlFK4rtuxctsE2LYA+wTYx17RJ7wXjHZi4iBc2DAMuXHjBmtra2SzWQYGBhgYGCCRSBzgET9bbEeAbfQJsI+9ok94LwgH7cJWq1WuXr3K1NQUp0+fpl6vUyqVuHXrFp7nkcvlOgT4oi283ey7T4B9HCT6hPcCcJC1dVpr5ubmmJmZ4Y033iCVShEEAdlslmw2y5EjR1BKUa1WKRaLPH78GNd1MU2TXC5HoVDoiAg8T+z1Oz+JAJvNZk+CpE+AfWyFPuE9R2ysrTsIsrt8+TKGYXDp0iUMw0AptWk7KSX5fJ58Pg/AysoKCwsLVCoVpqen0VpTKBQYGBigUCj0dFW87Ngoh7UVAXYrwfQJ8LONPuE9J2itKZVKaK1Jp9P7vukqlQqNRoNjx44xOTm5aV/brS+lJJFIdIQHwjBkbW2NYrHIgwcPkFJ2CDCfz79SGeOtCLD9kOkmwHYWuE+Any30Ce85oF1bt7S0hGVZZDKZPa+ltWZmZoa5uTlSqRTj4+ObtnnaDbwxhmeaJsPDwwwPDwNxkfDa2hpLS0vcuXMH27Y78b9sNrtvgnie8cMnEeAnn3zCmTNnOq5vXw36s4E+4T1DbLQu2nVne0UQBFy9ehXHcbh06RJf//rXN613EDerbduMjo4yOjoKgOd5lEol5ubmqFarJBKJDgHu1Vp9UaTSJsB2t4eUskcNui+G+ulGn/CeEbaqrZNSbhlj2wnK5TLXrl3jxIkTHatur9nW3X7OcRzGx8cZHx9Ha43ruhSLRR4+fEi9XiedTncIMJlMvhIE0V0GtDEJEobhJjHUPgF+OtAnvGeAJ7WHCSF2TXhaax49esTCwgJvv/02qVSq895+CG+vEEKQTCaZnJxkcnISrXWnBObu3bu4rksmk3npawCfFOfcigD7atCfHvQJ7wDxtNq63RKU7/tcvXqVZDLJpUuX9r3exmM9CAghyGQyZDIZDh8+jNaaarVKqVTi5s2b+L7fUwNo2/ZL0eWxUxHVvhr0pwt9wjsg7KQ9bDcubalU4vr165w+fboTS9uIF2Hh7WTtXC5HLpfj6NGjKKWoVCqdGGAURZ0ymXYc7UVhr7HHnYih9tWgX070Ce8AsDHm86QLfCeEp7XmwYMHLC8v8+6775JMJp+47ctg4T0N7RKXQqHA8ePHiaKI27dv02g0+OSTT9Bad6y/fD7/StUAQl8N+lVDn/D2gY0u7G7LQTbC932uXLlCJpPh4sWLT61/e15Ji4OEYRgkk0kGBwcZGxvr1ACurq5y7949DMPoEGAul3ulagChrwb9sqNPeHvEXtrDtrPwisUiN27c4MyZM4yMjOzoGF50T+x+0F0EvFUN4OLiIrdv3z7wGsDniaeJoTYaDaIoYmhoqE+Azwl9wtsl9iO9vhVBaa25d+8exWKR9957b1dZzVfRwnsaNtYAuq5LqVRidnaWarVKMpncdw3gi8JGAmw0GjSbTbLZbN8CfE7oE94usF/pdSllD9F4nsfly5cpFAq8//77u764X2biOigkEgkmJiaYmJhAa02z2aRUKr3SNYBtaK07Qqjtf7djgN0E2FeDPjj0CW+HOAjp9e46vJWVFW7dusXZs2c77txe1nsVLby97lsIQSqVIpVKPbUGcHBwEMdxDvjIDxZKqR4C26oGsK8GfbDoE95TcJC6de02pjt37rC2tsb777+/r5vyRRPXfnAQN+rGGkClFLVajVKpxI0bN/B9n3w+31GBsW37AI784LCR8DairwV48OgT3jY4aOl13/dZXV0lk8nw/vvv73u9V9XCe1aQUj6xBnB2dpYoijoqMC/D91dK7aoOsU+A+0ef8J6AMAx58OABo6OjOI6z7wtneXmZmzdvkk6nO7JM+8WnlbgOClvVAK6trVEqlWg0GnzjG9/okcF63jWAT7PwnoY+Ae4efcLbgG4XtlgsMjg4uK9+UKUUd+7coVar8eabb3Lv3r0DO9a+hbc7GIbB0NAQQ0NDlEol3nzzTdbW1lhZWXkhNYD7JbyNeBIB9tWg19EnvC5srK3br5xTs9nk8uXLjI6O8u6773bc44PCVsQ1NzfH/fv3yWazDA4OvpQN/DvtY33WsCyLkZGRTt2j7/uUSiUWFhZ6agAHBwfJZDIHfswHTXgbsZUW4GedAPuEx5Nr69pJhr1gcXGRu3fv8tprrzEwMAAcvGXVvV4URVy/fh2tNe+9916nfq3dwJ/P5xkcHKRQKHxmLbw2nvTdbdtmbGyMsbExYL0GcGZmhmq1SiqV6liAqVRq3+TQfrA+LzyJANskf/z48U+9GvRnnvC2q63bi36dUopbt27RbDa5ePFiT2ZwP3p4W6FNXPV6ncuXLzM1NcXk5OSWQ3zK5TLFYpHp6WmUUoRhSKlUeuUk3A8CO7Uwn1QD+ODBA+r1eo8M1nY9z9sdx4vsHW5f7+17YKMYKvCpU4P+TBPe02rrdktQjUaDy5cvMz4+zrlz5zat9ywsvGKxyO3bt3n99dfJ5/Nbri+l7NyYAPV6nevXr/dIuLfd32fhur1s2ItLvV0N4J07d3Bdt2cW8E7KjdoP2ReNKIq2FDZoez5tAgyCgL/5N/8mP/qjP/qiDnXf+EwS3k5r63ZDeAsLC9y/f58LFy50poPtZ72nQSnFysoKAJcuXdrVqEXLsrBtm7NnzwLrrtv09DS1Wq3TvTA4OLgny+VpeNExvIPY/1Y1gG0dwOvXrxMEQacGcGBgYMvfp91p8aLRJryN2EiAa2tr/PZv//bzPLQDx2eO8HZTW7cTgoqiiJs3bxIEARcvXtyWeA7qJnddl08++QTLspicnNy0z53sp9sS3Oi6tS2X27dvd4Z4ty3AFzHD9qDxLAi3exTmsWPHOmGErWoAC4UCpmk+86TFTrHT46jVavsaQPUy4DNFeO3ExE7bw55GeLVajStXrjA5Ocnhw4efi9XSbkk7f/48a2tre1pjO9d6K8ulu3hXKUWhUGBwcPCV1K+D52NhbgwjhGHYIcCHDx8ihMD3fSqVCrZtv9Dz+CQLbyPacctXGZ8Jwttre9h2hPf48WMePnzI66+/Ti6XO8jD3RJaa+7evdvTklYul595tnVj8e5G/TrTNDvu76si3/QiXGrTNDs1gBDHwz788MNOKKFdA9g+j8/T8tsp4TUaDdLp9HM4omeHTz3h7UW3ro2tCK9d/qGU4tKlS89Fotz3fS5fvkw+n+9pSXsRhccb9evaIxzb8k3t0o12/G+r8/1piOHtF+3M5+nTpzEMA8/zWFtb4/Hjx1SrVRzH6ViIzzqRFEXRjvqM2/HdVxmfWsLbWFu3l15YwzA6Mj0A1WqVq1evcvjwYSYnJ5/LTdMOgm8lDPok4nqeN/TGEY6NRqNHvaSduRwcHHxpmvdfBsKD3tiZ4zg9NYDtEph2IumgawC7sVMLrx/De0mxW+n1J6Ft4WmtmZubY2Zmhtdff51sNnvAR7wZ7fGMi4uLT5xt8bK1lgkhSKfTpNNppqamejKXV69e7QTuXdfdc0H3QeBlIbztjiOZTJJMJjl06FDPg+T+/fs0Go191wB2Y6dJi/Z+X2V86gjvIHTr2pBSEgQBly9fRkrJpUuXnktwOQgCrl69iuM42862eNk7JjZmLtvN+/fv3+fevXvMzMy8kLjVy0J4Oz2GjQ8SrXVHBqudSd9tDWA3+kmLVxDdLux+devacF2Xubk5zp07x6FDhw7gKJ+OSqXC1atXOX78OBMTE9tu2y0ouhu8KKJsN+8Xi0WGh4dJp9OUSiXm5+e5desWiUSiQ4AH7bZ142UhvL1CCLGpk6a7BjAMw04pUaFQeGop0W5c2vHx8YP6Gi8EnwrC01qzsrJCKpU6kP4/rTUzMzM8evSI4eHh50Z2s7OzzMzM8Oabb+7oSboVcXW3C73sN/XG3tVms0mxWOy0bnXH/w5SvfhVODe7wVaWdLuUaHp6Gq11jwzWxkTbbrK0fQvvBaPtwt65c4fz58+TSqX2tV4QBFy7dg3Lsrhw4QLz8/MHdKTr2HjDdTf+X7x4cceZ373etC+rK5xMJpmcnOy0btVqNYrFYsdq6e5c2E92/GXpcHhWv0G3zBX01gA+ePAAIUSPDJZSqu/SvuzYmJhoV67vB+VymWvXrnXcyUqlcqDN/sAm66u78X9qampXJPayEtdBoNttO3r0KFEUdW7aR48e9dy0uxVA+LRZeE/DVjWAa2trLC0tcffuXZrNJrOzswwPD28bS20PTXqV8UoS3lbtYfvpU21nRBcWFnj77bc7VuJBq5t0ryml7PTf7rV4eT9Z2heJvRCOYRgMDg4yODgIxDdtqVTakwDC85Zl2govknQ36gB+7WtfI5VKPbUGsG/hvQCEYbhlbZ1hGHsqdfB9n6tXr5JMJrl06VLP0+1ZEJ4QojPIx3Xdp/bfPm2tT6uF9zRYlrVpfm1b/qpdINsmwI1lGy+DhfcyHEMbQohOLzVsXQP4W7/1W3sqPP7Sl77EH/gDf+AWYAA/pbX+sSccw38A/FPgotb66/v7Rk/GK0N4T6utMwxj1+TUzmqdOnWqEzjvxrMgPK01H3744RMlpHaDzzLhbUQikeDQoUOdurV6vd6RzvI8ryf+9zKQzcsiHLAVNtYA1mo1vvSlL3Hjxg3+yB/5I7z33nt8//d/P1/4whe2XSeKIv78n//zAH8AmAU+EEL8otb6evd2Qogs8EPAV5/RV+rglSC8nbSH7UadWGvNgwcPWF5efmJRb3vNgyS85eVlKpUKb7zxxoGk919lwnuWhNMtgNAu26hUKhSLRWZmZgiCAMuyKBaLL0wA4WUmvG60Y6l/6S/9JX7lV36Ff/2v/zUPHjyg0Wg89bNf+9rXOHXqFPfu3bvfWuv/BP4gcH3Dpj8K/Djwlw76+DfipSa8J0mvb4WdurS+73PlyhUymcy2Rb3t/R0E4XU3/rczYweFrQjPdd2OTPduPve88Lz33S2AALF24erqamd4j2maHff3eQkgvCqE141ms0kmk+Gdd97Z0fZzc3McPny4+6VZ4Ju6XxBCvAsc1lr/KyHEZ5fwtpNe3wo7IadisciNGze27Evd65pPw8bG/08++eTAbngpZc9abct1fn4erTWO43QC/c+ykPdVg5SSdDrNsWPHgFgAoVgs9gggdMf/nsV5e1kIbzfX4kFL0gshJPA/Aj94YIs+BS8l4e2lPWw7C09rzf3791ldXeW9997b8RSvjYSyW2zV+H/QbnL7+MIw5MqVKyQSCd577z2EEJ1Afrv/slvI87OMjTE8x3F6BFC3EkBon7eDEkB4WQhvpxlrrfWu74XJyUlmZma6X5oC5rr+nQVeB36jdQzjwC8KIb7nWSUuXirC26tuHdCR2NkIz/O4fPkyhUKB999//7lcZNs1/u+XRLvRXqtWq3H58uVO/WD7YbGxkLdarbK6usrc3ByNRoN79+51hDyf9833sspDPUkAoVgsMjc31xFAaLdt7dXieRlKY9rHsZvvsJtjvnjxInfu3EEIcZyY6P448B+239dal4HhrrV/A/jPPxNZ2t1Ir2+FrbK0q6ur3Lx5k7Nnz3b025412o3/iURiyxjhXvtfn4R24fIbb7zRUXF5UstZLpcjl8tx/PhxvvrVr5LL5VheXubOnTvP1f190YmW3WRpu9u2jh8/3hFAaFvOexXufFm6PXbaVraX38w0Tf723/7bfPd3f/cvE5el/AOt9TUhxF8Dvq61/sVdL7pPvBSE17bq9qNw0p2lVUpx7969HnXg54GdNP4fVGZVKcXMzAz1ep3f83t+z65r+aSUPcWnG0cQtt24l0nH7qCwn7KUtgBCu2uhPby7XbS7UwGEKIpeKcLzPG9PMlRf+MIX0Fqf6X5Na/1Xt9pWa/1tu97BLvFCCW8/LuxGtGN4ruty+fJlBgcHe9SBnzV22vh/EDG8tpveDq4fxGCdjbVXbff36tWrPXMsCoXCS3Gj7gcHWYfXLYCgu2bXtuOmTxJAeFksvN0M8Nlvn/rLgBdGePuRXt8KhmFQr9f5xje+wfnz5zstSM8a3Y3/O9HL269Lu7a2xrVr1zhz5gyJRIKHDx/uea0nYaP7255jsbKywt27dzttXIODg6TT6V3/ds+y8Le6sMytf/NbrD1eRGjN8MljFA6PM/nu65gtwnlWZCPE5tm1G2Wb8vk8g4ODhGH4UhDeZ0ntGF4A4e2mtm6nUEoxPT1NtVrlW77lW56bC7aXxv+9Ji201szOzjI7O8s777xDKpWiWq0+l3jYxjkWbSvm4cOHL4X7uzb7mN/8H36Ku7/9NRqrJVQQIqQkdH2UEAggYZsUJsc4+v7rnPqP/ij5yWev69b94NgogLC0tNTJfA4ODpLL5V4IAX6WxD/hOROe1ppisdgZBH0QT/lms9nJwubz+QO/4doW2caLca+N/3shvLYVCfRYkS+q02Ir97dYLG5yf591F8PC1Vv80o/8D8xdu0nY9ImUwjIk9VqTfC5D1fMZyKbQSuNV6lTlEh//3C9z55d/i8MX3+D/8nf+BonC1kPTnwW6BRBSqRSe55FKpVhcXOT27dudpv29Ws57wWdpYhk8R8Jr19ZNT08zPj5+IImExcVF7t69y2uvvUYqleLq1asHcKS96FY3gfh73Lp1a8+N/7t1aZvNJp988gmHDh3aNPv2ZWgt67Zijh07duDu71bQWvOv/rO/xuV/+WsoPyRsNHHDiGw2TbNSJWcahCqikM9QKtcoDORAKRCCRNKhulrm8Vc/4R998x/kW37k/8WF/9sfOYAzsTsopTYJIGy0nNtzKwYHB3dcO7pb7Mal7RPeDrCVbt1+B7i0SafZbHLx4kVs2+50ZRw0upMMbWtydHR0z43/u7Hw2kO3L1y40GmL6sbLQHgbsdH9bRc/d7u/zWaTMAz3tP7K7fv8s//HF1m4N40EhCHxIkUCjed6GIkETc/HCUPMhM2QY7BaqmBIQUZHWNk0CJCGxK01+fW/9NdZ+q1/x7f+3R97rj21SqlNIqZbNe2XSiVu3ryJ7/s9AggHkahqH8dOXOm+S7sDbFVbt1cZpzYajQaXL1/epDay33WfhDbhLS8vc/v2bV577bV9dSrsxMLr7gzZrqxmP4T3vIhyo4pJtVrl5s2b3L17FyHErtzfy//4n/Pr/83fpFmpkXBsdKRw/YCBbBItJZW1KpZjY5oG1aaPY1s0hMFgxgQhKddd7FKVoaE81WIFhGBsOM+9X/5Nyt/8PXzHz/2vpA8/Hzn/pxUebzW3oh3/m5mZQWvdI4C6V7Le6UzaPuE9Be3ExMbaOsMw9vx0b8fNLly4QD7fG3s5yA6GbgghuH//PvV6/UBq+p5GeO0WsWQy+dTOkJfRwtsObfe3rWKSSCQ67u+9e/ewLOuJ7u/X/se/x1f/l3+M7/qg4u+8VqqSzKbwIkWz2iRnG+BYrFUaDA/nWFmpUMglUVrjiIhCIU3kB6yuVhgaymE2G5SLFVIJk2a1zq/+4f87/97f+W8ZvPjuMz8Xu+1wkFJukm0vlUqbBBAGBwd3Nbi779IeANpuLGzOwu7FpY2iqGPW70cwc7fwfZ9yuYzjOAdW07edjNXGFrGn4VUjvI3Yifs7ODjIrf/5Z7jyT/4lbsNFRwqZsCmXa6RyKbTn0Yw06UyKRtNFNppMDCSYXakwMpyltlYnUprceAHVaLDmBmRSFpHrksylaSxXSJiSUEVUllb5nT/7w3zTj/8Io9/5+57pd99va5lpmj2F420BhJmZGarVKul0uhP/265geDdZ2qmpqT0f78uCZ0J420muG4aB7/s7Xqtd+jE5ObkpaP8s0a6dymQyB7rf9qzbjWhbr90tYk/DkwjvZejR3A5PqsPbyv397R/5cR596TeRYUQqYcdhkqbH5MQA5apLNYJsJkG93sA0JMlkgqVig2MjKeaLNbSGQ6M5VpbKmJbB2IBDvRHihYowiJgYS1NZdaEZMjScRTUaXP6Rv8HbQjL8Hd/2TM/BQZahbCWAUCwWO8rauVyuYyF2u7A7tTT7Wdo9YjextsePH/Pw4cM9z3zYC7TWPHz4kKWlJd59910ePHhwoL2vG0lKKcXt27dpNBq7tl5fdQtvOwghuPm3/jdWfvMrmIZBqBRBGFKrNkmnHRqlKqZhMDk1yPxcEcs0sA1Jpdxg6ugwSzOrHJrII4Vmcb4KwNhoFq8ZIGSEk7RJGbCy3GRwIIFh2wQ1l0TSoLZa5vaP/09YAzny7z8b9/ZZqqV0CyAcPnx4kwBCu3RoYGBgxwXQbYv7VcczI7wnWRmmaT41hhdFETdu3CCKIi5durSvkXy7wVaN/wfd7N8da2y3iA0ODvLOO+/s2jL7NBPezb//f3D7//xFfC8gROOFiqYfUBjO0aw2iDQkpaKyUOLQRI7SWpNazePI0SEWZlaRUmBbJkEY/3ZHjg6yPFsCYOzYCM3lMs1GfB1amTSUqwRBRCVUjI+maTya59Zf/mtc+Hs/Sfr4sQP/fs9THmqjAEK7dKhYLLKyskKj0WB4eLgjgLrVcX0aJpbBS2jh1Wo1rly5wuHDh5mcnHxubUvtxv8TJ070yK/vRjp+J2gTaLtFbD9KLvshvJfZ7Z39pV/jo7/903hhBAKiMMDzPAqDWWo1F6RB0jFo1lwSaYeg6jKSd4jyDgszRUxTMjScZXmuRCJhcvzkKAsPlwEYnhyk9rjI4NQwyw+XOXRqnPKDRXIjOfBqDA4ncRsBCcfEXSly74f/Mq/9w5/CPOCb/UXq4XXHThuNBidOnKBer/cIILT1/9oCCJ+WLO1zP+NPIrx269Tly5d5/fXXdz2jtb32Xqyx2dlZrl27xptvvrlp1oRhGAdqRQkhWFtb4+bNm7zzzjv7kq16VS287R5Kq1eu88H/+ycwogArCpFhSFIYHD40iIhCJGCbAq/hYyctJNCo+yQSCSzLxk6YDA5lKS1VMC2D/FCW0ItjpuPHRqnNl4hCTWmuyJGz41QeLiGEoFFuMHFqHK/UJGj6yIyDaVt4K2Xu/vB/ceDn+WURAI2iiGQyyfj4OOfPn+fixYucOnUKgPv37/PVr36VP/2n/zQrKyu4rrurtb/0pS9x9uxZhBB3hRBf3Pi+EOI/E0JcF0JcFkL8qhDi6MF8qyfjmZ3x3bi07VKMUqnEpUuX9hwr2K01FkURV65coVgscunSpS2fYAepUBxFEY8ePcLzPC5evLhv9YntCG8nN+jebmIR/2mVGj3pD13/R7Q+04J8QpDcrzf48D//UZTrEoSKSCvMhEUyl2JtuYwjDcaG0gRBhGVLDA2Nqsuhw4Msz6yimh7jEwOsLVdIZBIMD2Uoz69RXihz+u2jlB4tAwIrYTE0miesxINonJTF8HCWyvQyTj6FlXIwIrBTFn6phvfoIY//57+5h3P1ZLwshLfxONoCCFNTU7zxxhtcunSJH/zBH6RUKvHDP/zDvP/++/zUT/3UU9dtTyz7pV/6JYDXgO8XQry2YbOPgPe11m8Sj2j87w7siz0BL9ylbbuSR48eZXJy8kDX3g7t7O/TXOeDcmnbBdPtOQkHUdW/1TGHYdhR5hgaGtokS/SElVp8JNoLb7+fHWQYtVKIJ2zzxhtvtpZpE65Ga/joP/nL1FeLhGiwTWzbIFKa0kKJ7HAWv+GhqhFHjg6zML9Gs+oydXKcpQeLZAYyGAJkEJEbSmNrWFuqIA3J1IlRVm/NkxlII6QgaUrqi2sAjJwZR69UcVcqACQGshjVGlG5QcM1yUwN4ZdrlH79t0i/9z6Fb/6Wp5zLneFlIbynZYullHz+85/HNE1+6Zd+CSklq6urT123PbHsxIkTaK39rSaWaa1/vesjXwH+5N6/yc7wwghPa83MzAxzc3NP1ZDbKXZqje2m8f8gLLx2l8aFCxeAeJrTs0Cj0eCTTz5hcnKSVCrVKa0xDIPR0THyhQKJZAIhJG+/+x7S3JwR3lkMNCaqrc6Lbv1HoxFPOG+u6+LYNqKVFALBzR//n1i6fpsgilCAkOA1POqVJoWRHPVyA9s2UWGEu1xhcDgHQxmWHiySH0yjg5B6zaMwkuXQWI6HNxewHJPRiQLL95cAmDw9RHlmhWalCcDQ0VHkWp2w9UBLD6VRxTKp0QKNiouZcjBESKQ0Qc1l+R/8XdIXXsfK7V9w4GUhvJ3Cdd3Og3onnslOJpZtwJ8Gfml/R/l0PPcsbZtAPvnkEyzL2pGG3E7xNAtvL43/+7Hw2i1ixWKx06VRqVQOfLg3rPfdvv7GG6RSKZTS5AoFjh4/0fktum+yJ7UTxZJFbUqL/x7/bf3/Ao1Q0SZLsHehJ18DdiKJbu1LClj5rd9l5he/RNIU2IZFGAa4QlJu+AxNDbO2UCKVTRI0fZyEQ6NcZ2JigMePSwyMFQhqLl7DY/jICN5qhVLNZfjoKEakKM4UARg7fYjq/QVyh4ZYqS8xfvYQzYeLhEozfGaC0FeolTKh69NYLpMYzSOIqC9WSU/ksZI2hBELP/HfcPi//u939dtshVeN8OBgpNy2ghDiTwLvA7/3meygC8/9jJfLZer1OmNjY1y4cOFAG7a3I7xms8kHH3xAIpHg7bff3nG9214tvCAI+OijjwjDkPfee6/jVh5koqE9inFpZYUgirj4TZ8jlc6AkEjDQAjZQzrdf48iRbPZpFyuUKnVaLheXIyrNaGGSEOkBYr4j2796Y7hbToepTt/lNYopbb8U61WW5L+Crdc4e6P/ySmDol8n7Dp4tdcLNfn+OkJio9XyQ5m8BseyUyCRrnO+JFhVu4uMDU1iFdu4DU8Dp2dxF0qEbo+6YEsY8NZKvMx2U29dYLagwVUqEDB2GuHadyb77SoCSGxfR/lxgXxZjpJZiSFasb/VoZFFPi4KxW8hQUW/vn/d99hjmcpgnrQeEYTywAQQnw78F8C36O13jyF64Dx3Fza9iSvhYUFUqnUjlqndosnZWn30/i/F8KrVqtcuXJlU4nLXtfrhtYaDTGhaM0bb8dDkbe7ddoXbKQ0WoiWdQXSTpCwe2WHatUqmWxu0+d7968RrT12W350HYkB6Cfc0Ml0pvUZxZ0f+a/xS2txkiJUhJHCySQxbIvKvXlOn5vkwZ15sgNZqstlxo+PsfpgkcGjI9RmVhk/NgKGweqdObTSDB8bJSjWWLr6iJHjYySzaYrXHiIAaRpkChkkCrd1bONvnqB67QEDpw7RWCqTOz4BlSq12TWsTAJpSozIJzE+iLuwgmFZuP/mX3A5MwhDo3vqX22fxxdNeLslsb1MLHvw4AEnTpyw2TCxrLXeO8D/Avz7WuulXR3MHvFcXNrugt5Lly7xla985Znsc6P7qbXm7t27+xrms1uCmp+f58GDB0+MS+7FwlNKoRGoFtl1rbb1B7QmarmmkQbVsspk12e2una11iSSSVzXxQ8ClNaYlo1pWcQzk+mss93Fr7VGi/g4Wq+s/1fHCaNEMsnqP/lZKldvEmhQaLAMEimLyAuozJUZODpK7dESh89MMnN9hvHjo6w+WGT4xDj1uVWiIGQ8n+HeJ/fQSjN+dpLao2WiIMS0TcbGB3j4wW0AnFyawnCOys2HJEcKGI7F6JkjVK8/iEuF7s0z8u5pmvdnIYyvoeTkYXSzQlht0JhbIX14GL9YIjU5yuErv036z/0Ia2tlpqenOxLobQJ8XoOj9oOdutV7Ief2xLLv+q7vArjB1hPL/nsgA/xsa/1prfX37PJr7O64nuXisD6D4dSpU4yNjQFPVhHeL7otvI3zaPf6NN0p4XXHB7frDtnpelprlKaL5LYnSaU0CghVe8stXM6uV4MwRLZKRuL9gEYgMRCWiWM9+YYNohDLMDuLxjYfndifRoDULRd487Ek0hmaj+d5/I9/ljAKY4vRMjClxKs08WtNBo+PU3m0SH5yCHe5xOSpMZbuLjJy+hDVR0uoMGLy9aOsXrnP4deOEiFYvf4ItCY5kCU/kGHlozsMnzmC13Cxw5D69AIAoRtw+L1zrHztWueYRt49h6GjDtk5IwNEtSpmOgHVBsIysXIZVK2Kt7yGlRBEX/5ZJr7nBzr9q7VajWKx2MmSH8T82meJnU5Oazabeyqh+sIXvsAXvvAFgJPt17onlmmtv33Xi+4Tz4zwtNY8ePCApaWlzgyGNtqxtoMmvLaF185OnjlzpqMmsZ81n0ZQnufxySefMDw8/FRh0KfVzmmIXc+nHJfWChBUag3sxLoaxtb7bmdVNQrdIjeDSLOJR7tJUWvd8/eo5RaHQQCJ7ktnq3geIDdkPFrE6Loei//dj2ObYCZNImFQaXjUVyoIKSkcHWXt3jyDx8cpP1xg+NQhlGXB2UnK9xfQkWLywlGKN6YByOWz3P/gBmhN/vAYVuBTa5FbYWSA5St38BpxZjZzeBwnivBmFkHGtYIj75yjcfMuAOnjU/FMDOURrFVwho8irSrJsQHqD2ZIjg5iJCyEYdD48Gsk3voc5tGzPfp17fkV3fNrN8o3vQzYjTTUp2FiGTxDwgvDEKXUlsOo24R30DJPUkqWlpbwfZ933313T3M0t1pzO8Jrk+tOW8S2Wq8dX9uWVrWm6bqEYYSVSHWsvm6yk6KbW2I2i5QmaFlvwBPdUa1jxzfScRZWQ+t4uq00gZDgOOtxv0hFBJ5HGIYYhhm7v4aBkCImvR7Ea639/M/iz82gwxAihfADMlqhBjJI02Dt3jxDJw+xdu8xI2enKN+ZY+DcEYLVCmjNodePUbzxCCEFE2+epvj160y9eQa34eLPLeI24o6AifcuUP3oOpmpCcr3Zxh4/SxMzxI2XUJg6P23EL7bITsAe2gAd/oRUauroP5wlqF3z9G4/yD+BpaFYYK/skby8ATur/wsqT/1w0irN+u9cX5tW76p7f56nsf8/PwLdX93qpTyaWkrg2dIeLZtc/LkyS3fexbqxEEQMDs7i2EYW5LsXvGkREi7jvDx48e7ItduC6+deFB6+6RDGEXUGk2cRArT3Ma5bbmXftRNnr0ry3gzwjBonSNBpCHsWtQSbAryxdZefKDt440tRYnhJDG67lkN1Gs1nFQKCUghaRuT7uwsjV/+N6hQo8MI5YeoSGGnEwxaBjPX5hg6M8na7TlGzk1Rvj3H4Lkj1O7MMn7uKM0JRenGQwzbZOT0EUpX7gCQTtqUrt1FhxHCkEy89waVD68AkBoo4HzTMO6Hlztnwzk0hmUKatfvd4479+4bNO7dJTF1CPfRDNKxyZw6guqS8zIyKaSpUI06IPAXl7B/++exf9/3bfMLbpZv+spXvoLv+y/U/d2NFt6nQTgAnnEM70nu204UU3aDdrdGeyj1QbrKW6mlRFHEtWvXkFJy8eLFXSvXJlMpgkj1ENems6QhiFSLiAROYmuXolatksxk8SONKWMLbWtoJMRlJ0qgMHiSSSlE22WO0SbE9tISMLtOcdv1bVuYSoOdTKKQ8S66jqn4d3+SqN6AMEJrgXQsrIRNWHcJS1UOvXuShQ/vMnr+MGu3ZjtkZ9gmjpCszM5jZ9MUxgYo34ytrrH3X6fyjesMv3aG0v1phk8c7pCdtG2shEU0/bhDdvL4YWSzSv3addKvnaV+/RaFS2/TuHEt1nJMpjDSKVLHDuE/nsUHEocncQZyBI8fIcfH0FKiAw8jnyOYeYA5cxN5+NyTTv4mmKbJ0aNHd+T+Pqtsbp/wnhMOysLTWjM3N8fMzAxvvfUWjUaDUql0AEe4jo0uaLubYWpqamMl+VOPtW3NnXvtwpZWWjtR4T+BtQzRcjlFnJzwI42RzHS2j1oJi/b9IVuuaag0fusr2LJTftYD0SItBQQhhNvWFOuOpai6ybBr3aQhCVV8zKAJwojqv/g5/Adz6AgQEtMxQGv8YqxXlzoyiltcY+S1o6zdnGbo/FGqt2cwUwnSY0NUbz7k0Lvnqc4sUn0whzRNRt44S+WjuFspkUxQGB6gdj3OzNpDg6TGBmlevU7m7TfxFpYZ+KZ3qF+/1uF6ISH/7us0b17vEIu/tETmtVN4d293vo81No7/IN7GW1gk9/YbqMVpQsvCTCeIPvlN5KFTYDz9ltqYsHua+/ussr87TRy+rEO4hRB/GPivNrz8JvDdWustuzZeWcJrW1lCiE63hud5B+4qd7u03S1iW00RexK01oRq+1yr19Jt24qMIHYhA6Xxtvl6GjBFXOLhhqpVjtKL9vpRGGHIuOg2VL0ubWLDQ1+0OiJi8uy19p60XaREq3g5Pnp/tUj0u7+GnTXxlEI3faJQEZRrmJkkdi5J/cE8+fPHqJSaDL12nOqtR1jZNMlClsbDxySnRpFuk8b8MlY2Q35yjMrlGwBkL5wheDyLMOJYWvr0CUSjivcoTmx40zMMfO4dGteudc6KPTqCJEC76/WuiSOHkcLHsNZvjfTrFwjuXcOeOES4tIA9OQXNRvyAajYRziHCxQWMD38ZefG7n/wDtX+DpxDNRvf3WWV/X/Uh3Frrnwd+vv1vIcSfBf4E8MtP+swLcWn3S3jdjf/dOvt7lYfaDlJKwjDk7t27lEqlzljInaBtsUXb1N3F3Q3x340N/CRoxb1CRaTX42/dLo7WGlPGpSWNQOGYAl9151rXYYj1BEmgBaHa2ozTWmG0CpQ3kmH3sdFl6QWq153OmK1ja+0i+id/DxmFCNOAvE2j2iSoNHCG8gjLoDG7Qu7cUWp3Z8icPcbi717HHszjJByas4tkTh0mWCvTWC0y9s1v480uUr8Tu7QD3/Q2jes30VFE5u03SYyP4t65A62wiT06gj2QxnDWSSZ97jRUi4QL86QvXMCbfUz6wnmi5TlU4NNo1DFyOZLHjhBO34ld3VQGozCAiUe4UsI+cgwzmSAqr2GkHMTKHBQfw+D2k892U5K12+zvbtzfV53wuiGEOAP8VeD3aL05XdbGC7Hw9hPD267x/6DFOiG+KKrVKoVCgffee2/HF6rqsuo2olqtYifTm4gkUjpWGUGjpYG7YQNFHDtTukVeQLnpIc11At64R6NVAOxFmmbHrRWbSLPtevqRRiuB3uprtiy4uG1MEmwsaWmtI4jd61ALQg3hV3+DaPoRWim0ihBhSHKsgJlKEnk+/lKJ7OnD1O/NkjlzlPrdR+TPHScsVnAXVsi9form9Bw6CEidPIqdSlB5vAhSMvS5t6l+fKX1ZQ3sjE3tyjVoCwKcP0NUXMKfnSNxLL7c5blTREuziNaDqHHnDrmL7+DdWXdrCUMyr7+Gd/2jzmvB/BzpU8dQC7HVqIIQrSoQesjRcVS5iHnnq+hLf2jbPuP9DPA5SPf30xLDE0JYwP8B/EWt9fR2274yLu1OGv8POvvbbhGzLIuzZ8/u6DNt9/VJNp0faWRiM9lprWnUa9hOkpCtA22twhCCSFNvvd9NdhCTpilAaYUbbp3EkAKCKOqUqPiRptm1nWPErWNa69Y2mjACN1r/Xrn2vdQiOa3BizReawPTiV8UfgP1q7+AjlRcmKzBsC2sZAJ3uUpYb5A+NkH9/izZs8eo331EcmIEmc2zcvsRhfcuULt5B5Qi/foZvIfTBEtL2GMjpCZHOmRnFfKkjo1Tv3yZ3JvnqHx0jfzFt2lcX3dh/YVFBn/vJZqXL6+fi0SC9NmTGAkDv0VCwrLInD9DOH0XYVoQhch0hsTEMNK2O/E/I5VCphLo5Tm0NNCGia7XkA8/Rh1/5wlXwMEKB+zH/d1qGPhWqNfr+xKqfQ74UeCa1vr/97QNXxjh7WZyWbPZ5PLly4yOjm5b2HuQYp3tAUJvvvkml7tukO3Qtuq2OrpIadxo6/e8ZpNAC6QT67VtJDuj9VIj0NgGLZeVTdtIAXVf0ZIq2bSNII7xRVFEM9AtvbretdpuuKkVfqQJtjidhtCxdaQ07obni0BjyVYcD+DnfxpdqbWsQwEJB4EmXIsVSSI/Q+Ph45js7k2TmBpHuw2i8iqFb3qT2uU4IVG4+Da1K1fjfYwMYQ4UaFy+BUDy5FFk5OK2auUM2yD/zgWaXWTnTB7CSplYpqDZes0eH8dMWfgP7mKNjMafzeVITgwTztyLP3f6LMHCYxKjg+jSMn6lhJHKYE8dgaUZFGNgWoh6ET0c94eL4iyMnYLU1kK2Bz2xrI2duL8DAwMMDQ2RyWQ+FRaeEOLbgP8A2NG0pWcew9typ7twaXfT+H8QFt5OW8Q2fW6bxEQzUB2rQANuo0EilUJoTaXpYlhOR7YmaFmHgth9DSKodvmOfsvKEi3X0W3UsBMpKl0mY8oUPe6mJSDUioqnUBqylugR54zjgPH/66GiFkDS7FVaMUTszvqRphpobCk7mV+hNaYRu7GNUNMEbBP0/WtEN66io1hBBSkhjAirVcxUCiOZpPjhnXXL7sghomoZ1XTJvvEalYdLICX5997okF3bRbUTJkUg9dZ5oumHqNbvbk6MQ7NGsLzWOfbsW68TzE8TrvioZh1tGGTOniZamidaibP6wfIS6bfegtIi0dLj9ZMXBDhDBfTaSvzvKMQ6chI9fy8uWVpdxD7/FmJtBrU8h546DpUixqOPiM5/69bXynOShnqa+9ueH53NZkkkEk9c52WdWCaEGAD+N+A/1FpXd/KZl9albTf+l8vlHScK9kt4ruty+fJlRkZGntoi1n2cUcsq2vAGvooJbCM8z0VYNhESY0PPqiYmqEaoaWweX4smzqJGGqp+hDKThBv8YyHAbGnZVf1ok5UWqNhNlcSxpHqkCDfsK66za5FcqKlu8I0FGlvGSY1mpONSk9b5cAxQkcL5t79ImLFpVl2E1ijPQ/s+Zj4XJ4PWVsieP0n95j2Sxw8TFVfixMOFczRu3iJx9BRWNkP9Stzzmr/4Fs1bN0EpvNkZBr/1IvWPP+kcU/LCecLZR4SVEH3oMDSaZN44h//gzromoOsiL5wheHCv5/dNnT+PlZC41bXOa/bkFDKsY+YLhNVYaso+cgJdml93dQdHkVFr1oNhIBwLXSkjfA9ZmkENbC5delFaeBvd32vXrqGU4saNG4RhSD6f7wzv6bb8XmIL788Bo8Df2XCv/o0nubcvJeF1N/6/9957Ow7w7kdrrt0idu7cuc4T8WnQWm9JaBDHuzbGz9rdCXEMT2zyOk0JNV+hDEG4hStpG9AIIhpabEpoQOzS2lLgBorqVr4oYLWIrNb0wTTZaI8KNJYQhJGiueEnisksVm3xol531mxZgLVA0Qwh+/V/g6yUsC2Jn3QI1qoIrbCGBsH3iCoVEpOT1FcapE8dxV9cREhB6sQxmrfvYA4UcApJVj6+ijAM8u+9TuN67N6agwUSY0PQCuMK2yZ74Szu7VsdFzaTTeEdmyB8eLdz/ciBARLDeTzld1x+YZqkL5wneHQbZZqIdAZdr5E4fRbKCxCFiNFY9MI6ehKqy6A15pFTREtzWCkLVudhdAIjnYXSPDo7jHSryNXHqMwYbGg7exnEP4UQSCmZnJzsuLflcplisciDBw867m+pVNpTHd6XvvQlfuiHfogoirh3794XtdY/tmH/DvCPgPeAVeD7tNYPd7MPrfXfAP7Gbj7zQlxawzCe6NLutjd1J/vbDlprpqenmZ+f31WLmO6K13VThtKaZouMut+TQD2IuysM08IU6+UephQ0AkW95YeGG8pKLANqXki5lRFImr03SztmVnLDOIOLQsr1J7QAEqagGSqKbkyESdErDOBIQaAUZS8+xpGU0TkGsxUfrPmaeotIk6aB0BrLEPiRotI6dq016eYa1vWvdB4+ZsZBNVxkOk1UqyIDH2dyAm9mhuTRk5S/cRWZTOKMDOI+eIg1eQgZ+Xi3b5A6dQwzaXfILnnqBLpexpueJnHiJPbYGFYmgXv7Vuf7pi+8Rrg4gyks2leZc+Y0enWRaHEeQwiidBpp2ySH852yE6II58QRpGmgHq9bgMHMQ+xT52F1Lm6vA6JyEWvyMKLSknHTEiOsIZRC2wlE6KFCH6s0TTBysiem+jIQ3sbjMAyjk92Fdff3J37iJ/ja177GX/krf4U//If/MN/1Xd/11Nkz7QE+X/7yl5mamsJxnO8XQvyi1vp612Z/GihprU8JIf448OPA9v15B4AXctZN09xk4bXVVW7fvs277777XLJC7all1WqVS5cu7ZrsNL1kF0TrZAcxSQhiAqsFva1kQrRidEpT9qIeSzFQ8XuWhEYQstIIcLvMRTeMS1cSpqDeaLDSDFlthutFxci4CDgK8Bs1Kq7PUiOk6ndZfSpEaoUpNM1AsdwMWfPWj1EpjSMBrVnzIopu1EmWOIYgVIpmpFjzIhph3GebMuPvnPudfwa+H+dOEJgpB5lJE62VkSrCGh3Fm5klcfwourqKkc9h5dJ4s3MkTp+CRoWovIZ96BDpo+O4D+JkRPbdNwkX54gq8cAdI+lgWhAszMfnO5Eg+9YFwpm74HskjxyOrb+33kDPP0IEcYGx0JrE2TOYVkS0srD+mySSWJkkev5+z8PTOXkGM53okB2ANTKKaa/bCzKZBDu+foQ00FYiloxx6xjN3u6fl4XwtktatN3fn/mZn+HcuXP8xb/4FymVSu0pZNuie4BPKxTVHuDTjT8I/HTr7/8U+P3iOSiivhQubbdA6EE2/m+HdovYxuLlJ6EtgtiO2eneN7d0YZWOXdSNP2Po+yjTpBFuTqa2M6luqKgHm91+Q8QWoRdq1rwAjA2xTa1JWZIwVJQjCeYGEtcKGXrUfB+V2FzaYxsCA2iGCq/bXdeatBW70iU3ImlYKB2TsiWh4mtcT5O5/zHJxRloTS0ThoGpNVGpjLQkVqGA//gxiZPHCWYeYY6MYOUl/uwcqTdex79/G5QidfYswcIsMpdFODbZ187QvBV3VQjLInPhPN6dmyQOn6BWKuEcnsIwFP6DO+vnUmiSU2P4D253CEzYNurQBImohhusVwqI0TEsM0JN30YNDCNLKyAlidPn0EszqEy+s61z6hyy9LiTlZWjkxi1JRieREuJDBqozGBsTYQeZn2VyEpDK177KhBeN+r1OpcuXeLbvu3bdrTuDgf4TAIzAFrrUAhRBoaAlR3tZI94YS5tm/Dajf9byaE/K7Qzv6+//jr5fP6p23fHBrdKUHhPILtGoJAq7OmvNARUlUSEsZvpdX3QloK1ZoivYtLqRpvoluoBkYbB5IafLgqxJKwFUHRDhjb0h1kyXn+1ofCVia0D2ltopUgYEGhBsRW4KzgGiHVCK3ua5Vblclsy3jEEFX/9tbRUjH3yK3HxtI6lpHQYQrOBPTKAhpjsThwnmH6ANTkJ9QpGrkD67TfxbsUeT+atN3Fbf9deg9SRQzRbLqs9NoqVSeLduRmfF9sk89Yb+I/uEqn1B0Tq9deJ5h8Qh4pa53fiEKYj0OVFIsAcGiFcXSZ1/gJ6eRrhxd/FzOaJGjX04CB6KZ7LoGtljIkjmOkUshRncfXKPHJ0CosgvtZX52HqJNKrosvLMHIYUVuFZAbTqxIaFrRKp14WwtvJcXie90ooOO8EL8TCa9fLzczMMDs7y1tvvXWgWaAnSVJrrbl3796uW8Taxyuk3ER27ZKTdrxOAF6oO+6f53k4KRNDxK/XIr1pXqstBVUvZK3LHW4ECkuClLGk+lIj6Nl3u/eW0MdzPRpGosfq9CMFSFJm7H6uNHpjptqwMFBYUrAWKOrhesRR67jjw7EM1rxofW6F1mRtiRtqGqEi0KJl+UlqgWLw5q9jhm5cXSw0OogQgY/IZDASNu6NWyROniB4dB/72HHU6gIoRWJqhOrvfgVhW6ROn+qQXfLMGVRxATOVw6cVm5ufIVhYA+KaOStj4X50DdHqJjIKAyTGhwlnYkvPOX6CsLRG+vXXiebvo911t96eGMcZHUIvPeypjzRViD02iq6uu6JaCGpCMljqKlmxbMyBgbjuDsA04+ytBxgGmDZEHugIw6+hrCTKSe+r0+KgsRPCayc4doodDvCZAw4Ds0IIE8gTJy+eKV7IYyaKIlzXZW1tjUuXLh0o2T2p+DgIAj788EOUUrz//vs7JrvuNWNxzHXEDfoxDLGemOguDLaTaSRQ9lRPHA7iYuQoUizVg57YH6zH8JbrAQv1YBPRCsD3XIqBoL6B7AStvtsoZKHmbyK7tCUJw4Cyp1hxFaFudcZqTUoqdOjzuOZRapOd1mQsgRSw1Aip+IpQKdJmnLFdboao0hJjqw+RhhkTnlKIKELkcgjLQkpwTh6Pye7UadTSHMK0sCanoLyEMTBI4tA43r07ICSZt94gevwA7TZxhgtk336T4OFdtBfH4ZJnTmOnTYIHd0gcO9x67SyWownnp7vOhSZ97hRq7m7PnFz78DFMU3UsuM7rJ88hvSpGrrC+RiJF8thxBv0SuiXTpaRBlB+A4hzaiEMDYmQKWV2O/50bQTbW0E4aI2jG/cmhi1DRS2Ph7QR7mVjWPcCn1WDwx4Ff3LDZLwI/0Pr7HwV+TR/UOL9t8Nxd2nbjv2EYvPHGGwe+z7a73B2baLeInTx5sjNXY7draiF6sq5eq6G/DaXjkoxuYorLUDa7wHFTvWK5rkjbvRd+O6O6WPfJ2samIua0JfHCiMdVjyRhbEm0IAXkbIPlus+MqxhK9P68OVvSDBWPaz5gMWiBr2NSyFiSiq9YchUQu7OO1BCFVAPNUmi0jl2Rtw0CBcvNsHVMgnMPfxMdBGAYcbJGgcjlETqCSglzeArv5k2cs+eIHt1FDgwjbQO1MIs8dAQrWSdYmMfIZklMjuHfi11Wa3QMK+1Qb3dZ2DaZ82fwH3RJNw0OYKTTBNN3e665xJnzUF4k8roI37KIxg9BdQlVExjDY0Qri4hEEmfqCHplrvU7xOQoB4axUzaiEoeWjIFR1PIciYlDyMYaaGgkC2itKDRLCCGIEhkMIVo90a3fIIqQoYcRxYT9qhBeG7uxSLsH+LRCV/9kiwE+fx/434UQd4EiMSk+czxXl7a78f/q1avPZB8bFVO6W8T2qviQzeUQXWUeodI9vbBxyYaCKAAZP+0NEQf+QxW7rG1YUrBabRDJzQmDpCkoNQOKbrx4LYg6AncpSxJEivnqupRROpVizYswBGRtg8Wax1pzvYLYNAQi0uQcSdmLmKn2tvOZRDi2xWozouqvx79MARlLEmmohBJaKitZM84oLzQ0KUJySRtDSpL3L5OoFWP32zJRQiJyabQfIOoVxMRhxMoK9tnzRI/uYExMQaOCLtUxTp5DLDzCyGQxshmEXyeYfRSfj3OvEc4/IpipIkwTe3wsllfvIjvn+CnMhKR2d72MxMgXYpd0KV7HnjyBe/sG1sQU0tRQW+lki4zCYCzbLhR6Zd1djRbmsI6exGiWEG6t87quV7DGJ5GNdXc3ZZuYho7JHWg06mRlXMsTKIUh7FhUVYAMmhSy6fWQxEuOvVqjXQN8AP46sHGAjwv8sYM4xt3guRDeVo3/z2pyWVsxRSnFzZs38X1/Vy1iWx37+KH1uqN2k3zb2uuQHTERShmTWqUr9uWrVn+phqW63yFFaEk6SUEjUjyu9WZlQwUDCYNmoFjoIro2/Ehhhk3KkUmp2dsqIUV8sH6kmK70urSOIRCBS8O3qHldBNkiuqVGwJobcnIwidaagmNQ9SOWXA1IbAlJ06IeCUTT5a3HH8WxESljlzaVQnseslmDiSmYn8U8fBz36x9injiNnp8GrTBOv4aYiedJJI5O0LzycaymkkiQPH6cYLo1a0IIchffxb1xpZOYEIkkqVMnCafvEQIynUHVayTOnIO1RfTSbOd7CaFJnH8dtfCg9wRKiZFKwMocPQVGUmIfP410LHRteX2ddA4rm0I6Np2G3GQ2NrLTeagV0aZNNp1Bp/LgVpBaUWm4SG3S1qx2DJtIv9gpZjv1HhuNxsvaZbEnPHOXtt34PzY21tOu9awmlxmGQbPZ5OrVq4yOjnL+/Pn9BYiFIApDaGWpmq0nc1vost5V22Zadite10tcpojl2ksbOu2lAFMIGlFExet94ltSYEqoehFrbi9hGQIyjsFMxcNG0C1rJwUUEibzFY/ZIIr7V1twDEHKFMxWPEIlGXIUSLmJ6KCV+NExUc/XY1KUaPK2wXzNpy4Eoxmbd+Z+B1PHcySEYSBME9VsIv0memwSufgYOXkUsTCNdf4N1J2rkEwjR8YQM3cRtoN1+CiR54OKsKYOI5VPMB037xsDQ1iFAtrQ0CI75/gJpN8gbG0DkDxxAuV76MVedSBzbBLTFPhLMz3xV2NkHCuVgKVpzKERotW4gFjmB7HyWcTaPKIwsl44PjSOZSiEW4VUy1NIZDDSaWToro/gLYwj/Traq6MSORxDYKOJEg6mgDXXx3AMPNdjeXmZgYGBPT+M94PdqB1/WiaWwTMmvCiK+Pjjjzl37tymxv9nNbksCAKuX7/OhQsXdtwith0ipXESiVax8bodEJedRHTrnxiCTS1fthSsNDYrw9hCU/EVjVCRT/R2RWRsyeOqT9gqT2lnnSWQSxjMVX2WWxZdRka4xHGzgYTJfNXnXqPZWW8gKZEiJrqZssdS1+G5kWY40Ut0AFlL4oWKqhdSCeOg9WDCYLURMlPx0VqTT5pk60ukS48xDSM+C0IgDYEMPBidRKzMI0YnYPkxHDmFWFhGjIwjtEIuzWIMjyFNSTT3EJ0pkHrtdYKZu52QhHPmPGppjmhpDmPiCMJJkDp9inD63vo4DiGwT5xF2BbejfXpY8J2cI6dRC3OoD2wJg4TzDwAaRCOT+K4FajG50nmB4hWlzCPnsJoFBH12F3Va8uIzAAyX8B0S4h20La0COkBjFQCGcRriMoyeuQIhl+P/+030bkRiFxAIC0brRW5pEMtVAzls8wsrvDo0SOklAwODnZUTJ5HBvfTJP65GzxTwjMMg8997nNb/oDbtZftBVprHj16RLlc3lU/7NPW1LTkrDyPoMsVdf2ARr1OMhOLkBoizsQCnbYxS8JifZ3sMrakESgCt8GCWl+r4kZYBiQtg7VmyHR53c1sBIqUiEgnHJYaAStrva5rpCFvw4qruFts9rznGIKMKZip+D1EJwWkCVis6o5IJ8QqK1LDbDl2nxOWJGsZuEHETDn+HhlLopTmUbHBd7gfYwkFIh7saIQ+kTDQw+PI4hLG4DBUishDR5BL04jCIWRxCRH6iCMnobiACgNkJo85PEzt+nVQCpnNY4+NEc2tu6CGY5MYHeix6oyhUYxMGr08A5l1MVjryAlk0EAvzazP90gkMUYmMByTRKPc+zu7dZzjpxGVxd4LwDAwDx1GrjzsvYZTWcTwGLK83qWhM4MIJwVhLCQQFx63ahSTWYzQJbJSSHQsrGAZnDpxAnXiBL7vs7q62lExyWaznTav3VQT7AZ9wntGkFI+cXLZQYl1hmHItWvXME2TycnJAxtz151djVjP0vquS2TYpDLZzhyJtS6X1JSiVW7SS+gCaPgRDdVr1VqGwDFiC2wjklJhmhb319xN7w0lTRaLLotubxbNlIIBW/Kg5OJI0ZNNHkmZLJQ9HnX6cgVeBMnW/tubpkxBEEYdN9wQcTHy9Fq8zXfKBzhehbjaTyGUii03J42af4yRzYLnIgeHkKuPCSdPIGpxeYY/eYxkqxwkHD1EImigl+cwh0Ywsln02jJRq7REJNM4h4+i5h8hnWRMIaaJc/wM0dI0uhRbVLpWwZo8ipFMopZne1tYLBsjlYTVx4hG77VoTB7DCGoggt7SnvwQViaJdNfQ3WsNjGOIEBGsP1x0egBp2wi3Glv8holhmsigSeRkEJaDIKKnqKmjHh2PNO1WMalWqxSLRa5evYpSqkN+uVzuwEJAOw0n1ev1vkt7EDgodeKN8y3u379/YCKg7VkUYRiCNDEANwgIhNkiP4ElodRVzCoAN4xY2xCvS1mCR2W3J2MLkHMM5qseGbuXpKWKsA3BbC1kcEN3WN4xaHgRNxfj2aijaUEjivc9mraYLjZZqsTHVPdCQDCcNCk2Am4tNTrrGCKWolpoBCy3FZTRDCZNHpY8Fqo+E4UEw0mTlXrAo2aIRHPcdDnhLkAUYQgdt6uh0bkBqHnxABzTwjBE3Bc7fhR7eZowO44YHSe5+hhMC+f4KazHD+Nzbdp4iRyJ+Ued47OPn0HU11Ct18zBITBtBBFq8dE6fQiBdew0QkrCrjYyAHPqOEbYgJVpGBhCleLyEpHOYg2PdJr/xcAoUTmWgDKmTmK6xTheB5AbhsoKYuwo0i3HCaFGGZ3OgwbpOEitIFKo9CDCdpCqZdkLidStHkIhUEgQGklLRHWDJKwQglwuRy6X49ixY4RhSLFYZGFhgdu3b5NMJjvu73Yadk/DTodwv6wTy/aKZ054z2qQD8DS0hJ37tzpaRE7yLkWHYvODxCWQ6gUQRghWrLqsRxSr2KK1nFyImPLTvbWNgTTLestZRv4bkwUlpQ8KseWW8kNcQxBoDRm0KQUWZ0C5mIzJOsYSCGwBNxdbtANW2gyKZulqseNxXrPe0prHKG5veEzg5ZiualYqQexEILWjKQslmo+d1fjY8rYkgHH4NFafOwDCYO6r7jo3sAyDaLWg8UAyOSRYYAwDHRuEKO2ik6kEckkVnGOcPQwZhARlZYIswVS2TSqRXbm1HHMZhnDSuEDKplG5wdgZa5zXkUqjVEoEM496LHejLFJTEtC6TFiZL0nWuYHMQcKiPLS+ra5Aqq0gj98iIxuriudALpZg2QGa3gYo9HbzikSKcgcx2yUeo00Jxsr0+guS9604lq7Tu9uIq6VVCFIiZYSgWrNEFYgticd0zQZHR1ldHQ0HgPQaFAsFrl58yZBEOx5glnfpX3eO97HIJ/txEEPcuZt+/mrhKQtlmTZToeIQhWrpsTSS7F2StsFDKJ4HkSkFY+r69+zGShMHVDxoTsxqwEr8qh5ilXVq1NntAqKby83Ng0GyhiKhgf313qJLm1Jkpbk1nKDE10m4lDSoOlH3K/Ex5lwI3IJE6U1d1eb7S/PZM7mftFlPOdgCM1wyuJByeNzcpZxOwIl0DpECoFO5ZAozKABzjBm+R5q+BBGo4yoNwgPnSRRnME3HMxT5zAXZtDlYqxOMjGFarm30krhnHoNXVqAduIAgTc8TtKvEpUW10UAUlns8Qn06hx4rU6RyipYFtbhE3GWtYvsAIQUGIemyDbXNv3eMp3FTCeR9V5lE9J5pGMjqr0kqHMjGAaIcP1aU5lBDB2g7RQiaKKSOQyhUEYCJQRSK3Tko4TsXFtx9HNnSQohBOl0mnQ6zeHDhzdJuFuWxdDQEIODg6RSqW2THzslvEaj0Se8g8Beicn3fa5cuUI2m91SHLQ9n/ag4Af+upUhJUGgkMTVHm19ulDF7kmxK9OpdDxIZ7XZS+qmFJT9CE/3ZmYNv8FyJHA3/CSDSZOlisdSK2vbRsKUZG2Dm0v1TpmKQmBKwUja4vZyvTOg25KCtC1JWwa3V3pdWhPFfMXrJC4GEwZupLi1EpOfLUEKwYOSx4B0+fecVbQWcbxOA8kUUkrMxhpufhyrXsOfOI61OoNKZNCFQRLFGcJEmuTAEPWr1xBozKlj0Kysk11hGDObw725LplmjE4gTQOr3CKbZhXPThBkB8ioBhQf98rQD4wgC0Oturou2AnM8bjtiw0KNCI7gJnLYbhrqMIhqK+tvzl2FCOoIRslVHYIqnGrpx4+jAw9ZOij0gOIegmVKmAYcSY9Mix06CPtRKwsHbiETqYzhrP9MwopEHrzSICdYqOEu+u6rK6ucv/+fZrNJrlcrhP/21j6stMYXq1W69fh7QY7UUzZKSqVCleuXOHUqVNPbBE7qEE+sbsmCIIQdOyWt3thTdmbpJBC4HcpdZhSUPNDzK54ndGquZsuu+SM9Us8aQiKlRpVFf8UeUfSjBSOIUgYklstF7XihiSseGj2eNbm7nKDuVZNYKRhIGliGwazZZerC17PfkGzXPOZi9bFASbSFgs1n5srPqeH09T8iOGUyb2iG2emBYxnLCpuRNmN3/u/RjMYKsIyBG6gMRJJMC3M+ipBfpRUfYVKahR79jLh8CSWV8WortAYnCQbVBGlReTAEK5pYZZaGU7Twpo6Biuz6NUq2AmEITEnptCL0z1kYEwcJiOMjivchp/KYaeSGPUV9NAUnV9CyDgp4ZY7GVhdGEasPI4TC4eOYjRWke5avHnUStok0sjCMIZXWd+JZaOFRIwciS3Z9k+rNTqZw7BMZOtopVdDZwfj+CbE7q20QAcowyZv2ygt44lwHVtv/0gkEkxOTjI5OYlSikql0plh0S59GRwcJJvN7jiGV6/Xn5uK0fPAC3Vpd2OJzc3NMT09zdtvv73tE+cgXFrXdbl3/wGnz54lmUzSDBSe66LMuPg40jGpBa2RiCuNALv1+DYFNPywowzsGPEM2LofstIqSK5FEik0aRMelJoosf4z5BIGGW3wYLVBs0umPdIwkXV4XPa4Or/e6gSxW7tWWmMp6pXwOZSN43ofzlZIOyYIQUJEpByLW12WXs6RVP2Iu8U4djecMqm6ATeXG5wfSTGethh1Fxg2K1iGpGXjguVgNkpEmQEMr06QLmB7DfxDJ0gUZ1GGTXP0KLlKTG5idAqzVCa1HLdwGROHkaELy7GVJ6TEPnEGtTjdU0AsB4Yxs1koLaKHpzo1eCKdwxwcxirNI1r9so1aBQdQA6PYjonR1SkBIAwDPztEJmMjN8TqqK7GVl3YQHaTHSB8F4YPYwS9sVCBRiTS60kKQKULSCvZqsGDyMkgiTtvtLTi6W1tZZoDIruNkFJSKBQoFAqcaJW+FItFZmdnqVarSCnJZDL4vr9t6UvfpT0g7JSYulvELl68+NSq9P0SXlti/sKFC50ZFBsTL41AY0lBgMZtCQa4oSZjS0rNkFoXUWVtg0dlt+NeQut57tW5V7NArLsVSVPS8ELuF3tLUGxDUHBMFsoui7X1OjxLCsYyFtcWqgym1snOEXGc8Mr8+gNlLNnO+ioW625nf4Mpi5V6QNmNM7CTeYcbS3V0y2oMIsX8WoU/XljCUhIlTUwp0a6P4dcRTgItJKYhIPLxk3kSC9fw82OYhGQrC5BIIgdGEKUFhJEmtBIkJw7B6nrvqhw5FI9/FALfj49PpNJYY5OwMgulmGiEimJZpokjiLUFxNpCTxIjnXCIDh0hUS8i3A1kks7HqshBGeFvkMtK5RGZAtJ2kKVestMDE/F+bQfC9XIUlRvBQKGdJDRjwlOpQjwBTgWgNZGVjDO4CCLDXvd4pGSH3V0HAtu2GR8fZ3x8HK01d+7cwff9TunLwMAAg4OD5PP5Hlf3JR7gsye8MMmGnRCT67p88MEHpFIp3nrrrR214OzHpZ2ZmeHWrVu8++67naxv1FpKC4ltxDEy1eqntQU95BZEuqcJP2MbPK71xt5SlqTacCn31g8zkrJYrnrcWGqQd9ZdjfGMTdUNubpYY67i0faSJ7I2QRRxeb5KpGMZqZwtOVpwKDYjpruMwLwMCHyPB5V1KfkjhQRuEHFzqU6pGTCUNElakuuLdZTSHB9MsloPuLHU4M8ebuBoHwwLU0qilqCpQUCQzJHwK/iJLNIwsIIGzdFjJL0ytlcjHJ7CsExEaQEQmIUCdsJYJ7tMHnPyOEajBPU1pGmAYWIdO4PlmDHZtSElMp3BymaQpccdDTwg7mmdOoElXGxT9IRSlJWgmR/FNCKSbgnfWr+BtWHB6HGkZWJ4tVapSOs904HhIxiRj9RR5+GkEeiBCUyiWBkmaBUbJ3PI1nhLqQIiKxGv3zoWLeQ6OUtr04iA5wUhBKZpMj4+zrvvvsvbb79NLpdjaWmJr3/961y+fJnZ2VlmZ2f3VZZSLBb5ju/4DoQQd4QQX26NVdx4LG8LIf6dEOKaEOKyEOKZzrV4aWN4xWKRGzducP78+c5gkZ1gLxZee1RdFEVcvHixK7YRz2sNI+IaKr0uvCkAL1q/4ZKm4HHNJ9MSw4zbw1wiDcMpi6V6QN6WPCo1CDEAg0LCpOZH5GyDawvrDJVxTPwobiu7PL8+btOLNEcLNs1QcW2hdwzneMYmYUg+nF23ThxDkBU+9ypwYiAudrZFRELozv4EmpQhmK+4eFGsYjyecbi+EM8t/Y9OwmBQQRrx4KFIGghhYLpV/OwIqdoy1ewh8s1lmk4W306RXbmBZ6dRmRyZWitTWhhBSpBKYbSttPEjiNI8rK13LEgngT04AKtdRCcExqFjyKCOKD9GWSa0HxhO3EEhG6vI+nL8w6RzqEoRDBMxOoXtlkmoZodsfNPBCRvUEwVSCbs3Vldfi0kqMxCH3vz17LdoltGmjcgOYXRNPpOhR5gewDQk3WWWynQwulxXIWMlmdD3sR3ZIryDi+HtBt29tKZpMjIywsjICFprms0mxWKRH/qhH+L69esEQUCxWOTbvu3bdmXt/diP/Ri///f/fr785S+fFkJ8Efgi8F9s2KwB/Cmt9R0hxCHgG0KIX9Zarx3MN+3FC7PwnlSWorXm4cOH3Llzh/fee29XZAeb5aGeBs/z+OCDD0in07zxxhs9gVxBy52NIrQ04hGLrYvcMmLrLmnFXRLztdilsUxJ2pLM1/xOh4MXabIm3Cs1CbtOedY2CFpWVjcipVmpedzY8PrRvEPFDbi9vP66JQXHCgluLNZ6pKEmMybNpse91r08Xws5krNxI8lcKwyVMRRpHfDJXJWsJRjP2BhCcHO5QcIUvDMg+aahCEOFGEKgEAjTxopchGViulWa6WHyzWXWshMkREQirFMZmMI2NZnGKtpJIsaPxImDRhmEppEbwcpkEMW5eNANsXimMTSK4VfAXf9+xqFjWKNjGNUlROt1mRuMuyemTmBlHMz6csttbP1uQiPGjmDmC1iN1Vhmvwu2bcPoUXKOgal7H45amujRY0gVItWGB2cigxgYj8muCypVwEikesgudHJxMXbr946suExEAE2/e5jJ8yc7eHJZihCCVCrF1NQUP/dzP8frr7/OF77wBX7zN3+Tv/W3/tau9vELv/AL/MAPtDU++WngD23cRmt9W2t9p/X3x8ASMLK7b7NzvFQxvDAMuXr1KrZt73mYz24Kj8vlMlevXt2291aIONBNECANaERxS1Cj5bpKAWVvvS3JDxVVL+pxY1Xos1BuAOvB4ZyhuL1UpxH0ZndH0hYfzVWYyjvUW0Nmso6BLeHDuQopK7YiFILJnMNixeMbLatuutRkOGOTEBHXl5q0b6acYzCUiDst6n6E1prTQ0luL9Zxwzg+6Sif+0UfhWA4IWn6iu89GpE0dOvG12AnESpEmBYhElsaiMinlhljwC/RMNM0rQQDpVtxO9boYYx6MY6zAbowjmHa5Fcf006lisFxpCEQ9a4EgmkhhycwCBEbkg6YNkZ+ECOsxRZdF7QQiKFJpBQYxQU2QiezBIksyciDoLnhs5IwO4xFSN1tku3yTLSQUBhDRh6665rUgMoOYwoFkd+x1UIn2yG/yDDjCXJta1ArdGvwUnyFvFyEtxGu6/Kd3/md/Ik/8Sd2vY/FxUUmJiba/1wAtlXfFUJcIr5J7m233X7w0ri07RaxI0eOPHXu5XbYqUvbzvq+8847T+wVlCLOjgohiAIP0zLRgGOst5MJwJCSuNsW3EjhmAJaRkBCBzwoK8bSaZotmaWCCbeL8d+PFBJMr7kMJk2qbthxNRNmfDEeLTjcXKzRaMUKG4HitdE0Sms+mut1aw8XEtRrTW4318n2zHCKB0t1bq65vH04T9pWDDgGl1ufzdoGQ0mLQBgofI7nLW4vN/lz5wRTGUlQrWGhEZZNKCRpEVIiSSGoUEqNklMN7KBKMTnKQLCGiBT19BA5R0K7FCQbN9Yb9RKRap3r/DAykUBuLOgdPISVU4hulxbASiBHJxGNMlqE6GjdmtVCxkSnAqQXnz+VyscWJaCdFCI/inCrJJQHAqJUAdGuq8uNIE2DRBQAgqwh0FGsWNyQDmYiRbLlwmqvFmdWpURnhrBEq0dWKyIrGbeStdrIIE6yKDPRITwlLQwzvj7VCyI72F2nRTabfeL73/7t387CwuaHy1//63+9599aay2EeGLIUggxAfzvwA9orQ+mN3QLvBQWXrtF7I033iCXyz3lkztfdyu0xUg9z3tq1ldKiYoUaI3RFZ/ROs5wNkNFxVufa5G2JDMVD0Ec0wvdJtPN+EOL9YCcYyA0PcW/XhhxOO9wbaHWYxUWGwEjKaMnJgcxQXp+xNUudzdtG4wkTS5Plzk9ZHVem0hbXJlZVwYRWuN5Ibdb7WzHBxIslj3uLNUZzVqcGE5zbb7Gt4xpPj9hIqTECD2kFASGjaM8mkYSy/MpZ8YZDNao2nlMoRkKSjRlgrJMMRotxpGZZAaRG0ZWliGMM8a+hjA/QjqoQhCTkwYYmkIKjWxWwcmuB/OdNHJ4AlEvrXc7uLU4/tUmushHer3kTzqHDjwYGEd4tfj9Ln4Rpo1O5hCpHGbYXM9OAUKFqMwAWA7pyOuQVfscliKDTDqHIza7w6KL7DRxwiSuwWtJiZk2WTseBvUiNY93Wofn+/62E8t+5Vd+5YnvjY2NMT8/z8TERJvQlrbaTgiRA/4V8F9qrb/y1IPaB15YDK+dTb1z5w7T09NcvHhx32QHT+7dhfjH+8Y3voHjOLvI+gosEU/xgnXhT0PEsbuqH9EIFIOJWJATWhd6o8pcc/1GsQ2BLQR3NnQ6aKWZK7s9ZDeZc1ioNPG6MsCmFJwcSHBltsKtpXqnyPXkYBKvGXD9cXzDrzbh5GAC5Udca71mGYLXRtN8eL9E0w8RaM6PpLmzUKfcDBlKmUgF82WPiZTmz75mIYREaIVNiDIdhBAYaCJp4UuTVFhn2RmOLbzIY8kZwTYlw8IFy0GMn4hjVpXY7dSpPI3UEAkD0m2iEwI9cgQxOIHhVhDNFmkZFjqZQ06ewkjYyOoyojsOpyIYO4EsjGB4VWTYW8+prQQkc4h0Jn5/Qy40NBywk3FmNux1bYFYACBTwFR+D9kBROlBciNjOGbvrdM0kvG119UbG1kppJC0nVdl2p2JdS/SnYWdd1rsR5vve77ne/jpn/7p9j9/APiFLda3gZ8H/pHW+p/ueWc7xDMnvCedMN/3aTbji+299947MN2vJ+2vUqnwwQcfcOzYMU6cOLHjH1IAhhG3UsXu7HpZSjeaXTMKjMhjVTkkWzeFJQUq0txdbdAeN+tIjSPh2mKNXKsMRQBHCwk+ni2z1gw7JDietXEEfDgTW3t1P+LUcIpTAwmuzJSptFrabEMylrEpld1OAuNQ3iFvGXz8qEwQaU4NppjMJLg8W0EDJ4eSVBsB08UmU1mbL77tkDAllmUSBCHSkATSIqma1O0cBVx8JcG0GI3KrNiDBHaaMR2TlZEfRiRSiPJifM7SBfTQFFKFpJUbE0giDWPHkANjGI01pLdurapUHp3MYFoyJrou70bbSdTgFCKVR9j2ZqJLZNBDUwgngRG6yA0PPu2kcNPDmMkEpl9FWL1qIyqRRedHMYXCCDckJkwHnR/FsgxMFcRxPeLsq2tlcOy4xq7ajK1nXzrI1hwUqRWRMJGt6WZa6xfqzsLOXNq9TCzrxhe/+EW+/OUvI4S4A3w78GMAQoj3hRA/1drse4FvBX5QCPFx68/be97pU/BCXNp2i5hlWZw+ffqZ7689yOdpXRpbQYi439E2DQTxUJZ2xajSsZWWMCXzVY+CqSkHioYyCLViPGMzX/HQSvO4Zf0dG0iw1oiTGNVWGGqmFcMLI8UH02udfT8sNrkwluHrj8odqap4jSTaj7jc1XFxuJCg3gj45FGZt4/kma8FXBjPcHU6JjqAUyMpIj/iwWoDrTWvj2f4eLqMBs6MpPiDR2AsBbZlo7SAMECJuGVKmw6ODlgzMlhUcQ2HppFlRDeIEMwZA4yaAaJZQYQ+QSKLkcphNNbWhQBa4wuFvYaoFTvHrgEK47EL3SgjI6/9anyeU3lwMkivinRj0hfGuqagzgwgnBTSrSFaMTwCF2UnEL6LdtKQziP8OikRy2VBK7YXemgrgU7l4zGKUUx0IvJRVhIRNNGZIaQRd8fQ+nRoJpCRj3LSdD+qs8kEjUiTsNePL9IaZVoda3FpZZWB4dFtr7vngR0/9Pdo5Q0NDfGrv/qrAD03udb668Cfaf39Z4Cf2dMO9oDnTnjdLWKffPLJM92X1prbt2/TaDT2NchHSEGzUWcgncGLBFqC8OOylMGk2bGw3FDhGAYrrar7UjPAFPCosm6JKBVnU7vHXgwkLbSKuNnl7mZsg7wtqTWDDtlJAedG0nz0cA3LiC1PpQUXxjN88qhM1LIIK42AE4UkHz1Yi48fzWvjWT56tMZEIUHKloynbT6aLqO15s1DWU7mNOcLIbZtEel4X4mgimemyekGZSNHQTcRIqKiTUZkiNIhC8YAWSNiSrTaqFI5IiR2swyNeP++tJGZAUy/hqgXOxPbtGFBYQwRuOvacwB+M4535UcRhkQ2a4gNMTqtwjjZYJgYQRO8ek/HBYBOD0FGI/w6Mmhseh8hUPlRZOj3SDp1Pm+nEKks5haxdi1NtGltcpG06WDbZsdbVVoTCBNTyLgMSwhmHi+8FIT3NOw0sfEq4blladvFvWEYdpIFz2pyGcQu8+XLlykUCrz99tv7ikUYUrI4/5iR0bG4/atVWLzmhTQDTaneBGGSSjg0u+SCkoakSxuUiazN1YUqExmbh+W2xZfkw5kyoxm7M7viSCHBQqnJ7VLAaDZ+fThjY2v48OFa/P0ieOdQhnIj5MMWsQGcHEkxv9ogm45JZSBpkrYMPnoUbyOBAdvg5kINS8Kp4QwycPkTbwxgm3Fnp5QGgeuSNCwkGs9IkselaGQYEB6Odlk08qQMmOgQXR5pWLGV1YwTJQ3pYGfy2G4F4a4nT3wMrKEppFvtzI9oQ1sOIjcMTiqO6QX0EJE2bcgMYqAQtRKoDS0rECuY2E58PNXlTUQWSRORHUJKEF5zEw9qw4otPsNAblhfCxn3xrbaxbp7YiM7jtlpYbSSFDFpOq3OlDDSLK+WqFarfO1rX6NQKDA0NLRrLbvnhU9bWxk8JwvPdV0++eQTxsbGOHr06DOfXBZFER988AGnT59mdHT/T9K4v9PHkoJQaixDUPU1SUPQcJukbJNKAL5SVLwollhPmFxfqGEbAseUDCZNbi3VCZXGa1liRwsJvtYioscVj2MDCVKWwcfTax0JoaWqz7tTOT6ZqdDsals7O5qmUQ+528rWSgGvTWT48H4JDRwfTZN1LGZXGyy25OHPj2e4MVPhzWMFCkmLjCVZLTf4yT90hIxoIIgnpTUigYoiGjLBoHRZ1mkMI2REuCypBNp0GBcNlIZZlWYgYZIJPQg9FOAlCigVkiaElguqEejccCuh08DYSHS5YYSdQDYrCLdCZPbGdHVmAGEl4oxrEH/ntssKscWl0gMYUmOqEEK3Z5obxDFAVzqkbIkkBAWRnUT4zdYaBipdwEBjCAVKoYQRt5URJyEwjDgJIgSRtDCUjxIGykp2XFbRIjtlJuKxle3rSBrYiVix+OzZs6ytrXXknNpadkNDQy+NpPqnTRoKngPhKaX45JNPOH369KauiWcxuWxhYQHXdbl06VKnH/agIKXAMUU8ZxZF5NZJ2AlKjYiRlMGtYuySHsrafNKqc/MjzbFCgq9Nr8fhVhshQ9Lng+l1V9cxJTnb4GstCw7izOzpoRRrVa9DdqaEMyNxxtUQUMg6mIYka0m+cT8mEUGsQnx9LiYb2XJp25ZgFEZEYcRK0+N//eOnycgmWomOjoGQEjNsog1JTaQYlT6LYQLPEow5EeVqwAw58mbEYSMCInSrzEN5DZxGZV09yU5BpoDwm7FbCfEN7a6hLQc/kcNQPnbkQXP9fAjLiV3e7BBChxihB36tN7HppGNrKpVDRC6WDnpqPUTgxq6n5SCSWaTyyWx0W60EOnDRqQGkAdaGjK42bVTko+z0pmyvQKGkhTad3tIVIDQSGOb6da10XKnZ9mi65ZqATjvX3bt3cV33mVp/O01EfNrUjuE5DfH5pm/6pq13vg/V441oqyBXKhVyuRzJZPLpH9olhBAYQqK8KpEXkM9liHmoNRya2MGpeVFsDSpNPmFye6UeS3pHMYllLMFaOaKdJB9ImohI8cHDNfIJk7IbMpSysDRxvE4KHBNySRtDaT5sEVukY0vv8kyZhVYcMZc0GUpa/NsbKxwfz1APIgZss0N2FyazXH1UZnDA4e9832mytsDyQ4SUKDRKSEwVEUmTAemxopMoYTKejGgqyUyQZMCyOSLjOKVvZ7CcBMKrI70aBhBKA50ZBMNAuNWOiwstS89yEMOTyGaVpOpVhtFAXTgEfkTeSXSsuZ5thIR0AawkUq8gtigt0cRKzNq0Mf06QgebY3RCxjMysoOdntdNa0gLpLmJ7NpST0izZ9m2ZdeTVNEQtvSNnxTCSSaTPVp23dafbds9Ssb7xW4G+PQJbw94lnMtIJ5Fe/nyZbLZLO+++y4fffTRgQ3y6Ua7aNn3fU6de42iq/CaYdwTqxSTWZuKH3FvucFUzmFmzaXqhqw1Q04Npbi/2iBtidZ8CYPhZNynu7rWoNHi/alCguFAMb1Up9oisUBp3pnI8fWHZdyulrbXD+W4/7hKpRkghOD4SIrlosvNYmxdTuQc7szXuFOMhQDeOZLn6/dLmBJ+8o+eYiBlQbOCKQU+kqShqUcCS0WEQlKTKUaMkLXIZC5KMe4oBsMIKRQPghRDCUmeEFqZUV+YmOk8IooQQWO9wR/QyTzYCWTgxrVotQ0STKl8XGQcuORUSGglkeVe7bnQTmMkMwjlI7VCic0ZRG06seS8jjDQKMuOj6ULkTBQiSyGjGsLN+YkNBDZaRAGWzUHKGmhWlZdJAyMlsurEbFr27LIlG5Zey2ya19DTyObray/1dVV7ty5g+d5+7b+djPA52Vxrw8Krzzh1Wo1Ll++zIkTJzrKrAc5yKcNrTUffvghAwMDnDt3LtaLI8KLFLVAUqqHVIMI0SLax1WPwaTJlVar2ELVI2vFjfltHBlM89V7xR7V8craGg9LiqAVgJICzo+lufO4RtMLEUKQT1oMJgy+fjcu7TgxnmEgY/HhvVInU/vW4Ty3p9dYdSMSluT4cCYmO6H5x3/2TUZSJlEUYEuNkBKBxDYiakrSDBTjVsRi5ODhMJKMGECx6ErKHhy2EpxwFKBQhkU1hFTCxiGCoE4YxUStnTQkMsjQR0Z+hxjbYw+1k4ZkLm7UD73O+wBGq+5RW0l0MgNRhC0URF21d60SEo2AVB5hWcgoQHQP1emq42tEYGUGMIXG6CLKyHAwW2KdoZUCabS6auJzGcfqghahxSIAnXhdu6hYGLHFuWEqXVzmvf6aUmrXCbRkMsnU1BRTU1NEUUS5XN5k/Q0NDe3Yq/msDvCBF9haBvufTbu0tMTdu3d54403evr9DspybKNer1Ov13uk5YWApCUZSVmsNgLySZOSF5Iy2m6qRcNdN3GytiToug9PD6X42v0S+YTFSt3HlIITg0kuT5c5P5rk1rJLytSkhOYb99cAODORQWnN4mqTW62h2wlLMp61+Le3WyMGpeDCoSwf3I7bsC6dGWKl6nN1pkwmKfgHP/gmQ2kTJQSWahIhsE2oehrfkOQtzVID6naKCUfRCBWPGiYZK67R84MQlKZiZEg7BkboUjAFbbdemw5kh0CFGIHbQ2LQ6oJw0vHYy6AJ/hYuq2lDMgNCIEMPoYItmxI8P8QlQS6ViAVIVbjJbRWhh2ckCJQgk3Va62xYzDCJRBJlmJ25E72LCCLDAcPaRFZSKyJpI0wb0UV2WsdnZKOi8X6rEgzD2NL6u337Np7ndYQ8t7P+DqqP9lXECyU8wzD2FMPTWnP//n1KpRLvv//+pi6N3UpEbYeVlRVu3bpFMpnclPE1pCTnCE4NONwregwlTe4Wm0xkY9HO2YrPZM7BkvCN2QqOKcnYkkO5BB8/WkMD43kHN4woWAaXp+NY12KlyWTOolQLma2tnx/p17m5EHYyuON5Bx0pvnprlYRtkLBijb2v34mb4k+MJok8j+mVJocHE/zk958lnzIwpCSKAlKGpikMFIqEKaiEBgVbM+aErEUWVc9gPKE5akOg4EFNsOYJRjMJ8jKEKCYYZSfBTCB0hIx8dOgioq6BRolMPKtCtd9vojeqlVjJuPcWHdfEKZ9IiM0uq5VAOykkgjQRDsYm2XUAZdhoO4mOIsIgIpPYTDIaEW9jmMgoYCsKiISJkhZSyk2cq4SMCX5DHE/pXje25zMHXIa10fprx/7u3buH4zhbWn+7mVjWz9LuAQc5yCcMQ65cuUIymeTdd9/d8uI5CJdWa82jR49YWlri/fff78QFN14oQggKSYvJnMILY8UUxzK43nJlM7bBVx7FSQYvVLwxlua3bq92Pl+sB+RM0SkvARjJJgkDRbEl526bkpNDST5+UGIkZ1NsRBzOCWaLddwgZr9/78QAN2bK3F6Nb/43D2e4fH8FKeE73zvK//PbD8fSUlJimRA2XQxb4EVgSJNCAlZdzVw1ZNI2GbM0fgQzTYlGMJ6EYznBbR8sCbVIkMjkMHWsl9ctfY4wUKk0wrQQURC/30VwQgi0YaEsB+EkEVphRH5nBkQHlgOtTgjsVDxmUUd0p2KFaXVihVoYBIaD0nH3C1qBFOhksscV1tKMuyhiysNQUSxE0OX+trOvgrhvOkJ0iXlCZNhIw0ZK0SPVvh3ZwcETXjc2TjHbyvobGhra8THUarUDr3R40XjhFt5uiKnRaPDJJ59w9OhRDh06dGDrboRSiuvX43GB77//fqeM4EnBXkPGPayNQPE5K8u9osvp4RS3lhus1D3OjKS5uVTnaCHB1x+VGUiZlBoh41mHctVjqpAAYkJ4bSzFh/fLnBhJx8Oxcw6m1nzUysweHkxzeBi+1kWaJwYEN+8/ZrkZWxpvH8nywe1YmOI//e7z/JH3xhEiFicVAoIwxJQSpCBtCRqRxAg1Q0lJw/VZ8iSGkIwl4UgrhFPxNY9qGtuUKNMha4sOiWhayQLDiV1KLWICC3qtdy3NuEzFMMHxMIMmhBtIrr2elUIbFsK0kCpECPVEPXTlpOPhOCrE3uLh6rkuliVoRALDSWBJgdygVaINCxF6PUTX/aAWMh6mrYSBNp1eoVjRGsuJYF00bGtorZ8Z4W3EVtbfysoKKysrCCFIJpPbxv7q9TpTU1Nbvveq4oXH8HY6uWx5eZnbt2/z+uuvP/Wps5+5Fr7v8/HHHzM6OtpTJP20NU3DYDLrUPcj3h7P8Gv3Vjkx4PD12Qo5x2Qia3NvqY4bKk4MpUlZPssll0ozpNoMGHAEw5kEH96P3dr7y3UunRjgyoMS5UZswiRtA88PuLu4Xmz81pEcX70xD8C5qSSB5/HB7SWStuT/8+e+maMFCynBMQ1CrbGloF73UAo8Jck6gtDTrPmSehTLHx3OSAIFjxsaD0nWloylJNkU1GpxvFFLK5Y+EhIRhQgddfpQddsSEgJtZ8C0QKtWQiGCMEKJ3pteSxNlp0G211MIaSL15pYwLWRr3wYIkIECHW1uHWutm8ykibQiuU2uQAuDyM5sIro2hFatchNz0/tKa7wwHuaktcYwjDixsQWxKaX23OK4H3Rbf/l8nmo1zuTfvn0b3/d7Mr/t4+4nLfaI/bi0bcn35eVl3n///W21uXaz7laoVqtcvnyZs2fPMjw83PPeTkg0aRuMZU0ergX83uODuGHElYUqNT9kMmtTb5WUrDVDIj+i0hrSbUnB8eEMv9tltb0xlWOl2OiQ3VjegSjiG3dXuXR6mNuLdQ7ljA7ZjeQSFBKSr8x6fPfFKf78F86TECGOEZOdFBCGoKKIQUdTDiSVAIQhGUhKckqz0owIhGTWhbGU4HBh/XdbrEckTUEmW0BFAUKFyGhD2xWiZenZMWFFQWxJhVs81IQRl36YNigdi3eqsFckrstXVEZseUGsVyfRoEPQMbF2D98JFYhEOk56aBUrRLfavboRaU3NizCdBLY04sHiG7szhIgtV8PcTLyARqKlxLRiZZEoijrXSRiGHe+gTSLP0qXdKaIoIpFIbGn93b17l0QiwbVr1yiVSnuO4RWLRb7v+76Phw8fcvfu3S8D36u1Lm21bUsP7zrwz7XW/8nev9nT8VK7tFEUceXKFWzb7riWB7HuVlhcXOTevXu89dZbWz7VnkZ47Yt9OGFRskKWmxGWhP/088eZW2vwd353huGMRRhpylWPwVRcmJqxJSlD8sH9EiM5h+WKx1uTWb56K86ynhrPYBqCh/MVqi3Jp3LdI2tEXH0YW4Mnx7Msr5RYKgb8w7/wrRwbS6N9H8eQWIbENKAZKLQQ+K6PlTHJCE3JU6w2FfUABpMSS8J4TtIMNbM1TSNQ2KZkNCUZy8Zko6MIocL4ZjeszlQuoRWoEEHUseZ6zo8w4rm+htEhMsNvwAYZps72CLQ0iJxsvB4qtg5hM/EYNkQBFS/ESSRxbKNFXHp9W2nGld+0yNOwQQiyXWaf63odlZNQ6Vhl2VzPzHZ71BoRk2jbA+hql4SY2NrkF0VR53o8qEL7/WBj0mJj7K/RaPBrv/Zr/O7v/i6/8zu/w3d/93fzx/7YH+Nzn/vcjvfRHuDzxS9+ESHEr7L1AJ82fhT4rT1/oV3ghbu0TyKmdrzu8OHDu44jGIaB7299I21Ed8b34sWLT2xz247wtNadC1lKydmRNAsPS5RdRT1QJE2Dv/pdp1mpuvyzr89xZTVgtR5wbjTB4lrA9Gocv5ssJBhMGHy1y9Iby9n89rXFTn3d+cks92cWOX90iEfL8NaxAoHX5K/9wDfz2tEhUgkT3/VIWaI1kEPE0kZKoPwwLkHxNfmEQdI2qHoRVV8zU1NUGwFRUjCcMjjWZd0preP4mzBjeXXTQqgAoXVcMrIJItaP65BhFGdoibpIp9dS1yKODSINQMezM4gQOnxiREzJmHAjDEwhydnb1KEJEUuwS6MzTGcj7GQKrSICDMzEulhnz3ESk7dGbOlCt7HRqtNa4/s+a2trDA0NEQRBnPl9guv7LKGU2lZ/MpVK8Rf+wl/g448/5kd+5EdYWlraUsZ9O/zCL/wCv/Ebv9H+508Dv8EWhCeEeI941sWXgPd3tZM94IW7tFs98VZXV7l58yYXLlygUCjsen87zdJGUdQZGvSkjG/3mhsJT2uNUqpTTNr9Pb/1aIF/catIzY8IDMFKw+XYQIIf/vfPslj1uDVf5ZOHa1x+FMdS0o7BWs2j2bLihIC3Dmf59U/mODuZ5/Z8jXeP5/ng2gxKa1bLDf6r73+bk2NZDg1nsE2JaUiaTZekAZGOjyVpSRxDEilNPQwIlcYVAg/IWpJs0iTb4ol7fixnfq+scMN48EzeMTiUi+vXBAoReZ1iW4iJKm6xMug010UBUgVPIMN1Symy4yLftnUoiRv2e7aVZkftOLYS7Th2Fw8+RACNeoN8cvODSguJMmyQEhBP5Cfd2o+WJpgO1hYbRpFifmmJWr3JwOAgAwMDO+5ykDKWhrp+/TpTU1MMDg52rL+2BQjx/fA8yG83ZSkjIyO89957u97HTgb4CCEk8BPAnyQWCH3meKlc2nYpyOLiIu+99x6JRGKbT+983a3gui4ff/xxJ47xNGwkvO3IDmKS/33H8/zL20XKKh60/bDk8qioODaU5PNnhvk9Jwf5M992jLlSk/lik393exU/ZbGw5nJ8OMnXbsWZ1lzS4k/93iOgFX/0W76FY8NZxgfTmIYgVKojI95oelgi7odFg2XIOKkgJabUjCQlfquTouopqr5G6wjLlCQtScaxGMqYbJzf1p4foTUIMxFP7tI6jtNpFRNglwS73vhZw4rJpCV/LnSEFq36uW1+p5iwLDSJ1ud013leP9+pVDKO59EmRSv+3vQ+bDeG6GKyNltW39ZE0/7umCZjE5PYpVIn1uU4DiMjIwwPD297rQZBwMcff8zhw4d7uoGAHtLrdn2fpfW3m8Lj7WJ4BzDA5z8G/rXWenY/8m27wUvj0kZRxLVr15BS7nlEYxtPs/DW1ta4du3aroZ8dxPe08iujYxj8vkjOX7pbpGFaoglJIOZBLPlgCuzVc6MZZjIOZw/ZHN6NMvnz46CjNd3gwitY7EBQwrQce7TMuOpWFprIt0id6UJggBbghCxNWeZcXypGUQESrNSrnNqyCEJdOe43UDRDCNqbojvR1xdDIg0mEKQTxiMZMxY7VkIlNZxHdwW51YDSBMtDbTSYDpxIkHHtYnx37us+Q3Xf5zwsFvEGCchhFYgrU72d8ssLCANkwgzzvDyZI+io1PXafrv/e3W1e26SB7ZE6fbGOtaWVnpDKseHBxkZGSEfD7fWbed9T927NiWUmVt19c0zY7r2231RVHUIb6DIr+Dai07gAE+3wx8XgjxHwMZwBZC1LTWX3zqwe0RL4WF17a2Dh06xJEjRw5k3SfF2x4/fsyjR4949913d6Wo0j7WdnKiLdb5tCfTeMZiOCjyIMxSSDus1FyGcwnSGZtbS3UWaz6jaZuhtEXGiclCa0EmEd+8SsejnKWM96XRcT2tITBlTG5eGJA0W4F1FQfqgzCiHqm4q8KLcCzJQi1EKUXCMnBMSdKUJGyThG2yXPU5O7x1o7huHUfT8yEKENLAtB0sy2zlBnTHzW13bgm1dXBeA7REMiMr1bLENGjVIsaN9XabiTHUUG96ZLKZjiWk25/dcp9xAkTLVkxxm99MI1pEt32MDuJY15EjRzhy5AhhGFIsFnn8+DE3btwgk8lQKBSYm5vj1KlTm7L+W6FNaIZhYFlWh/ja11z779uVvewEO80UR1G051kz7QE+X/ziF+EJA3y01p1ht0KIHwTef5ZkBy84hieEIAgCvvGNb/Daa68xMDBwIPvbyqXtlnt/2njGrdC28LqTE0+D53lcvnyZi4cP4dQcPpyvMV5IcONxmclCCidpUYs0MzNrjOfi8YuvHcowkIylw9uWnWpZeqYUBJFGozENiW1KKg0v7tONFH7YUtklHjRkGiaRUriBT0IKGl6EYUgqboAwJFppQq1RSlOt+TT9CEPERHp0OEWiPXGo1RGaNJ24oLhzUrfJWiNAGjHRtNxF0fpMxynVej3zuuUaMZTRjhECWmNKSd7pdSE3dkp0u6ux6kmr2X+LY+6Ul3QEAXfvXpmmyejoKKOjo2itWV1d5dq1a9i2zYMHD6hWqwwPD5PJZHYsHrBV4qO77GWv1t9OLbz9DvD53u/9Xv7+3//7EMfnvhdACPE+8Oe01n9mz4vvAy/UwpuensbzPD7/+c/vOV63FTZaeGEYduSj9iP3vrKyQjab3dGxVqtVrl27xpkzZxgcHGQSWKx63HhcYShtM1uqk3VMMimHQj7J43ITrxkQaMimLJTn89pUnsFk7Ko1vYBsMnavfKUIvIhmEJKxDYJIE2iNEgaRUp32NlsKEpZJ04WRzPZP6rvzmtOjGy28jYKXtJROWuQgBJFSBGFIGMZKLpZlIQWxS936zFYkI9ZXbO1JrBNUK8nQjrr1kOI2v52SZlx+0orJbdxyfUU6D4aY5J5uze0Gruty9+5d3nrrLQqFAr7vs7q6yoMHD6jX6+TzeYaHhxkaGtpV4gM2l73sxfrb6cQyeLKx8jR0DfCBroRE9wCfDfv7h8A/3NPOdoEXQnjt1i2lFKlU6kDJDnpjeO3ylmPHjnVnjXaMdkxlYmKC+fl5rl69Gs+YGP7/t3fm4VHV9/5/zZLJvm8sCRAISyBkUbBqVdRqaTEkaQWUeqvWBerFVr29Vv1pLV1ca2+tWpdWK61eCyaAIASsoq1XARUkG1kIkH2byWTPTGY75/dHPMckJGQymZlM4Lyeh0eTOTPznck57/P97DHExsYSHBx8xklhMBg4deoUS5cuHeL0vXXZTJ77vxpaem2oRDB0W4gJthERFkhgsD8OEfQ9/TS0deGvVWNWqTCbrUSH+hMfpGVxUAR+GhW9/Ta0GhUhflq0auiz2BFEEbtDQKtRERrgR2iAFq1azanWbpJjAhEEEatDwOYYOM7iEHA4RGwOAbtDRFSpOW20EKTTEB8umfrDzMlBaW3SJ9Zq1Gg1OvD/WlBNJhN+/mcK7ICZKImlGjRfByGGNlH6+r3Fr+o2VMMfkV9HM/BaTrgXvvbLqZwyWV3BZDJRXFxMSkqKXBGk0+mYPn0606dPRxAEurq6aGtro7q6Gj8/P2JiYoiJiRlX77mxdn8jJT1LnIvDeZzF6ybt8PkWhw4dcvv7SSZte3s75eXlTpWjjcTg4IROp2POnDnMmTMHq9VKW1sbp06dwmw2D3FW19fX09bWxoUXXjhiTt9PLpvNr/95ks5+B2FBfnSYbTR39hMdHkBMRAA9pn4cX5mCp5s6CAnwo9nYQ1tsGMeaetDYrVyYPI24YD+C/LX09tsHopkqgaAAP8L8NQTptAiCiLHPgtUhcMpoHmgRrwK+CrT4a1X4a9SEBfjRZbIwN36wc3pkU0Y841FJ/QZ2SQNCpMI/OAwBsDvsOL4aaqTz80OjUQ9+1kBiyVnMYol+iw1BFAkIChnIjVOpz8ilExkhCjvofWQ59WA0sLe3l5KSElJTU0dtq6RWq4mMjJTdN2azWe7IY7FYiIqKIiYmZkiJ11iMtvsbnvQs+Tud8eHZbDa3jl7wFby6w5Oio4sWLZIjXZ6YXKbRaDCbzVRVVbmc3nK24IROp2PGjBnMmDFDFtampiaKiorQarUkJyeP+nlUKhWPXDuPn2wvo9FiIzRAR2CQH21dZpoM3cxNiMLY3ktIiIY+B5hMdlSimsrGDvq6ewkM8Kexy0yfyYJarSZlZgQxQTqS48OYFh+Gv1ZDe5+Fjj4rXf0WQnVaVKiYERlERKB2yOwFiVqjeSB1ZPAWbuQvBeGrU2ako+TfiQJqUUCn1cJZfKV2x0ArfDncoRoo05IEVPo7CFoIGiPA9LWZ6j2BG0xPTw+lpaUsXbp0XPWngYGBJCYmkpiYKJ9Lra2tVFZWEhQURGxsLNHR0U6VVEoM3/0N/yeJ4dlM376+vnOu2zF4UfCkebSZmZlDvkgpNcVdgicIAhUVFdjtdpYtW+bS1n2w2I21Lo1GQ0REBPX19cyePZvIyEgMBgM1NTVynlZsbOyQE1ajVvO77EXc/XYJLWYbEYE6/IN0mM12jle3MS08gBZ9J9Ex4Zh7zWgD/ekwdhMRE4Optw99m4nwyHDsViv7ihpRadSEhQaj0miYFx3E3Kgg5kUFoNOomT8tQn5fu0PA0Guhy2THZLXhsAkDU8osNvosdoL8h54Ow6ViINXXOUf20F2gasD3p/rq/xGx2ez099vQ6XT4+/vL3/MZfjeVioBRxG7wDk7+eZR8Ok/S1dVFeXk5aWlpE+ofp9Fo5PNFFEX6+vpoa2ujpKQEQRCIjo4mJiaGsLAwlwIfDoeDEydOEB0dLVsvku91eNJzb2/vOdc4ALwkeKIoYrFYuOiii84QIHdOLrNarRQVFREdHU1AQIBLYufM3W8wJpOJkpISkpKS5DyriIgI5s+fj8lkQq/XU1JScobfL9hfyx++v4T7dpTR2mPB0dbHjGmhOBxqqlp6CAn1x97STkBQAG3NRqLjo+lo60BUawiNCKO/pweVWkN4TCQIAt0d3fhpVXyhb+MIKnpEP0S1hqgQf6JFC0nTIpkT5U9CZAhz4kKZP+1rk8tssRKoO/NUEIZo28CAhtHlbtAFKApfVWaM+OhAUMVfg5+//xmDrEd7ZWnnxqD/emv3djY6OzupqKggPT3drYOjVCoVISEhhISEMGfOHGw2G0ajkfr6enp6eggLCyMmJoaoqCinrh1pyJVarWbBggWyZTVa0vO5KniqMULPrselh2G1WkcMcxcVFTFv3rwJf7nSbIvk5GTi4uI4ePAgl156qdPPdzaZeDCdnZ2Ul5ezePHiMX2Ekt/PYDAM8fvZNYH851vFmFQqVDY7QToVQWHB2Exm7Dp/OvRGIsKCsZv6iI4Mpd9qQ6sCTWAQlv5+NA47bZ19+Ov86LapcDgEtCoHKgbmLnR09uEfHAYWE/12FaKlH7Vaiz8C8+JDuXPlQi5ZMvPsJqr0HY3wu9G+y+FTvkY8jqHJvgAWq5XGxiZsNht2h4OgoGAio6IIDQ11OWLoKdrb2zlx4gQZGRluD7ydDVEU6e7uxmAw0N7eLhf/x8bGEhQUdGaX6K9SskRRZOHChSN+j8OTnvPy8tiyZYu7fOw+84fzmknryUE+BoOBqqqqM2ZbOIsrYtfc3Ex9fT2ZmZlOnewj+f2am5vp6uriv5YH88fDfRjtAlZRQ7++E1GrQejtJzgqEqPBSFBkJPWGbtT+A9Fcu751oKOwfyAabQDtxi60Oj8CQwbmXth7eum3CoQE6OjrbMeuC0NlNaMSwWEXsApWLlkUxSVLBsrqRpIncYTfjiZjw78xYYRzfHgcVpa8r77vgYDWwECm2NhYeVdTW1srd9+NjY0lKipq0qOMRqORkydPkpmZOS7/mjtQqVSEh4fLN1mLxSKXu5nNZiIiIoiJiSEyMhK1Wk1VVRWCILBo0aJRz+3BgY/y8nKef/55/vKXv3jtM3kLr+3wbDbbiNUP5eXlxMfHO13iNRipV15bWxvp6elDssKd3eGNt3JC6q7S09NDamrqhJs5SnfrxuYWNu9rxmB2oAoMxNZnIjhIh8NuRRcehmg2QWAw/d3dBPgPjAnsbW8n2N8Pu1aHVqPF2tVBT3cf/gGBCNpANCqB/p5eHDYHGq0fWpWKfnM/foKF//5+Jjdcs3RCa3cnfX19lJSUsHDhwhET0KV0DmlX42wdqycwGAxUV1eTkZHhciWCpxAEgY6v6n07Ojqw2+34+/uTmprqlMldVlbGj370I/Ly8li0aJG7luUzO7xJF7yqqirCw8NHrDM8G4IgyLW3KSkpZ/jbDh48yCWXXHL2MqJxip3D4aCsrAydTif7QdyJKIr84u0iPi7Xo/X3wyYM5MfpVHasVhsWSz9R0eH09fQR4O+HWqPFaOzEX63CJmjQBkegFiz09/aiRsSuCkQQ7Kit/QM7bJuFQI3Ak3dewRXpSW5d+0To7u7m+PHjZ03nGI7JZMJgMNDW1obD4ZBNOk+bvq2trdTV1ZGRkeHTaRuiKHLq1ClMJhPh4eEYjcZR630lKisrueWWW3jrrbdITU1153LOP8Gz2+0jmq6nT58mMDBwXEnBFouFwsJCpk+fPmrt7eHDh1m+fPlZR9WNx4SVAiLTp0/3eJ//A8VN/DL/OA67Df9AP/osdrR+fqhVKvq6uggMjwKLaUDUtIHYrf1gNaP1D8Bus4CgAYcVu82BXeVHoGDG5nAQEyDyyv3XkZwQ69H1j4eOjg4qKytJS0tzOQ1CMn0NBoNHTd/m5mYaGxvJyMiYlDbt4+HUqVP09/ezePFi+fyW6n3b2tro6uoiJCSEsLAwAgMD6enp4aabbuLvf/87GRkZ7l6OzwjepP/VxuvD6+7upqSkZEgu39led/gJ74q/rre3l9LSUubPn3/W93QX30qbwTcXxvLQG0c4UNKKn84Pm7kbQaMhKFCHra8LdWAYWHuhvwc/VJgsVqwmCw5tMH4aEXNXNyqNDj+xD6ujn2syEnj67ut86kLV6/VUV1dP2A/m5+fHtGnTmDZt2hDTVxpV6A7Tt6GhAb1eT2Zm5qT7D8dCSohfsmTJkPN7eL1vT08PRUVF/OxnP8NgMLBmzRrUarVs8ZyLTPrZr9VqsdlGbhQ5nJaWFk6fPk1GRsaY+U7jbdg5GpIzODU11ath+gB/P/5wxyUcKmvkF298gbFfjcoBnf0iOsGCvc+IXdSgtfdiwx+Nfwg6oRvMbfTZ1QRiw9ZvIjE2kKfuyiVtwUyvrd0ZmpqaaGpq4oILLnCraTi8kkEyfY8fP+6y6VtXV4fRaCQ9Pd3nxe706dMjit1wVCoVYWFhJCUlodVqef311zEajTz++OPce++942rnPpXwmknrcDhG7G7c0tJCX18f8+bNG30RX/kjurq6SEtLc+oCKSwsZP78+bIwjtdfB1BfX09raytpaWmT7pze/UkFfy4opqXLhsncj90hEBwcNGDOigI9Zjt+WEEQ0OJg/swINq25lJWXLJ7UdY9EbW0t7e3tpKWleVVAXDF9a2pq6OrqYunSpZM+fGcsqqur6e3tJTU11elMgzVr1vDHP/6RK664wpNL85nt4qQLnsFgoKOjgwULFoz4PLvdTmlpKQEBAaPmEI1ESUkJc+bMITQ01KVIbGVlJXa7ncWLF/vUiW622Nj9SQXHqpqobmqnz9RPZ08ffogsSopnReZcLlsyDaPRiNlsJjIykri4OMLDwyf9c0g3LmkHMpnrGSvqK4qi3N1kstfqDDU1NXR3d5OamurUWltaWlizZg3PPPMMV199taeXpwieREdHBy0tLaSkpJzxmNlsprCwkFmzZjFz5vhMsuPHjzNz5kzCwsKGZJCPhd1up6SkhPDwcJKSknzalyEIAqWlpQQGBpKcnHzGWqV8P4PBQFdXF6GhoXJtprd9eaIoUl5ePjDkaBw3Lm8xPOoLA77B9PR0nxe72tpaurq6nBY7g8HA9ddfz2OPPcbKlSu9sMLzUPAEQRjRV9fd3U1tbS1Llw7NCevo6KCsrMzlxqAVFRXyYGFnTViz2UxxcTGzZ8+WZw/4KjabjeLiYuLi4khMTBzz+MHZ+W1tbaPW+XoCSZiDg4OZO3euz4ndYERRpKKiApPJhE6n87mE5+HU1tbS2dnptMltNBq5/vrr+eUvf8l1113nhRUCPiR4kx60GClKKzUaGG8bdglRFNFqtTQ0NAA4JZhdXV2UlZWRkpLi0qQ0byIJ8+D63bEYnJ2fnJws72hGqvN1pyBJzVdjYmLc0r7fk0hip1arueCCC+R6U09Efd1BXV0dHR0dpKWlOSV2nZ2drF27lv/3//6fN8XOp5j0HV5/fz/Hjx/nwgsvlH1nZrOZpUuXumR2De4C0dHRIZtz0l06Ojr6jJOjtbWVmpoa0tLS3FoA7gmkNkTuFObhdb6RkZHExsaOqyfbaK9bVFREQkKCS81XvYkoipSVleHv78+8efNGFf3JSngeTn19PUaj0Wmx6+7uZs2aNdxzzz2sXbvWCyscgs/s8LwmeNIg4uHY7XaOHj3KBRdcQHFxMeHh4Wc94cZ6j5GCE6Io0tnZiV6vp729neDgYOLi4oiOjqahoUE2CXwpR20kjEajXDM8kTZEZ8Ndfj+p0atUF+vLSCZ3SEgIc+fOdfp53kp4Hk5DQwMGg8Fp/2Jvby9r165lw4YN3HTTTWMe7wEUwRv8+08//RS1Ws3cuXNd9p2JoujUgB1RFOnt7aW1tZWGhgY0Go08Qs/bReDjoampicbGxjNqhj2Jq34/qS520aJFPu8eEARBDlLNmTNnQq/jjVpfSeycTekxmUysW7eOm2++mVtvvdVt6xgniuBJGI1Gjh49ysUXX0xYWJhLrzveZGKr1So7/GNiYjAYDBgMBkRRJDY2lri4OJ/p9io1SOjs7PR63tpwJHPOYDAgCIIsfoP9fq7UxU4WDodD9i86E/gZD54wfRsbG2ltbXU6AdpsNrN+/XrWrFnDnXfeOZnBIkXwYMDp2tzcjM1m47LLLnPpNccrdtLuY6RZoVarFb1ej8FgwGq1EhMTQ1xc3LhG67kTQRCorKxEFEUWLVrkU+kRg/1+JpOJqKgoAgICaGpqIj093WduGKPhcDgoLCxk2rRp4055Gi+S6dvW1kZPT49Lpm9TUxMtLS1Oi53FYuGmm25i1apVbNq0abIj4+ef4MHAHwEGLuTy8nIEQWDJkiUcPnx4XM06wTWxkxo2OlMmZrfbaWtrQ6/X09fXR1RUFHFxcXKai6dxOByUlJTI5T++nMrhcDiorq6moaEBnU5HWFjYpOX7OYPdbqewsJCZM2d6PZjiiunb1NREc3MzGRkZTomd1WrllltuYcWKFdx3332+cO5M+gIkvCp4VqsVi8VCUVERMTExzJkzB5VK5VJ34vGWiTU0NNDc3ExaWtq4fXWCINDe3o5er6erq4uwsDDi4uI85pyWopszZ85kxowZbn99dyPVxaanp6PVamW/n9FoRKfTeS3fzxlsNpuczB4fHz/ZyxnT9G1ubqapqclpsbPZbNx2220sX76cBx54wBfEDs5XwTMajRQXFzN//vwhkbtDhw7xjW98wymTzdngxODjq6qq6O/vZ8mSJRMWKFEU6erqQq/XYzQaCQ4Olu/Q7iiCl+aaeqszy0QZqy7WGb+ft7BarRQWFpKUlOSTkePhpq9Op8NisbBs2TKnAlV2u52NGzeyaNEiHn30Ubd8v7fddht79uwhLi6O0tLSMx4XRZF77rmHgoICgoKC2LJlCxdccMHww84/wRNFkc8//5zk5OQzzMkvvvjCqYaK4+1hJ5mFISEhLqe6nA0p4iuJn9R+x9XdjJT8PBUc/tJQGOlG4szNZyS/nzvy/ZxB6qGYnJw8JW4kLS0tVFdXExkZSWdn55imr8PhYNOmTSQmJvLb3/7Wbef6xx9/TEhICDfffPOIgldQUMDzzz9PQUEBn332Gffccw+fffbZ8MPOP8GD0bsef/nll6SkpIya9OuKv66/v5/i4mISEhK8ZhaazWY56DHeiK/BYOD06dNTIvnZHXWxDoeDjo4O2U3gyTrf/v5+CgsLWbBggUujBLyN1FU5MzNT/i5GM32lzcO9995LREQETz/9tNtvHjU1NWRlZY0oeBs3buTKK69k/fr1ACxcuJB//etfw32jPiN4PuFRPlsTUFfETkqNWLRokUt1uK4SGBjI7NmzmT17NlarFYPBQGVlJVarlejoaOLi4kZMS2hoaKClpcXtveE8gZS3FhoaOqFgikajISYmhpiYmCH5fjU1Nfj5+ckpQxPNYTObzRQVFU2JnEAYaIo6XOwAgoKC5HNLMn1Pnz7Nj370IyIiIoiLi+PZZ5/1eiS/sbFxSEpPQkICjY2NPltZ49OC50pwQuqiO9mpETqdjpkzZzJz5kzsdvuQ6VuDTbnTp09jMpmmRCddqS42NjbWrXlro9X5Sk07pfSg8fr9pBSkxYsXu5Tj6W30ej21tbVjtpCXOjzHxcXxne98h8bGRpKSklixYgUbNmxg48aNXlz11MInBE+r1Z7ROsqV4ITkQPe1nZJWqyU+Pp74+Hg54tvS0kJRURH+/v4kJydP9hLHxJt1scN3M21tbfJAGmf9fr29vZSUlEwJfygg724zMzOdHqz961//mu7ubrZt2ybfLEdK7vckM2fOpL6+Xv65oaHB43mNE8Grgjfa3Xn4Dm+8wQlBEKioqAAgIyPDpxJ0h6NWq4mIiKCuro6kpCQiIiLQ6/XyMCPJlPMlwZbqYufNm3dGsran8fPzY/r06UyfPl2+WbS2tlJZWTmq309qsJCWluaxmmN3Io19HI/YPfHEEzQ3N7Nly5YhloG3O3NnZ2fzwgsvcOONN/LZZ58RHh7us+Ys+MgOTxI8V/x1Ul84qf2Qj+QdjYoUTJk9e7acBxYREYEoivT19aHX6zl27NiEI77uoq+vj+LiYp9om6VWq8f0+/n7+3Pq1KlJd2k4S1tbmzzj1lmx+/3vf09VVRX/+7//63E3yPr16/nXv/5FW1sbCQkJ/OpXv5K7Hv34xz9m1apVFBQUkJycTFBQEK+//rpH1zNRvBqlHW1UY11dHSqVihkzZuBwOFCr1U4Jl5SzNnfu3HHPtZ0MJDPLmWDKRCK+7mIq1cWaTCbq6upoamoiKChIns41Gfl+zmI0Gjl58iSZmZlO7cxEUeT555/n888/Z9u2bT5lBYyBz/wBvCp4o7V5b2hooL+/n9mzZzu9s+vo6KCiomJKXIwwUNZWWVnJ0qVLxz39TIr46vX6MSO+7lzviRMnJjQv1pu0t7dTVVUl15pKZYHezvdzFlfE7pVXXuGjjz5i+/btkz5Uapwogie/wVfJuxUVFdhsNmJiYoiPjz/rnbmpqYmGhgbS0tImveusM7S0tFBXV0d6evqEzVMp4qvX68+I+LrrYtbr9dTU1Lhlvd5ACmqMJB6S389gMNDZ2Tmpcz0kJHEej9j99a9/Ze/evbzzzjtT4pwfhiJ40s+D/XVSRE6v12M2m+V0BGknI0296uvrIzU11efTOAZHjtPS0tx+gXmixrexsZHm5mbS09OnhMkkiXNGRsaY4jHY72c0GvHz85NL3bwlItLOeTzDx//+97+Tn5/Pu+++6/NJ6aNwfgqe1ObdmeCEw+GQxa+3t5fIyEh6e3sJCwtj/vz5PuuXkZDa1TscDlJSUjxuSg2u8W1vb3cp4ltTUyPPSPD1mwkM7Jzr6+uddvgPx2w2y3W+Ur6fVL3gifOro6ODysrKcYnd1q1beeONN9izZ8+UiDiPgs9crF4XPKvVOu5IrNlsliOXDodDnrUaGRnpk8LncDiGtAz39hoHR3zb2trQarVy0GOkC02qi7VYLD43h3c0pJZJUoeWiSJZFwaDQW4H5k5XQWdnJxUVFWRkZDi9m9yxYwd//vOf2bt375TwU58Fn7lIvSp4XV1dcgTWWbHr6enh+PHjch2kIAh0dHTQ2toqD+eRzDhfuFClbsrTpk0jISFhspcDfL2T0ev1csRX6lgi1cVqNBoWLFjgkzeQ4TQ0NKDX651uhjle3O33c0Xs3n33XZ577jn27t076elAbsBnTiqvCt5LL73ESy+9xFVXXUVubi7Lly8/q0hJo/FGG1ojDedpbW2lo6OD0NBQeTjPZJhkUt3mvHnzfLL9EAyN+FosFhwOB1FRUSxcuNAnbhhjUVdXR3t7O0uXLvXK33iifr+uri7Ky8vHJXb79+/n6aefZu/evVOis4sTnJ+CBwOi8M9//pP8/HwKCwu5/PLLyc3N5ZJLLpFPYFEUqa+vx2AwsHTpUqcjWd3d3bS2tsp96iQfljeicVLO2uLFiwkPD/f4+00UqetvYGAggiDIflKpq7Mvil91dTXd3d1OD532BOPx+0lil56e7nSw4cCBA/z617+moKDAZ2+aLnD+Ct5gLBYLBw4cIC8vjy+++IJLL72U6667jq1bt3L99dfzne98x6UTe/Bksra2NgICAuSqBU9EHtva2jh58uSUyVmT6mITExPlKXGSq0Cv19PZ2TmkTftkBzBEUZSbLDjbe88bnM3v19vbS1lZ2bjE7uOPP+bhhx9m7969Lk/vG87+/fu55557cDgc3HHHHTz44INDHt+yZQv333+/XP969913c8cdd7jlvQehCN5wbDYbe/fu5ac//SkxMTGkpaWRm5vLlVdeOeEkS6lJp+TAl7Lw3ZG82djYKLc3nwrJoFJvuJGGGElIEV/JjJvMGl8poGK1Wlm8eLHP+hgH+/2MRiM2m43k5GSmT5/ulIXx6aef8vOf/5y9e/e6rX+jw+FgwYIFvP/++yQkJLB8+XL+8Y9/sHjxYvmYLVu2cOTIEV544QW3vOco+MwfzSdqaWGgTvL3v/89f/jDH8jJyeGTTz4hPz+fX/ziF6Snp5OTk8O3vvUtl/KlQkJC5IipyWRCr9dTVFSEWq2Wd37jfV1p19HT08MFF1ww6bsgZ3C2LlalUhEREUFERATJycln1Ph6K3dNSu0BfFrs4Os6X39/fzo7O5k/fz49PT0cPXp0TL/fZ599xv3338+7777r1ma1Uodxabj4jTfeyK5du4YI3vmGz+zwADnqOhiHw8GhQ4fYvn07Bw4cYNGiReTm5vLtb397wuZjf38/er1ejl5KO7+xTBBp6ppGo3G546+3kdrHu1LaNpjBPixBEIb0qnMnUvRYq9VOibxL+LpLy/DGBSP5/cLCwoiKiqKwsJBNmzaxa9euCQ0CH4n8/Hz279/Pq6++CsAbb7zBZ599NmQ3t2XLFh566CFiY2NZsGABf/jDH9w+oxdlhzcyIzn7NRoNl112GZdddhmCIHD06FHy8vJ4+umnmTt3Ljk5OXznO99xKU8pICCAWbNmMWvWLHkmbXl5OXa7Xc5bG34h2+12SkpKiIyMlGt/fR0puz8jI2PCmfqBgYFDvrO2tjZ5SJLkwA8LC5vQ9yIIAmVlZQQEBHhkFokn6O3tlVtSDb8RD/7OJL/f3/72N15//XVsNhuPP/74pKUwrV69mvXr1+Pv788rr7zCLbfcwocffjgpa/EGPrXDGw+CIFBcXExeXh779+9nxowZ5OTksGrVqgnnLdlsNgwGA62trUMGcvv5+VFcXExiYqJP9/wajLfqYqXKGIPBQE9Pj8sRX0EQKC0tlVvITwWkLjjj6b9XVlbG7bffzt13382xY8f45JNPOHDggFsjs4cOHWLz5s289957ADzxxBMAPPTQQyMeL6UodXV1uW0NX+Ezd6wpK3iDEUWR48ePk5+fT0FBAVFRUeTk5JCVlTXhPCZpIHdTUxMdHR3ExcUxa9asCe9ivMFk1cUOj/g6mx8p3cSk3fNUQPKLjsdVUFFRwa233spbb71FamoqgDzGwJ3Y7XYWLFjAgQMHmDlzJsuXL+ett95iyZIl8jHNzc3yzXvnzp089dRTHD582K3rQBE8zyGKIidOnCA/P589e/YQFBRETk4Oq1evJi4uzqWTqrOzk/LyclJSUrBarbS2tsqdSqRdjK+Jn6/UxUr5kdIoy9Eivg6Hg6KiIrfPy/AkrojdyZMn+Y//+A/eeOMN0tPTPbzCgTGK9957Lw6Hg9tuu42HH36YRx99lGXLlpGdnc1DDz3E7t270Wq1REVF8dJLL7Fo0SJ3L8NnLo5zTvAGI4oi1dXVbN++nXfeeQc/Pz9Wr15NTk4O06dPd0qkWltbZZNwcIRNEAS5TVN3d7c8OSoyMnJS88R8uS5WqvGVHPgajUYuC6yoqGDatGk+PQ9hMK6IXU1NDevXr+e1115j2bJlHl6hT6EInrcRRZGGhga2b9/Ozp07cTgcZGVlkZubS2Ji4ojiV1dXh8FgIC0t7awmoSAIcomblLQrmXDeFBwpeqzVaqdEXWx/fz/Nzc3U1NSg0+mYMWOGRyK+7sZkMlFUVDSu5rP19fWsW7eOV155hYsvvtjDK/Q5fOZEPG8EbzCiKNLS0sKOHTvYsWMHJpOJ6667jpycHObOnYsgCBw+fJiwsLBxZ/ZLSbutra20t7cTEhJCfHy8xysWpA4tE50X601sNhuFhYXMnj2biIgIuR2YOyO+7sYVsWtqamLt2rU899xzXH755R5eoU/iM3/A81LwhmMwGNi5cyfbt2+nra0NtVrNhRdeyDPPPDOhHdpI/qv4+Hi31/fa7XaKioqIi4ubMv4vq9VKYWEhSUlJZ0Qm3RXxdTdSc4jxzLltaWlhzZo1PPPMM1x99dUeXqHPogieL9LZ2Ul2djazZ8+ms7OTxsZGVq5cyfe+970J+8Ok+l6pxE2n0xEfHz/h+l5JOGbNmuW2+ktPY7FY5PK2saLorkZ83Y0rYmcwGPj+97/PE088wbe//W0Pr9CnUQTPF3nzzTcJDQ0lJycHGKhOePfdd9mxYwenT5/m2muvJTc3l/T09AnvNKRyLYPB4HJ9r3QRnq0u1teQ1rxw4cIxJ7cNZ6Qds1Sy5cm0G2nNKSkpTnfCMRqNXH/99fzyl7/kuuuu89japgiK4E01ent7KSgoID8/n4qKCq6++mpycnLG7OnnDNJIRr1ej0qlksXvbLWqvjQv1lmksZrjEY6z0dvbe0bE1901vlKzhfGsubOzk+9///s8+OCD5Obmum0tUxhF8KYyZrOZ9957j/z8fIqKirjiiivIyckZ0tPPVfr7++UGnYIgjDiP1l11sd5EEuglS5Y4bRKOB6kuWqpXHa00cLyvWVhYyKJFi5y+qXR3d7NmzRruuece1q5d6/J7n2MogneuYLFY+OCDD8jLy+PIkSNceuml5Obm8s1vfnPCZpbUnbi1tRWbzUZsbCw6nY6GhoZx9VmbbKTSK28JtFQaKEV8pTm+44n4WiwWjh07Ni7Tu7e3l7Vr17Jx40Z+8IMfTOQjnGsogncuYrPZ+Oijj8jPz+fgwYMsX76c3NxcVqxYMeFeeTabjVOnTtHc3ExAQACxsbHEx8d7bMKWu5A6QY+nztSdOBwOOUFcivjGxsaeNUHcFbEzmUysW7eOm2++mVtvvdWNn+CcwGdOUK8IXl5eHps3b6a8vJzPP/981CzzsbqzTiXsdjv/93//R35+Ph9//DHp6enk5uZy9dVXu+RjamhooLW1lbS0NFQqFUajkdbWVkwmE1FRUcTHx/tczprU4txXOkFLEV+DwTDqDBQpgjx//nyioqKcel2z2cz69etZs2YNGzZs8ORHmKr4zEnpFcErLy9HrVazceNGnnnmmREFz5nurFMVh8PBwYMH5Z5+ixcvJjc3l2uvvdYpIaipqaGzs3PEwTUj7WDi4+Mnvb5XmsE6nuE13mR4xDcgIICoqCiamprkCXnOYLFYuOmmm1i1ahWbNm1y23c+1s3fYrFw8803c/ToUaKjo9m2bZvb++m5EZ8RPK/0w0tJSRnzmHO5O6tGo+Hyyy/n8ssvRxAEjhw5Ql5eHk8++STJyclkZ2eP2NNPFEWqqqqwWq2kpaWNaIJJ0cm4uDi5zXhzczMVFRWEh4cTHx/v9fpeo9HIyZMnxzVw2tuoVCrCw8MJDw9n/vz5dHZ2UlxcjFarpbq6mt7e3jEj5VarlVtvvZVrrrnGrWLncDjYtGnTkJt/dnb2kGvhtddeIzIykpMnT7J161YeeOABtm3b5pb3P5fxmQagjY2NQ6oEEhIS+OyzzyZxRZ5BrVZz0UUXcdFFF/HUU09RVFREXl4ef/zjH0lISCA7O5tVq1YRFBTEtm3buOiii1iyZIlTF5PUZjwmJgZRFOWE3RMnTsj1vVFRUR5N2DUYDFRXV5OZmTklZnzAgHCdOHGCJUuWEB0dLUfKjx8/Lkd8pclkEjabjdtvv51LLrmE++67z627aWdu/rt27WLz5s0ArFmzhrvvvtsjLabONdwmeNdccw0tLS1n/P6xxx6TE3kVhqJWq8nMzCQzM5PHHnuM0tJS8vPzWb16Nd3d3WRmZvLd737XpZNYpVIRFRVFVFSUXN+r1+s5efIkwcHBcombO8VPr9dTW1tLZmam14f9uIpUzzt37ly56iMgIIDExEQSExPliO+pU6cwm82cOnWKadOm8eabb5Kens4DDzzgdpFx5uY/+BitVkt4eDhGo3HKJKBPFm4TvA8++GBCz585cyb19fXyzw0NDVOmVZA7UKlULF26lNmzZ3Pw4EFWr16NVqtl3bp1hIaGkp2dzerVq4mNjR33BTZ4KI8oivT09KDX66murnbbRLLm5mYaGxvJyMiYUmJ37NgxkpKSRhUKPz8/ZsyYwYwZM3A4HLS0tPCb3/yG2tpaoqOjOXDgAFddddWUGOKkAD7TLG358uVUVVVRXV2N1Wpl69atZGdnT/ayvE59fT0bNmxg8+bNPPLIIxw6dIiXX34Zs9nMD37wA7Kysnj55Zdpbm5mjIDTiKhUKsLCwkhOTubiiy9m3rx5mM1mvvzyS44dO0ZjYyNWq3Vcr9nU1ERTU9OUFTtn26qrVCo+/PBDVqxYQV1dHddffz379+93+9qcufkPPsZut9PV1TXh7t7nA16J0u7cuZOf/OQnGAwGIiIiyMjI4L333qOpqYk77riDgoICYOTurApfI4oidXV17Nixg507dyIIAqtXryY3N5eEhIQJm1bSCEu9Xj8kGHK2wEN9fT0Gg4H09PQps8sZ3JYqLi7OqecIgsD999+Pn58fzz77rEeDQM60Zv/Tn/5ESUkJL7/8Mlu3bmXHjh28/fbbHlvTBPEZx6KSeDxFEUWR5uZmuaef2Wwe0tNvouI3eIQlIJdqDa7uqK2tldvI+1Jn5bNht9s5duwYs2bNIj4+3qnnCILAww8/jMVi4cUXX/TKZx2rNXt/fz8//OEPOXbsGFFRUWzdulUOcvggiuApuBe9Xs/OnTvZsWMHHR0dfPe73yU3N9ctnY8tFossflLU0mq1YrFYSE1NnVJiV1hYSGJiotNiJ4oimzdvxmg08pe//GXK7GJ9DEXwFDyH0Whk165d7Nixg+bmZrmnX0pKyoTFyWKxUFZWRk9PD/7+/sTExBAfH09wcLBPp0RIYpeQkOB030BRFHniiSeora1ly5Ytiti5js+cGOeN4LW3t3PDDTdQU1PDnDlzePvtt0esk9RoNCxduhSAWbNmsXv3bm8v1a10dnbKPf1qamq45pprXO7pJyVC2+12UlJScDgccpG+2WwmOjqa+Ph4QkNDfUr8HA4HhYWFzJgxw+l5wqIo8vvf/56ysjLefPNNt3ao9iaiKHL55Zfz8MMP893vfhcYKPV87bXXPBJwGQWfORnOG8H7+c9/TlRUFA8++CBPPvkkHR0dPPXUU2ccFxISQm9v7ySs0PP09PTIPf0qKyv51re+RU5ODsuWLRtT/ERRpLKyEoCFCxeeIWhSW3a9Xi+PsIyPjyc8PHxSxc9VsXv++ef5/PPP2bZt25SJPI9GaWkpa9eu5dixY9jtdjIzM9m/fz/z5s3z1hIUwfM2Cxcu5F//+hfTp0+nubmZK6+8Ur6AB3MuC95gzGYz+/btY/v27RQXF7NixQpycnK4+OKLzzDdRFGkrKwMnU5HcnLymAI2fITlZM2kkMRu+vTpzJgxw6nniKLIK6+8wkcffcT27dunTLXIWPz85z8nODiYvr4+QkND+cUvfuHNt1cEz9tERETQ2dkJDJzUkZGR8s+D0Wq1ZGRkoNVqz5uOtRaLhffff5+8vDyOHj3KpZdeyve+9z2++c1vIggCe/bsIT093aXo7/CZFOHh4XKJmyfFTxrsHR8f73QCuyiK/PWvf6WgoICdO3f6ZNMDV+nr6+OCCy5Ap9Nx5MgRb9c4+4zgTU3HxCicrbxtMCqVatQLt7a2lpkzZ3L69Gmuvvpqli5d6s2t/6Tg7+9PVlYWWVlZWK1Wuaffz372MzQaDcuWLSMrK8sl01StVhMdHU10dDSiKNLZ2Yler6eqqspjA3lcETuAN954g927d7N79+5zSuwAgoODueGGGwgJCfHZhg7e4JwSvLOVt8XHx9Pc3CybtKMlnEoXyNy5c7nyyis5duzYOS94g9HpdKxcuZIVK1awbt06EhMTEUWRyy67jMzMTHJzc7nqqqtcEgSVSkVkZCSRkZFD2jOdPn2aoKAgucRtIgECQRAoLi4mLi5uXGK3detWtm3bxp49e6ZMJ+nxolarp0wKkac4bz59dnY2f/vb3wD429/+NmJDg46ODiwWCwBtbW18+umn50R7Klc4duwYWVlZ/OlPf+LFF1+kqKiIO++8k48//pgVK1Zw2223sWvXLkwmk0uvL7Vnmj9/Pt/4xjdISkqit7eXI0eOUFhYSFNTEzabbVyvKQgCRUVFxMTEkJCQ4PTztm/fzpYtW9i9e/ekdGVW8B7njQ/PaDSybt066urqmD17Nm+//TZRUVEcOXKEl19+mVdffZWDBw+yceNG1Go1giBw7733cvvtt0/20n0OQRD4/PPPyc/P5/333yc5OZnc3FxWrlzplpkVfX19tLa20tbW5vQIS2lnFx0dPa5h5Lt37+b5559n7969U2b6m6ts3ryZkJAQ/vu//9vbb+0zPrzzRvAUPIMgCBQWFpKXl8f+/ftJTEwkJyeHVatWuWUUo1TfazAYUKvVconbYJNaEARKSkqIjIxk1qxZTr/2vn37+N3vfkdBQYHTHY4VXEIRPIVzD1EUKS0tJS8vj4KCAmJjY8nJySErK8stgjK4vlcURbkx58mTJ4mIiGD27NlOv9YHH3zAb37zG3mdnuB8TXYfAUXwFM5tRFGkoqKC/Px89uzZQ3h4ONnZ2WRlZbnU0284VquV1tZWTp8+jVqtJiEhwek5tP/+97955JFHKCgocLqm1hWUZHcZRfDOJ86xgSzjRhRFTp06xfbt29m1axf+/v6sXr2anJwcpk2b5pL4CYJAaWkpoaGhJCQkyPN7LRaLbPaONMLy008/5YEHHmDPnj1OJyO7ipLsLqMI3vmCM9PYXnzxRYqLi+XeZjt37jxnB7KIokhtba3c0w8gKytrXD39JNM5JCSEpKSkIY/Z7Xa5xM1kMhEdHU1ISAjx8fF88cUX3Hfffbz77rvjCmy4ipLsLqMI3vnCoUOH2Lx5M++99x4ATzzxBAAPPfSQfMzKlSvZvHkzl1xyCXa7nWnTpmEwGHyqAN8TSD39tm/fzo4dO+jv7ycrK4ucnBySkpJG/PyiKHL8+HGCgoLG7P8mjbB87bXXePPNN7Hb7fzP//wP119/vdvy0c6W7H7LLbcMEbjIyEg6OjrOOLaxsXFIsvuBAwfOtdxPnzmRz5s8vMlipIEsjY2Nox4zeCDLuY5KpWLGjBn85Cc/4cMPP+Sdd94hOjqa//qv/+Kqq67i6aefprKyUm5l73A4KC0tJTAw0Klml1LX5lWrVhEWFsajjz7Ke++9R0ZGBnV1dW75DB988AGlpaVn/MvJyZGT3YFxJ7sreAZF8BR8ApVKRXx8PD/+8Y/55z//yb59+0hMTOSRRx7hiiuu4Le//S1r167l8OHD4+rse/z4cTZu3Mi2bdu48847efXVV/nyyy+9YtIqye6+hyJ4HkYZyOIa0dHR3H777ezdu5f333+fgwcP0tLSwuuvv86vfvUrCgsLEQThrK9RUVHB7bffzltvvcWiRYvk32u1Wq+4Cx588EHef/995s+fzwcffCAHq44cOcIdd9wBQHl5OcuWLSM9PZ2rrrqKBx98UBE8D6L48DzMOTiQxetIKR1PPvkkPT097N27lx07dnDixAmuvvpqcnNzufDCC4f45aqqqvjhD3/IG2+8QXp6+iSuXgEf8uEpgucFzrGBLF6nr6+PoKCgM3ZlJpNJ7ulXUlLCihUryM3NJT4+nptuuonXX3+dCy+8cJJWrTAIRfAUFNxJf38/77//Pm+//Tbvvvsu+/fv5+KLL57sZSkMoAiegoKnsNlsU74t+zmGIngKCgrnDT4jeEqU9jxi//79LFy4kOTkZJ588skzHt+yZQuxsbFkZGSQkZHBq6++OgmrVFDwHOdUx2OF0XE4HGzatGlIiVt2dvYZKRA33HADL7zwwiStUkHBsyg7vPOEzz//nOTkZObOnYtOp+PGG29k165dk70sBQWvogieG6mvrycpKYn29nZgIIs+KSmJmpqayV0YzpW4wUC787S0NNasWTMkYVpB4VxAETw3kpiYyF133SVn1D/44INs2LBhyrR6Wr16NTU1NRQXF3Pttddyyy23TPaSFBTciiJ4bua+++7j8OHDPPvss3zyySeTMT9gRJwpcYuOjpZH+N1xxx0cPXrUq2tUUPA0iuC5GT8/P373u99x33338eyzz/pMPtjy5cupqqqiuroaq9XK1q1byc7OHnKM1NkDBobbpKSkeHuZk05eXh5LlixBrVZz5MiRUY8bK+Kt4JsogucB9u3bx/Tp0yktLZ3spchotVpeeOEFVq5cSUpKCuvWrWPJkiU8+uij8gyF5557jiVLlpCens5zzz3Hli1bJnfRk0Bqaio7duzgiiuuGPUYKeK9b98+ysrK+Mc//kFZWZkXV6ngMqIonu2fwjg5duyYuHjxYrG2tlZMTEwUm5qaJntJCi6wYsUK8YsvvhjxsYMHD4rf/va35Z8ff/xx8fHHH/fW0qYiY+mM1/4pOzw3Iooid911F88++yyzZs3i/vvv9xkfnoL7cDbireB7KILnRv7yl78wa9Ysrr32WgD+8z//k/Lycv79739P8soUBnPNNdeQmpp6xj8lL/HcR6m0cCMbNmxgw4YN8s8ajYYvv/xyElekMBIffPDBhJ7vTMRbwTdRdngKXue2224jLi6O1NTUER8XRZGf/vSnJCcnk5aW5nM3DWci3gq+iSJ4Cl7n1ltvZf/+/aM+vm/fPqqqqqiqquLPf/4zd911l9fWtnPnThISEjh06BDXXXcdK1euBKCpqYlVq1YBo0e8FXwfpT2UwqRQU1NDVlbWiKk7Gzdu5Morr2T9+vXA0IHWClMSn2kPNZbgKSh4BJVKNQfYI4riGXatSqXaAzwpiuInX/18AHhAFMXRM4EVFJxAMWkVFBTOGxTBU/BFGoHBg2MTvvqdgsKEUARPwRfZDdysGuBioEsUxeaxnqSgMBZKHp6C11GpVP8ArgRiVCpVA/BLwA9AFMWXgQJgFXASMAE/mpyVKpxrKEELBQWF8wbFpFVQUDhvUARPQUHhvEERPAUFhfMGRfAUFBTOGxTBU1BQOG9QBE9BQeG8QRE8BQWF84b/D8x9/4WjQ2lQAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from scipy import special\n", + "\n", + "def drumhead_height(n, k, distance, angle, t):\n", + " kth_zero = special.jn_zeros(n, k)[-1]\n", + " return np.cos(t) * np.cos(n*angle) * special.jn(n, distance*kth_zero)\n", + "\n", + "theta = np.r_[0:2*np.pi:50j]\n", + "radius = np.r_[0:1:50j]\n", + "x = np.array([r * np.cos(theta) for r in radius])\n", + "y = np.array([r * np.sin(theta) for r in radius])\n", + "z = np.array([drumhead_height(1, 1, r, theta, 0.5) for r in radius])\n", + "\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "ax = fig.add_axes(rect=(0, 0.05, 0.95, 0.95), projection='3d')\n", + "ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap='RdBu_r', vmin=-0.5, vmax=0.5)\n", + "ax.set_xlabel('X')\n", + "ax.set_ylabel('Y')\n", + "ax.set_xticks(np.arange(-1, 1.1, 0.5))\n", + "ax.set_yticks(np.arange(-1, 1.1, 0.5))\n", + "ax.set_zlabel('Z')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABqdUlEQVR4nO29abQtZ3ke+Lx7Hs987nx179WAhACZ4SLHxrHbTBZxB+GEJJAVW4ntxUrHpDvtdhoI3babhF62O73ISi93EmJjkzjL4OA4yCs4GDAENxjQFUgCSUi6kq505zOfs8eqPXz9o+qrXWef2lXfVLW3dOpZ6657zp5O7dq1v/d7n+d9n5cYY0iRIkWKFIcXmWkfQIoUKVKkmC7SQJAiRYoUhxxpIEiRIkWKQ440EKRIkSLFIUcaCFKkSJHikCM37QNQwcrKCjt79uy0DyNFihQpXlJ4+OGHNxhjq+O3vyQDwdmzZ3HhwoVpH0aKFClSvKRARC8E3Z5SQylSpEhxyJEGghQpUqQ45EgDQYoUKVIccqSBIEWKFCkOOdJAkCJFihSHHEYCARF9gojWiOh7E+4nIvqXRHSRiB4jotf77nuAiJ5x/z1g4nhSpEiRIoU4TGUEvwvgvpD73wHgDvff+wD8KwAgoiUAvwLgBwHcC+BXiGjR0DGlSJEiRQoBGAkEjLGvAtgKecj9AP4dc/ANAAtEdBzATwD4AmNsizG2DeALCA8oxnF1p4P//J2riNuO+/s39vDJr19Cxx7E+ndMYThk+MzDV/Dk9b1YXp8xhs8+chWXt9rGX3u9Yb0kzjVjDP/5O1cTuf78ePTyDr781JrR1+z2BvjUt17EXrdn9HVlwBjD5x+/gd/92vPo9mbrs+ef9RPX4vk+6SKphrKTAC77fr/i3jbp9gMgovfBySZwyy23GDuwD/7hY/jzZzaQz2bwk/ccN/a6fjS6Pbz349/AdruHp2828NGfek0sf8ckPvXQZfyTP/ou6sUcvvnht6BSMHupfO3iJv6nTz2C24/U8MVf/DGjr/2//MdH8dWn13Fjr4sP3HeX0dc2id/75ov43/+zw6Y2uj389A+djf1vWv0B7v/NrwEAvvbBN+PkQtnI6/7O1y7h1//r9/H1ZzfxL9/7OiOvKYt/++fP4f/83PcBAH/+zAZ+64HzIKKpHMs4/vyZDfyjTz+CxUoeD/9vb0MmMxvHxfGSEYsZYx9njJ1njJ1fXT3QIa36mvjOizsAgK8Y3iH58fnHb2K73cNtq1X8p29fRdvux/a3TOEPv30FANCw+vjq0+vGX/9bl5wE8uJaE03L3PnY6/bwtYsbAID/8th1Y69rGlZ/gI994Wn88G3LOH9mEf/qK8+iNxjG/ne//cKO9zM/TybAM4yvPrOeaHbDsdG08M//9Gm87e6j+Cd/5S586ftr+PzjNxM/jkng36Htdg/fv9GY8tEcRFKB4CqA077fT7m3Tbo9Edzcs7xFKM4P58vfX8NqvYh/ev+r0ekN8JWnzC+sJtHtDfDYlR387JvOoZDL4OEXto3/jYtrDd/PTWOv+8S1PQyGDD906zJe3Gpjp20be22T+OITa9hq2fj7P3YbfvZHzuHabhcPXQpjV83AT/WZov0YY3ji2h7yWcJOu4cr2x0jryuDTz90GXZ/iA/cdxd+9k3ncGa5gk987fnEj2MSHr2yg+VqAQDw+LXdKR/NQSQVCB4E8DNu9dBfArDLGLsO4PMA3k5Ei65I/Hb3tkTw9E1nMbrzaB2XNlux/Z1vPr+Jv3z7Cu49t4RyPotvPR//F14Hj17eQW/A8Kbbl3HPyflYAsHTN5u4dbUKALi0Ye7cP+MGlZ96ncMwPj6jnOwXn7yJpWoBb7p9BT/6ilXkMoSvPm1uhz4Jz200MV/O41Un5vDcupnzvt3uoWn18WOvOAIAseg+UfjjR6/hjWcXcfuRGnLZDP7WG0/jW89v4cXN5I9lHIMhw3ev7uIn7zmOXIZiXWtUYap89PcB/AWAO4noChH9HBH9fSL6++5DPgfgOQAXAfxbAP8AABhjWwD+KYCH3H8fcW9LBM+uO4vGm25fQaPbR8sgRcGx1uhio2nj1Sfnkctm8AOn41lYTeJ77uL5A6cX8OqT83j6ZtNouj8YMlzaaOFHbl8BANzc6xp77WduNlAv5vCWVzqL0iyKc8Mhw1efXseP3rGCbIZQK+bw+jOL+Itn4w8EN3a7OLFQxunFCq7tmNm584X/h29bBgC8mHAguLzVxvdvNPD2u495t73j1Y7e95Wn46N8RbHW6KLbG+LOY3WcXqrg0sb0g9M4TFUNvZcxdpwxlmeMnWKM/TZj7F8zxv61ez9jjP0CY+w2xthrGGMXfM/9BGPsdvff75g4HlHc3LOQzxJefXIOAHDD4ILEwReiu084f+P1tyziiet7sPqzVdXgx3PrTSxU8liuFnBmuYKm1cdmyxzFstWy0R8y3LZaQ7WQxc09y9hrX1xr4rYjNSzXipgv5/HC1uztvp7fbGGzZeOHb1vxbnvd6QU8eb0Bux+vTnB9t4vj8yUcmSsaC8CcCrr33BJyGUo8EHzTzbB/9BUj7fDcShVnliszQcPy83NyoYyzyxU8bzADNoWXjFgcBzabFparRRyfdyonbu6aDwRPudrDK485geDOY3V3Rzx7uwKOZ9ebuHWlCiLC2WWHvnnBYDq70XQW/pVaEUfnSrjZMHfer+92cWrR+TxPL5WnwldH4RG3QOG1tyx4t73m1DzswdCjK+PCjd0ujs2XcHSuhL1u30iZ5eVt51o+s1zBycVy4oHg4Re2MFfK4Y4jtX23//idR/D1Zzemvum66l6DpxbLOLNcnQp1FoVDHQg2mhZW6gUcmy8BcBYR07i83cZCJY/5Sh4AcLt7sZoUSE3jufUWblt1jvPMcgUAjAauUSAoYLVexJqhnSljzFno5pzP89RCZTYDweUdVAtZ7xwDwKtPzAOIV0js9gbYbNk4PlfCar0IwOm50MWN3S5qxRzqpTyOz5ewZjDDE8HDL2zj9WcWD5Rk/qVbl9HtDadOD151KbgTC2Ws1otoWGYCsEkc8kBgY6VW9BaOOKihK9sdnF6seL/ftloDEfDM2uyVkAFAxx5grWHh7IqTCZxarIDILO/rBYK6mxEYWjj2On10egMvsJ9aLOPKdnsq5YxhePTKDu45tYCsb+E6vVRBPkt4LkbagC/Qx+ZLOOIGgjUD2dhWy8ZyzamIWakVvc83Cex2enj6ZhNvuOWgIcHr3IyLl4hPC1e2O1iqFlAp5LBaMxeATeKQBwILK7UiyoUsKoUstg3y4ByXt9oeVQEApXwWpxbLM5sRXN91di/H3cW0kMtguVo0smBwbDSc87xaL2K1XjT2peCBnAeCk4tldHtDo/qGLvqDIb5/vYF7Ts3vuz2bIZxZruJ5Q5U8QdhyS2k5JQfASBDeatlYqk4nEPAS2HtOLxy47+hcCScXyvjO5Z3EjicI6w3LC7wrdec8JXmORHBoAwFjDJtN20uRF8p5bLfNtsczxnBlu7MvEADA7au1GQ4EzmLKdRMAODpXNCrobjQtFHIZ1Is5LJTz6PQGRkRSLxC4ixxf7GZp93Vpsw174FSQjOPcSjVWIZH3VMxX8lhxd6abBhakzZbt1cgvVwvY6/YT4+W5pnJXwPkEHB3m21Ou0ttsWd46s1qbvWsSOMSBoGH1YQ+G3gW8UClgt2N257jRtGH1hzjlo4YA4NbVGi5ttmaOsgDglRSeWCh5tzn0jbmMgC8cRIQFVzvZ7egHYa41HKk7x84Xu1naffGF6xVHDy5ct65W8cJmG4NhPNcFP8fz5Tzmy+bO+1bL8jKCZfecbyWUhX3/RgPz5by34x7HPSfncXWng13DmzwZbDQtb53hGcH6DF2TwCEOBHvuF2Cu5HwhFip57Bi+WK641RTjGcHpGaQsOHhGwOkVwHxGsNfpeQvRnLcg6Z+LbXfHu1h1XnOlNntp+NM3GyDCPqGY49aVKuzB0KsyMQ1+fS+U8yjkMijns9qBgDHmUkMu9eGe881mMtf20zcauPNofaKnEM+8vn9jeoLxZtP2AuRyNdUIZgqNrtM8Vi85ZmoLlby3kJiCVz88Fgh4hjCLFS3XdztYqRVQzGW9247OlbDZsox54ex1e14AMLkz3W73kHMbtABHjAZGmsQs4JmbTdyyVEG5kD1wHy/VfT6mzlMeCOZ9515389Ow+ugN2Iga4mJoAsGXMYanbjYCaTaOVx53yran5e/Ttvto2wMvOy3kMpgr5YxvOnWRBgIvIygYWYz84HTK8bmxQLDk/M4zhlnCtZ3uPn0AcKgWxszt8nY7fV8mVnBv0z/3O20bC5WCtzusF3Mo5DIzlYY/s9bAHUeCFy6+YbhuqON3HDsdG/ViDrms87VfqOS1zzsvsFh0AwGniJLweFprWGh0+15JdhCO1ItYqOSnlhHw7wyvqgIcjWbWPLAOcSBwvgBeRuDujkzy9htNG4VsBnPl/RbO3Pp3VjOC4z5aCACWXKrFFO+71+l554TvTk3skLZbPSy6mgMAEBFWa0VszEgaPhwyvLDZ9jyWxnF0rgQi4FoM/SwAsNvuef0sgEPL7WgGgr2Os6Gac79H/H9+e5zgJc281yUIRIS7jtWnlhFwWpJnTACwUDa/6dTFoQ0EfIAGpygWKnn0h8yoJfJ6w8JyrXCAv6yX8lio5GcyI7i5Z+3TB4DRrt3ULmav2xtlBEapIRuLlcK+21bqxZnJCG42urD6Q9yyFLxw5bMZHKkXY8wIep44DzhBeE/zvDcsvqHar/novq4IXnAN5SadT45XHK3jGcN+WaLgG5xFXyCYL+tnYqZxaAPBuEZgcmfKsdEclY2N49RiOTZRUBV2f4jdTs/jMzl4ur9lIBAM3WB7UCw2QQ3tX+gAYLVWwEZCwmUUeHc21wKCcHy+HEuHO+BSZ2WzC9L49yifzaBS0BehRfDiVhsZwoGqvHHculJF0+pP5TrwV2pxzFf0MzHTSAOBewHXis4H1TI4NGa9YR1YVDlOLsyeDw6nfvx8JgBvcTXRZ9Ho9sHYKABw983YMoKEG5zC8KJrgBdGZRyfL+HabnwZgZ8aWjAhFnc5NeSjnEr5REZWvrjZwvH5Mgq58GXsnFuhNQ2zt8BAYCATM41DGwj2uj0UchmvOqbmBgSTVtRO53Ih8L5jhmvzTWDEZ+4PXnwXaaLz2qPkSiPdpFrMom3pNSAxxpyMoLo/I1ipFbHVsjGMqTZfBpc228hnCSdCxkMeny/j+k43Fhpjt93btyDNuc18OtVg41qb87q5xDSCKFoIcDICAHh+I/kmzqBAEIceqYtDGwga3f6+xahWzHq3m8BwyLDZsidSQ0fnHffHWRqwzvsaxoMX7wI2UV7Lvxhzvi9GtZhDUzMTa9sD2IPhgYxgsVrAYMiMfa46eGGzhdOLlX0eQ+M4sVBCpzcwTq0wxhyNYOy8A3qbH35ea77vUlIc+ItbndDsiuPEQhmFbCZWH6dJ2O30UC1kkc+Oltr5sqNHtmfou3+oA0Hdl8561JDmzpRju21jMGQTqaGjde71MjtZwabPHnocC9W8kYyAi/H1oj8I57QzMa+ZbEwj4AvfjuGucRW8sNnGLRELFy/dNa0TNK0+BkO2b2dadXsZWhoLUtPqo5TP7FvokqCGWlYfG00LpwUyAsfHqRKrj9Mk7IxlYcCIap0lncDUhLL7iOgpIrpIRB8MuP9jRPSI++9pItrx3Tfw3fegieMRwV6nty+drboZQdMy8+FwYWpiRjA3e4HAo4YC6KylSsGIRtB2d/5VXyCoFnLa1JDXNVsJ1jem3cDDmFM6GiYUA8CRuXg6Tz0u33hG0Nu3oeJ/I+5A4J+BIIK4fZwmYbfT23fOgVGFVSMBHUUUueiHhIOIsgB+E8DbAFwB8BARPcgYe4I/hjH2P/se/w8BvM73Eh3G2Gt1j0MWzgU8evt1NyNoGsoINkJ214Bj2wDEY32tis2mjUIu43Xm+rFQKRihhnjGxQMv//najt558Nsn+OGVvk5598Xn+kbtYOPyR+KLfXUsEwOgVTK91+3v+x4BXAyNl4q7ssWHvQgGgtUqvvLUOgZDFkrNmcZe52Alm4kAbBomMoJ7AVxkjD3HGLMBfArA/SGPfy+A3zfwd7XQ6Pa9xR/wZQSGuGRegbNUDRaLj7q1+kkP8QjDRtPGSvVg3wPgvA8zgcA5v5WCPxvLaVdrNboHtQfAnxFMlxriZn7jvlPj4PqM6YyAL/a1fQHYjEZwICMo5bDX7cUq0F93N1AnxnpeJuHcsuPjZGpOsyh2OwepIR6AZ0G34jARCE4CuOz7/Yp72wEQ0RkA5wD8me/mEhFdIKJvENG7Jv0RInqf+7gL6+v6c0gbYzuZXDaDUj5jrHyU70DHdwMc9WIO5Xx2tjKCluX584xjoZLHdkt/V8356H3UkAGNoGHtLwfmWIihP0QFfErVyZCKIcBZJEr5TAwZgXveCwfpUF1qaG7snM+V82AM2gUAYbix20EuQ563URR4JpZ0yXZYIDClR5pA0mLxewB8hjHmPwNnGGPnAfxtAP+CiG4LeiJj7OOMsfOMsfOrq6tBD5FCELdZK+aMRekdNyPwN/D4QUSuq+fsBAK/Xe44FisFNK2+tvFc28sIfDvTQlb7S+H1hRT3f6ZxNAqq4JpvXGEYiAgrNXPDejiaodSQ+rlvdPsHqMQkuouv73ZxpF4Upnl4JpZ0N/9Oxz4YCEr8vM+ORmAiEFwFcNr3+yn3tiC8B2O0EGPsqvv/cwC+gv36QSwYDhla9mBfmgyYqV7h2HHLxsKaXY7OJT/fNQx+u9xx8J22bqBs2n0UcvurTKrFHDq9gZYPP6f0qmOfaS7rlL5Ou2ro2k4HpXzmQFVTEFbrReNdsC2PGtqfiQEjAV8FzQCNgDeXxVlCenOve8AKJQzH58sgSjYjsPoDdHvDAwUMtYJ+ADYNE4HgIQB3ENE5IirAWewPVP8Q0V0AFgH8he+2RSIquj+vAHgTgCfGn2saXXd6Urmw/wKuFnPGvIa2XSfMMBydK80MNcQntgVVDAGjL7dupUPbGhzYQXqpss6CZPVQzmc9Z00/5iv5qQ4mARxX1xML5Ym++X7E0Q3dmlCtBeiJxYFVQwkYz13fPeiSG4ZCLoNjc6VEA0FQzwxgXo80Ae1AwBjrA3g/gM8DeBLAHzDGHieijxDRO30PfQ+AT7H97XSvBHCBiB4F8GUAv+avNooLbftg5QrgLEimAsFugO/NODg1NAsdhnxi20o13oygZff30UKAb2eqSVGM70w54pg1IYurO51IfYAjTmrIf45K+QwypK4RDNzMevy8m8g0wsAYw41duYwAcOihJKmhcWdWjlzWGQpk0s5GF9rlowDAGPscgM+N3fbLY7//asDzvg7gNSaOQQa8m7ec378g1Us57TJGjnGnxyAcqZdg9YfY6/T3ecBMA1vN8ConvuvTrQ9vWf19giUw0gu0dqZWf193qx8L5cLUy0ev7XTw43ceEXrsar2IrbaN/mAYmOGooNntI5shFH1UJRG5Qr1aAG4G0E3AKBCYdPL1Y6/rDHvhs6lFcWqxgm89vxXLMQUhiI7jqBrUI03gUHYW80hciZsamiAUc/D5pRut6esEQZ4ofvD5AbrpftseBGZigF71SrPb39et7Me0qSGrP8Baw4oUijlWawUwZnburxOAsweoKZ0suBNQAcZfE0BsFgq8wEIlI7ix10Xf0KS9KATRcRz1kjk90gQOZSDgF+g4RWFSLBahhrzmoRkYnOIFggnHbEojaFn9A1+MqgGNoNHthWQE06WGbu46n++JBbGFi3vXm+jk5mgGaDOAXunuaEO1/3tUMVCWGgZuvzE+QCkKpxbLGAxZbDbf4wgq2eWoFrOxZUwqOJSBwKOGAgJBw8CH4xl8iQaCGfDLj8oITGkEbXsQGIABvbrqptU/UDrKMVfOu/bX09FiRHsIOLhxnsngFRSAAb0seBLFakKEDsMN16b7qAI1BIzsKeLGyE7l4Hxqk3qkCRzKQOCJxQHUkN0fatfKN1yDr3EnzHHwCp3NlwA1ZKobshmwIPHAoEsNTcoI6qUc+kOGbi8ZSmAcoj0EHN78B5PUkB0cCGrFrDKF055ADWUzhHJe/XWjcMPNsGQDAQ/EpnTAKAT1bnDUirmXV9XQSxE8Uo9nBHxB0r2AOR89aVHlWKoUQDRj1NCEY85lM6gWstpicdseHAjAJjxvGtbBxiYOU0K3KnggEOW0l2KhhoLPT6WgTw2Nf4+AeKmPjaaFhUo+ciDNOPj5T6qJs20FB0rApaFnqGrokAaCYI2AX9DdXjxOmOPIZTNYqhSwYXDnp4q9jjOop5Q/+KXmqJfyRjSCSjG4fFR1QeLjL8fL9DjmPFprSoFgt4uVWiH03PoRFzUUFAiMiMWBHHh8Yqgz8EnMWsKPUj6LhUoe12OaADcOfl7HqTPApeTSjGC6mBQITGUEQVO4JmG5VpiZjCAqg6mX9Ere+oMhrP7Q66zk4F8UVeqm3RuAMUykhua8jGA6X7ybe10pGqOUz6KUzxg1ymtZgwkaQVZ5wZ70PQKc4BCXl07Y5L8oHJsr4UZCYnHb7qOczwbaYNRKqUYwdXQmlI/yBUm3EWY0vi+6N2BWZurudg6ah42j7rpKqoIbzlXGFqSMW9/eUczE+M6qNkEsrnudrtPJCGQDAeBkBSapoUa3d8BSBXCueeUAHEENxZURhFmhROHYfHLd/C07OPgCjs2EZUCPNIVDGQja9gC5DB3gGLnlhC41xHeekzpd/ViuFb0RkdPEXjc6I+DVN6poTyg3BJzFRPW888A7MSMo89LXaWUEllogMHRdMMbc/o2D56ecz6LTGyhVVE0qugAc6iOuzuL1poVVxUBwfD65jMCp1AqmA2dtJsGhDQRBu5hRRmDGCXNOKCN4KVFDuoFgMpVQzmeV5zfzTCNoxwuYK31VQW8wxGbL8gYRiWKxaq73oTdg6A9Z4HkvubdZffmdadvqg8ixqhiHyeZMP7q9ARrdvgY1VMZG04bVj9/wrWUdLIzg4J+FahZsGoc0EBz0uwF8H452IAjfofqxUiuiZQ+mPsReXCNQpyv4jj9INOU7UxV4FEV+9qqG1hsWGJMvdVyoFIxZZ3dCznslr37Nt+0BKvmD3cqAGWvxIPDsWZ0acp6XhOtvWEZQNqRHmsIhDQTBkbpsKEo3uk47v4hXOt/ZTFsn2A0Ysj0O3SaYsEBQ1AgE/HWDsjzAWZQyNJ2qIV6qKJ0RGDTK4+dnXBMD9K75dm9wwMGXw8TUuSBsRoyAjcIx17E0CZ2gPaF3AxixD9PeAHIcykDQiZ0aOmjNOwlxzaiVwXDI0LD6kYGgWsih2xsqe7VwUTKonK6czyhrBO0JHa4cRKRNa6mCB4IjdXmNYLfT05rRwOGdn8LBrzsPykqBwArOrAFeNWS+m3s0C1yNGuK2FEnoBM0Ag0UOHpTTjGCKCLJCBsxRQ3udyZbI4+CBYHOKNhOO/cJB3/Rx8DS3rblzD+KUywV1jaAToj1w6Ja+quKmS0HIGqQtVgoYMjOVTpOsIPy3KVNDkwJBMYchUy8JnoSNhvM9Uc0IOEWXRCAIMljkMMU+mMKhDARORnBwodbZHfnRsHrCgWB5BqihqK5iDt1KhzCuWkcjCKOcOOZK+amUj97c6yKXISxFNBeOY7Hq2kwYoIdCz7tGE2VYIODCvWl6iDv1qgaCuVIOlUI2EeO5ptUPpOMAfwB+GVUNEdF9RPQUEV0kog8G3P93iWidiB5x//28774HiOgZ998DJo4nCo5GEMBT55xBHfpicV+aGppmCWlSgSCMGippicWzmxHc2HNm62YEZ+tyLFTM2UyMMqbg8lFAkRoK4cD53zJdHrnRsFEtZCfqQVEgIhybL8VuM8FLdifZnphqXjUF7cE0RJQF8JsA3gbgCoCHiOjBgEljn2aMvX/suUsAfgXAeQAMwMPuc7d1jysMbXsQuBgRESqFnJHy0VuWKkKPLeWzqBVzxidSyUA4EHjmcHo792IQNZTPoqtKDQlkBPVSPvHB5YBTnXJEsmIIGNlMmOgu5udnUgAG1KmhSTvzuIbTbDQt5YohjmNzpdhtJqz+EIMhO2CnwjFrgcBERnAvgIuMsecYYzaATwG4X/C5PwHgC4yxLXfx/wKA+wwcUyi6vYFXPz0OZ2eq31kcxbf7sVQtTNUvP2oWAYd+RhBOUahmBB17gGIuE1qlNVeelkbQlZ6kBTgzFAAzA+C9QBAgFmtVDYVSQ/GIoTr2EhzH5kqedhMXwqaTAeZ8zUzBRCA4CeCy7/cr7m3j+OtE9BgRfYaITks+1yi6vQFKucmRWlssDpmfG4SlasHoNCpZiGcEfICMZpmnYY2g0wuuAvNjrpSfSh+BYy8hv4PlGwkTugbPtCZpM4CGWDyJ+uAD2g1nBJtNW1kf4FidK2K9acU6n4JnzVEawcspIxDBHwM4yxi7B86u/5OyL0BE7yOiC0R0YX19Xetguv1hYOUKAG0fdas/gN0fCnUVc7xkAoHm5Klub4hshpAPmMNbcj1vhgrlkpOoPj/qrsmXyuuromMPsNftK1FDnj+SgSymPcFbC9DTCDp232tIG4eJ8aNB2GhaWKlrBoJaEXZ/GKsJIRfJJ3W757IZFLKZl1UguArgtO/3U+5tHhhjm4wxnov9FoA3iD7X9xofZ4ydZ4ydX11dVT7Y3sDh7iYtHDoUBTCyMZDNCEwOIZHFbqeHfJYiF1PduQGd3gClCR7yfEevYnUgmhEwBjQTrNIYNZPJB4J8NoNKIWumfDSsf0ORGmKMhZ53TiO2DXYXD4YMW20bK1U9amjVDSRx6nI8AE7KCABeMv3yqRp6CMAdRHSOiAoA3gPgQf8DiOi479d3AnjS/fnzAN5ORItEtAjg7e5tsSGq1FCXGlINBJste2qjFLm9RJBVgB8Vj/dV1wgmLRx6O1OxjABI1m9ItauYwxSdxc9pMSAI89tkhXp7MMSQTf4e8cICk9TQTtsGY6PBParggWCtEV/lEKdPJ1VVAc5aMysZgXbVEGOsT0Tvh7OAZwF8gjH2OBF9BMAFxtiDAP5HInongD6ALQB/133uFhH9UzjBBAA+whjb0j2mMPASxjBqSMfjxbOgnmCJHITFSgFWf4hObxC6g4gLex0xcZvTAE3lqqEhihO0mdFMArVAEFY6Coz8hpzPR2xkpC64jYGKWAw4AvdeR38h7fYGKOUzgSWsRKSkz4y+R5M2VHqbhiDwUtpFzUBwJMGMYFJDGaCni5mGkVWHMfY5AJ8bu+2XfT9/CMCHJjz3EwA+YeI4RDAqYZxMDeko+SoZwbJ7YW82bVSWkg8EIoZzgDM3oFLIoq1RNTQpIyhpVK90eoPI883vT3IqFF9oZO0lOExlBI7JYgRFIR0Iwm09CrkMchkyutDxUtqoyX9RWK05n0cigSCSGpqNQHDoOou5/WwYNaSTrskMpeFYrJofTSgD0UAA6JmJ8Z1pEHSqV0QygtoUqKH1hoVCNoO5slpwnysboobsYSh15liAy2kzYXYh3usapj54QYVsl/Y45so5FLIZrMfYzT/KCF4a1NChCwT8gp8oWmqmazJDaTg45zmtyiGpQFDIqlND/cllu1rUUE9AI3C/kI0EB4GsNy2s1ouR2sskzJXMUkOTUFIw/BNp4tOZMRGE0Sxw8U1WEIgIq/VivBmBpxGEnJ9CTtm3yzQOXSDoRmQE5UJO6+JtvtwDQTGnTA1Ncn0FRs1Oqo1Nk+yQOXiGljQ1pNP8ZCwjiKiqUqOGJlcicZje8fKMWVcjAICVuAOB1XemIAaUSnOU8xnlbnrTOHyBIGInU85nYQ/UrZZFUsJx8FR3GoFgOGRCYyo5dCZPhYnF/HaVINwVyAhG1FByTWXrDcurUFEBN8rTrSZr231UJgztAdR27vzxQXYh3usasGvxY6tto5DNBPqEyeJIzIGAjwYNywYrhRzami4GpnAIA0F41ZDuCLmWPUAhlwlsmpqEuXIO2QxNJRA0LMeCWoYaUv1yh2oEGvXsbbsfaJ/gR7WQBZH5TtcwbDQ1A0HZsXJW7eTm6PSGEy1VADXDP55ZR2UEunYtfuy0elioRJc5i2C1XozV8deZRRAesFKxeIqIqnbwFiTFD6htR18A4yAiZ1j5FMRi3rAk2gldLea0vIYmnndFjYDXs0eV3RIRasXk/IYGQ4atlq08ZB0YfSa6TWVde4By2M49L18pF2ZbwWHCrsWP7bbtmfHpYrVWxGbLVs78oxDmzMpR0XQxMIlDGwjCqCFAIyOw1HoBlqdkM8HtJURN8qoFDWqoP4w+75JfjK4dXs/ux1yCU8o2WxaGDFp2CDxL09UJovpTlDQCgYxA165lHNtt25vToIvVehGMxUfHNq3JPkwc/LxPq5HUj8MXCFwLg0ncpq49bNjA6jAsVvNTDQRSYrHGJLFoakhuh8Y51qjyUQBuRpCMRsD5Z62MwDOe0wtebXtgvLqnIxCAde1axrHd7pnLCLzu4njoobbVn+gzxFEuZMGYmq2KaRy6QGBFZAQl3UAgkBIGYVrGc7KBoFbMomXLz6JljKHbn0wNcasD2YUjbAzjOGol9WxGFhvu6FFdsRgwQA1FiOlxNJQB5quGdtq2djMZh+c3FJNO0LKjmQHeqT8L9NChCwQeNTTJhlqjnh3g089egoFAsDa7UsyBMfmL1x4Mwdjkjm5udSB73keD2aMDQT3BQMAzAh3LZN6IpkMNjczhDGsEfYGqobxeKbYfjDFst3tYMkUNuZ/LekxzCVqCYjFg1oZDFYcuEHR6A2QIyGeDKw90B0a0rL4QTTGOpUoBO50eBgnaJANq1BAgP4tWhMtXqaIQ2ZlyJCkWe9TQlDMC23XbDdUI8ln0Bgw9CeG0aw9AFGxkx1ExyIHvdfsYDJlxaiiujEBELOa9L7NQOXToAkG35wiWk0rQtMViDWqIMTMTqWSw1+khmyHhSifVcZWi4qLseZfLCJITizeaFiqFrNK1wGFiJoFoAAbkNj/d/hCl3OTvEX/dwZDBNlCZY8pniKOUz6Jeim9EbNMSqxoC1NcakziEgSBcONOZ4Qo4/utqYjFvKkt2drGoBTVHRTGdFfGmKeUz8hqBREbgDLBPTizWnaSVc5undDICkfNTUliQwoR/Dh3/qHF4PkOGqCEAsdlMDIYM3d4wkiKepbnFhzAQDCf6DAGjL4UyNWT3lTUCANhqJZsRyNhLAOrprIg3TUlhgH1HIiOoFXOw+kPYCVRp6HYVc+jaTITNK+ZQ2fyIdHObXOhGPkNmMgIAWKnG01TGadOoDWFJs2fJJA5fIOhPHlwP6A3z5jsBlT6CpSlmBKI9BIB657WIN005n/UoJFHw4xDRZTwr6gQE442mpVU6yuHYTKgfL8/cyhEWE8DoMxJBJyKzBvxiqP5C5/kMGQwEy7V4CjT4VLZIamiGBtgfukBghQyuB0aupLK2vID4TiAI08oI9mQzAsWSt9EciPCdqcxiBEiWj/JRmwnoBOua9hIcc+WcVkbgiemhFhOZfY8Ve93JzYEcFYNiKB9Ko2tB7QefDGgaTUust4WvQy8bjYCI7iOip4joIhF9MOD+XySiJ4joMSL6EhGd8d03IKJH3H8Pjj/XNJwLePLb5kOllVwwBXcCQeA7naRtJmSpoYpiOitGDanbIYuKxQDQsOINtlZ/gJ12T1sjAPSH0/ANjYhGIBcIojUCXd8uP7ZbNjIk5+obheVaEdtt23ilXtsbXB/dWQy8TAIBEWUB/CaAdwC4G8B7iejusYd9B8B5xtg9AD4D4Dd893UYY691/71T93iiECUWA2oLEjDKCFTKR0v5LKqFLDab0wgE4l+u0QhCufNjCYiWRYWqoY7tlAOH2f1yJDW3eNNAMxlHXXMmgZhYLN/MFzZtjsNknfxOx8Z8OR84blMVy26lnunNV1NgcD2gX5hiEiYygnsBXGSMPccYswF8CsD9/gcwxr7MGGu7v34DwCkDf1cJ3b5IIFAbVykyni4Mi9VkjecYY9jr9hWpIdmqIYEyxnwWlqzFhNvBKVL1lNS4Si5AmggEut3QnkYQ4T4KKGgEIRQrYLZqaK8jd52KYLkWj/07ZwYiMwLNwhSTMBEITgK47Pv9invbJPwcgD/x/V4iogtE9A0ietekJxHR+9zHXVhfX1c+2ChqCFD3SGlpUEOAs0OJg7OchKblNOnIVQ3pUUNRO1MVakjEcA4YfTHjpoZGXcX6fHatmNcKXGIagXOfJSHUi2TWJquGZIsaRMB1OdOVQx4zEKEV5rOErOG5zqpIdFI6Ef0dAOcB/Jjv5jOMsatEdCuAPyOi7zLGnh1/LmPs4wA+DgDnz59XJvU6tthORmUX09YQiwEnI0iSGpLtKgZGQ8llR+wJ9RHk5DOxjsAsAo5aQhmBia5ijnopB3swhNUfTBzqEwYRMV1NI4gWiz1qyMBCJ6tliYBrOKYzgpZgRsBtVVQKU0zDREZwFcBp3++n3Nv2gYjeCuDDAN7JGPNCMGPsqvv/cwC+AuB1Bo5pIqz+YKLfDYfKoA5gNEBEpXwUSN5vSCUQAKpWENHUED/vMpYEnd4gdPqWH55lQ0LUkAmxmC8msp3cHNzNNUy34pVyMtSQmFjsHLuJcYx73fgyAtObr5Zg1RCgvtaYholA8BCAO4joHBEVALwHwL7qHyJ6HYB/AycIrPluXySiovvzCoA3AXjCwDFNhBA1pKsRKGYES5XpBALZL5jjKim3mPKLPcybplzIYsiA3kAmEIRP3/Kj6GYzcfcRrDcs1Es5YcoqDLolrx33cwo77yqdxSINZaqlxkGQLXMWwWKlACIYp2NHRSPRG5RyQa0wxTS0AwFjrA/g/QA+D+BJAH/AGHuciD5CRLwK6P8CUAPwH8fKRF8J4AIRPQrgywB+jTEWcyAQuIAL8vXsgNq8Yj8WqwV0eoPEqgj2FDOCisIsWsvdQYaJunyxkmkq69h9z7MlCkTkOJDGTQ0Z6iEAfLOWFXWNjnu9h513WWqIO5pGBbpshlDIZbTn8jLGHI1AcIqeKLIZZzLgpmmNwOqjnM8iK1DhpEpDm4YRjYAx9jkAnxu77Zd9P791wvO+DuA1Jo5BBP3BEP0hi+Y2FdM1vjiKLkzjWOZNZW0bJwtlpdeQgTI1pDLIRKhsd7QgiX7pO70BjtTFj7+WgN/QRkNvRKUfdd2MQKDMM5shFLIZ4c1Pb8AwZGK9GybGVXZ6A/QGckUNoohjMmDLHVwvAtW1xjQOVWcxn04WRQ0V8xmli7dl9x36QWJwvR/ceG47IXpINRBUFKqqRDIxLxBIiGdtO3qh86NezMdPDTUtrRGVftQ0bTE69lCo67ooUbElQvNxmJjLy/so4ggESzEUaMhMKXw5aQQvGUTNK+bQ0Qh0bId5RpBUCelup4cMyfc9lBUmTwlVmfBAIFPGaEcHGD9qpVzsYvF6w4zPEODTCFQDQa8vFChleme85kCB11UpLBjHSMsyX+S4Uiti07C/V8sSH07l0NBpIEgUUdPJOJSpIUULao5pZARzCt2aKul+pzeI3EGqeN60BTINP+rFeDWCjj1A0+qb1wiUxWKx8yOz+ekIfo8AR0/S3fGqZq4iiMNvSCYjmBWN4JAFgvDB9Ry8oUx2spKqBTVH8hmBWrdmpZCTFgBFLAmUOlztgZSlR72Ui7WhzGRXMeBQWYBORiAWCJxmPrHzLlIKzFFWqDAbh2pRgwiWawXstHvoGxiewyEynYwj1QimAFFqqJTPgjHAkvStb0suSuOYK+WRzVCiGYHKl6uksIuxesPIHaSs581wyGD1oyknP2oxVw2t8WYyQ9RQKZ9BNkMa5aNiGkpJwgJcZMYBh4kdb5wZgb9AwxSalviGsJRSQ8lDRiMAIO17IzKeLgyZDGGxkk9UI1DLCOQ1go5AA5JsGaPMLAKOeskRi03M0Q2Cya5iwCl5rRXV/YaEM4Kc+IItSrECatfKODyNwHD5KOA4kAJmu4vbtjhFnFJDU4CX0kZy1Wr2sG0JkWgSnO7iZIbT7Cn6t6gMJZejhmR3phIZQTGH3oBJZ3uiME0NAc4xK2sEAucdcKuGBM+JpxEIisXGAkFMGgFgtru4afWF3QU4NRTXxkQUhywQiC0cPOWVDQQtux9pNBWFxUoB2wkNp1HNCMoFhzqTsiToR3s8SQcCiaE0HHMxW1HzjIAvMCZQL+XQVG0os8WoM8f5Va5qSDQj0KU+9ro91Is5oQYtWXBjQFNZOGMMbXsQ6TPEodJNHwcOVyDoy1FDsilbS4IbnITlWsF4OVsQeLemEjWkYEXdsYfRHk+SnjdKGYEXCOIJthtNC4uVPPKKvSRB0KKG7L6w500cmZhKF/o44nAe5ViqOpmbqe5iqz/EYMiEN4Sq7INpHK5A4FFDYjtT+YxAvKNwEpIynmvZA2kLag6V4TSWoLUHIJ4ReJ3cUtSQXhVOFDaalhGzOT9UBW5uBRFf1ZCgWNwbYKgxBUyVwhTBQjmPDJmjhrjNjHBGMCMzCQ5ZIIi2QgbUPpzeYAi7P0RVo2oIcIzndjo94+PzxqFTiSG7YAN8IFCENpOTKx/lGZtM1VDcU8o2mrb5QFDMoaEQuOzBUNgKQqbDVYaS864ViSbBcThDaeJxzM9kyGgvwWhzIkoN8RnpaSBIDKMB6mI7U5kPx7sADGQEjAE7MU8q222rBwLZgSP9wRC9AYtcODKu543wguT2Mkh1FhfjDgTm7CU4VI3yuFWHqEYgGthFKVbAzHCaOGYR+LFcLRqjhprelELxqiEgpYYShSXoNaRiddCSvAAmYSmmYRnjMJERiH65Rx5Phj1vbO61Lx58eQlibNRQwzIymcwPVY2AN/2JUGfFfBZWfyhUvcIzNpE50SbGVcbhPOqH2YxAzoE41QimgI49AAkMOlcZKi17AUzCUiWeOarj2OvqZATOe+wIdheLUnKAW70i29gk2VAGxCMWd+wBWvYgBmooj7ar6cgeDyB2fvhnI1JW23XtQkSsSUbXyuxmBEu1grEmzqY3rlYuIzAxvEcHhyoQdN2B21GDzlVG97UkL4BJ4GWHM50RSA4ckeHyneoVUY0gejD7OHQHvYTB6yGIQSwG5LMYr95fsKEMENv8iMwr5tClhuz+EJ3eIGZqyGBGIDmTxKOh04wgOYgIloDahyMzlSgMy4brmidhT6NJR/bLbUlwyiUJC3CV8tFCLoNiLqMkvkZhnY+orJulhuqKDqR8IyNCDcmIuiKW4hwlb9Ogdr69zLUSLzW02+mhZ8BvaKQRHEJqiIjuI6KniOgiEX0w4P4iEX3avf+bRHTWd9+H3NufIqKfMHE8kyBihQyM6tllhkp7GYFmIFhwL/gkMgKi0SIjA1kxXcakTMbzpq3QUAa4xnNxZAQNc7OK/fAyAslj9s6PUNWQeA+HyLhXjopC4YUfcdpLcHC/oW0DBRr8nMuYzgEvg6ohIsoC+E0A7wBwN4D3EtHdYw/7OQDbjLHbAXwMwK+7z70bzozjVwG4D8D/675eLBDdyeSyGanqFcCvEegdfjGXRb2YSyQQzJXkLagB+YxAhsuXbWwq5DLSHaf1Uj4WjWDd4NB6P0YzCeSOWUoj8Ep3Z4saitN5lIM3lZn4zjUlBtcDajR0HDCREdwL4CJj7DnGmA3gUwDuH3vM/QA+6f78GQBvIYeovx/ApxhjFmPseQAX3deLBd1edHcrR0miegXwawT69c5LtfibynQEuBGfbF4sltMI5GYRcOh06oZho+F8Zsumq4YUex+kNAKJBanbF/8e6XLgcfoMcSxW3SzcQFNZ2+4jlyGh6W2A3Pm5cGkL/8PvPYxrOx2tYwyCiUBwEsBl3+9X3NsCH+MOu98FsCz4XAAAEb2PiC4Q0YX19XWlAz06V8Rtq1Whx8pODmrbcjuBMCxWZjsQZDKEssQIQimxOCdTPqpm+x3XAPuNpoX5ch5FAQ8eGSShERQlLMC79iDSuJHDqxrSpIbiaigDnD4CwIwu17KcazKqIIVDhoa+vN3Gn3zvRiyGifGdXcNgjH0cwMcB4Pz580pttx/9qdcIP1Z2lugoJdQ/pcvVAq7vdrVfJwy6JXmVQhZt4QYkSY1AghpSzQheaLalnxcFx17CbDYAGNAIBBvKADHr9W5/gMWK2Ps0RQ3FmREsGdQIWlZf2F4CkKOhZaw9ZGHiFa8COO37/ZR7W+BjiCgHYB7ApuBzpwJZn/C2S1OYcEhMwm9INxCUC1nh2mfZPgIpakghI6iVYqKGYvAZAtTnFstUVUlRQwKzJTiKuQyIxGnEcfD50nFqBItugYYJvyHHgVhuMyhKQ8vMgZCFiUDwEIA7iOgcERXgiL8Pjj3mQQAPuD+/G8CfMaeF8UEA73Gris4BuAPAtwwckzZkMwKZOaVR4IEgTo9yXSMvmYEjogOBnMdkpCZlqWQEc6W8V5ZoEhtN27i9BDCqRJPVCLpuA6UIX+0FAqHy0aHweSeSoxHHsdvpoZTPGKfb/MhlM1io5I1svlqWvPFkWXAGOKeEokbtqkCbx2CM9Yno/QA+DyAL4BOMsceJ6CMALjDGHgTw2wD+PRFdBLAFJ1jAfdwfAHgCQB/ALzDGpj+uB3LeKwAfU2mGaVuqFmAPhmhJ+JrLgFtQz2nwruVCTpwakqwaEs3E2vbAM5GTAReLGWPCXK4INhqW8WYywNFkVARunqWKvEdvTKgAVy1TNQTI0Yjj2G3Hay/BYSoLd6zo5YKW6NziODMCI6sMY+xzAD43dtsv+37uAvgbE577UQAfNXEcJlEuZLHWEN816o6p9MPrLm7asQSCTm+A3oBhoazOZ1fyWYmqIRmvoZHnTdQC1u0NcERhB14v5cAYjAbabm+AhtWPRSMA3OClUDUkunOXcdyVDQSiO94g7HXjtZfgcLqL9Y3nWvYAi5JDiUTZh25viEJWzNpDFoeqs1gGMlw14FQN6RrOcXjj82IaULOj4TzKITOCsNMbIJ8lIf3EEy0FKiPailVDquJrGDZi6iHgUNE1OhILthQ11B9K0RPVQk65szhunyEOU5V6ShmBYIUi93iKA2kgmICihNUB4JaNGc4ITFQxBIGX5C1otO3L7PJkdpCjDtfo1xadxzuOuudAak4n2HCFxtgCgcJMApE50RxFwelwgyGD3R9K0RM6c4vjnE7mx7Kh3p22Lc8MiBamWBL9G7JIA8EEyGoEKjuBSfDqmg0O1PbDREZQkRAARa09ADnvlY4tR1Fw8Lr8PZMZAbeXiEEsBnjvg1zgksmYiJwmqKhrXsY3iqOqMa4yqYxgqVrAdrunNUkNUKOIRTUCS6JaSxZpIJgA0Q+Ho21gTCWH1+kYUwmpjvMoh1M1JN5ZLHoBi3re8DGMs0cNxagRyFJD9kBq5y7Sw6FSy66TEewlFgiKGAyZVjXZYMjQ7Q2l/cZKBUGNoK+28RFBGggmoOx+OKIlnC2DGkGtmEMhm8FWbNSQ87p6GkFOOFDKuFWKipa9AcNgGD31LAhxjKuMXSNQFYslrkmRLFimAoxDZtPgx3DI0LD6yVBDVX3X35ai31g5L9aT0+0NU40gaZTyWTAmJloCQNugRkDkzFE14X0SBBMaQaWQRW/AhKx7ZTSCoiA15BmqKZTsqpq4hWGjaaNezMW2Y6uV5DUCWQsOkQH2Mj0hHBVFaqjR7YMxYE6hRFgWJuaAtBX9xoSpoTQjSB4yLfd2fwh7oD+43o/FGLuLdzs9ZN3adFXIWAdIVa8IumCqTCfj4GKxyYxgPYZZxX7Ufb0PouB9BKKIixqqKJaP6kzRk4VXqaex+ZJ1HuUoi1JDEvbfskgDwQTIuAKaGlPpx3K1EBs1tNN2eFedZiqZmQRyYrE7MjEiAOuY/MUxwD6OWcV+1NzeB5mdtUzVEOBkY1HXOy8vlaleqRSyaNlyQQwwo2WJgjvGamUE7jUpu8HijrtR54dPWIwDaSCYgJKEG2OLD6Mw1FkMxOs3ZKISY5QRRC+mzgUsZ8srmhGopMrZDKFayBr1G4rLZ4ijVuQlr+LHLJsRlPOZyADMuWyZBalSyEnRrBxJWFBzLHqzwtV7d7gVvazDgGjvjCXZvyGDNBBMgMzkID6ntGLIawhA7BqBbiAo552LXWSHKrMz9WYdCGsEaue8VsoZHU6z0bTjDQSSArdKVZXIdLiuVz4qRw0B8g6kSWYEpXwW1UIWWy31a6JlqWUEZc/eI1qoTzOChCFTzy47p1QES9UCGlYfdgze4yYzAmFuU/ACHrlghr9v/ndV5z+YHE5j9QfY7fRiDQSyMwk8Ll8mEOTENQKpaiT3sS3J853EdDI/nIFQGhmBrbYhFKWhZQZrySINBBMg470iO6dUBHF2F++0e1oVQ4DcLs+pf5btIxDMCBS/GM64SjOBgAuMpofW+yHb++AFSimxONoXX8X4jG+QZKeUJZkRAE4vgVb5qOLcctFNp5VaTCQPGTG0pVgtEAYTVQyTYIQa8s5P9MLUsQfCO1NRzxsZr/0gmBxgH3cPASBf8joS08UXJcfzJqp8VNxAkKOimBHw6jaT36swLGvqcvz9qfQRAALUUFo+mjzKggsS8NLKCIZu9+SCNjUkphEMhwyWhDcNH2QS1WCjnxGY0wh4IFiNsXxUttLJ27nLVA0JUUPqGoFsCSl3HjVpFR4G3QINVYpYpEBiMGToDdQaKEWQBoIJKEmIxU3FnUAYTHQ6BsFr0jFWNRTlTSO3g/Q8byK0Ef53Z0Ej4EPr45hFwMG7oUWP2Ts/kn0EkVVDCl5DopuGcex2+onRQgC3olYfCMX9xmRtossC1JBKAJZBGggmQGZ0n9dHYFAsXvRmEpi1oh51Fevx2aLU2ciSQPxSE2ls0ikfBRyNwJTX0HoC1BDPNoU1AoWqqlI+A3swxCDEeI1najJctScWS9pM7HZ6iXQVcyxWC7D7Q68cXBaqM0lENp2613sUtAIBES0R0ReI6Bn3/8WAx7yWiP6CiB4noseI6G/57vtdInqeiB5x/71W53hMQqahjItEJtO2xUoBRMBW2+xIxR0DPkPAaKcZtctT2UGKeN507AEygmMYg1Ar5tCyB6GLnig2mhaqhayyXiGCfDaDUj4jnhEoaCgim59uf+jSd+K7Xp4py1JDSVlQc3h0rGIW3pQcXM8hIhareDzJQDcj+CCALzHG7gDwJff3cbQB/Axj7FUA7gPwL4howXf/P2aMvdb994jm8RgDb4ASGd3XtvuoKKSEYchmCAvlvFY5WxBM+AwBzpzXQjaDdi98YeJffplA4Exsii4fFR3DGARZqiUMcc0qHketmBf2G+oqaCgilXKy3coAUJHoOfGjkZDzKIcuHdtSzAhENAIu0s9qQ9n9AD7p/vxJAO8afwBj7GnG2DPuz9cArAFY1fy7sYMvdGJ9BOYsqP2Io7vYxCwCjkox2kNGxZtGxBe/basNpeEYOZDqZ1yOvUT8gcCZSSCpEUhSQwBC9RmVpqaypyfJU0NJBoKR8Zza5ssZXC9/TYpUDamY/clANxAcZYxdd3++AeBo2IOJ6F4ABQDP+m7+qEsZfYyIJn6biOh9RHSBiC6sr69rHrYYHDdGMY3ApOEcx3Kt6AmRpuBlBCYCgcBwmlGZp3igFDM/0wsEKpYNk+DYS8TXQ8AhI3CrmPIJUUMKxmeFXAb5LEllBIyxxKkh3YFQqtTQSCwOD8D+x5pG5CdKRF8kou8F/Lvf/zjmSO0TCVciOg7g3wP4e4wx/o4/BOAuAG8EsATgA5Oezxj7OGPsPGPs/OpqMgmF6CzRljWQ9hcRwWqt6JUmmoJJ/xaRcZUqF3BZoHqlI+mjMw6TMwni9hniqBXFS15VxOJiTmxnqrIrLUtMtAOcQNYfsmQzAk3juZatFgi4zhWuEcj3b8gg8qgZY2+ddB8R3SSi44yx6+5CvzbhcXMA/guADzPGvuF7bZ5NWET0OwB+SeroY0ZJ0Cfc4QbNf0ArtYJXkWIKu50eSvmMkQuqIjCUXKXev5TPeDOAJ6HdGyjNIuAwNaWsNxhiux2vvQRHrZTD5a220GNVMgIeNKyQ3plOb6BkcyByrfiRdFcxAFQLWRRyGeVA0OyqaQSZDEWyD6OqodnUCB4E8ID78wMAPjv+ACIqAPgjAP+OMfaZsfuOu/8THH3he5rHYxSiQ6UdsTiGjKBeRKPbl5qdHIWdtm3syyUygnBEDZktH+3aA6mS1HHwskTZYS/j4ItGEmJxXYIaatsDFLIZ5LIS511ggL3VGwo7yfpRKcplBF7mWkouEBCR10ugAlVqCIhea6ZODUXg1wC8jYieAfBW93cQ0Xki+i33MX8TwI8C+LsBZaL/gYi+C+C7AFYA/DPN4zEK0YxA5wIIA99lmmwqMynAVQQGaqjUP4u4YLZ7esGXawS6YvG6O7R+NQmNoCQeCGTmRHOIlY+qUUMVybnFuwaLGmSwWCkolY/2B0NY/aFy0UjUlLK4xWKt1YsxtgngLQG3XwDw8+7Pvwfg9yY8/806fz9uiNSzA3xwfRzUkBMINhoWTi6UjbzmbqeHhbKZRatSyOLKtnmNgA/qCIOuRmCKGkrCZ4iDzy1mjEWWzapkqaL17Crn/aVADQHOgBqVjVdLcUwlR9QAe/49mtXy0Zc1REfINa14qCFON5gUjHfa5ioxyvmcuFgsOztXwGtIZ3dULWRBpC8Wcy0jKY2g73o3RaHTG0pXVY2cX8OqV9TGJcqOq5xWIFAt2W5608nUrsmoAfae/feMUkMva5QFdqaMMbRio4acnTunH0xgu21jqWqOGooWi91qB4nacxFqSHboyjiIyIjfkEcNJaQRAGLBq2P3pRcN0YYyVWpIxrrhpRYIRkNp1I532tRQGghCUBIQi63+EENm1nmUw6OGDGUEjDFst3qej5EuRHjfjuuhLtN1Xcpl0Rsw9AeTg3BHs48AcITIPU2NYK3RRbWQjeXzH0dNohta5fwUYw0E0dmjH3vdPohGZb5JYblaQNPqh1ZOBYEHZ1WKOIp96PQGyGYIeQnxXwZpIAiBSENZHM6jo7+fRb2YiyylFEXbHsAeDLGkaTjHUS5kYfUjTMoUFiReYTSpw3U4ZOj2htppMufcdbDWsBLJBgBfE5zAMbdt+YyJUz5h1JMzJUuNGpLRCPY6PdSLOaO2LSJYcpvKZLMC1TGVHFGbThPXexjSQBCCqHQN8A2jiEEjABydwFQvAb+4TWYEQLi4qCLqRlWvcNpINyOoS1ThTMJ6w8KReknrNUThzSQQGE6joqEUss4siEkL0mDIYA/EZ0v4UVaghuY1/bBUoDoQajSURr1qKLpaK77lOg0EIeDpWpg/uW61QBRWa0VsGNII+JAbcxkBNxObvJh2FKpM+EIz6YuhO4uAo2ZgStl6w8LqXDIZQV2i0klFQyGi0AXJUnCS5agWcrD7w1C6z4+kfYY4VAdCNTUzAhGNoBjT4HogDQShKOWzYCw8VeYe63FQQ4AzB9eURmA8IxD0UZddOIoR1SsqjqZBMCEWr+11cSQxakhCI1Asrw0T6keVK2rUEDCyx46CM4tgeoFAlRpSzggiqqp0vbWikAaCEIhUUTQ1L4AorNSKxjQCLyMwTA2FCcZKGkHEeVexTwiCM8BeXSxuWX207EFi1JCMdXZH0Z21lMtMDMA6lSsyM8CB6WUEy4rUkK5WGNU7o1q2K4o0EIRg5BM++QNqu9RQHOWjgBMIdjs92AK141HYajmLnkmxGAgPBA5XbbbDdTQjWl8j0KGG1lzKLrGMQMIoT4WSA8K76XUCQVVyXOW0AsF8OY9shqQzgqblWHqo0jflfDZ0OpyK/bcM0kAQAr6AhXF3PCXU5asnYWQzoU8PbbdsZDNkrCSPN9FFUUPqYnFw8Gu757yc13sf9WIOVn+oHGST7CEAHHfQQjZ6SpndH6I/ZErXpDO3OJwaUtmZeuMqBam4aQWCTIawWMlLdxfrGk96lXIhWXBKDU0JIgMjWraeSBQF3lRmYi7BVtvGYiVvrCRvRA2Fi8WyO8hRh2v8YjGgPpNgrdEFABxJSCwGXL+hiIxAZ76tUzI9QZvxbA7UMwKRTv1ubwC7P0x0FoEfTlOZ3MZLdToZR9QA+25vmIrF04KI98ooI4ivfBQA1ptd7dfabtlYNEQLAWJznbsa5aOTXpcLjrrUkCe+KtJDa3ucGkpGIwDEBO6OFyjV5udOrBriAUaxfBQQo4am1VXModJdrGs8GTXA3lIwEZRBGghCICYWO9xgQXGIehRWPeM5AxlByzZWMQSIicUqKW2kWOxmIDrzCABHLAag3F281rCQzzpUQlJwhtOIZQQy1t8coRqBVz6qUTUkkH1NOxAsV4vyVUO2ZkYQMbdYVfMRRRoIQiBS6dC24xlKw8E1AhNNZTvtnjGhGBAbSq5yARcjZufy3o2KdtWQPjW0WitGOoGahGNFHR64OFWnoqGEddN75aMKlJyMWLw35UCwWM3LZwRdvYwgmhrSM1mMQhoIQhD14QDxOY96x1DIol7KGTGe22qbzQhGgTJ4IeVWEPIagTspK6p81EBnMaDuQOo0kyVHCwFiw2lUHF85wsoYPW1GIcDIDLCfdkawVC1ip9MLtU4Zhy41FKVHznT5KBEtEdEXiOgZ9//FCY8b+IbSPOi7/RwRfZOILhLRp91pZjMDkUEdcTmP+nF0roSbe3oagWM4ZxulMQq5DHKZyUPJeSOetB1yxOzctt1HNkPerFdVjBq01Kih9YblUXdJQUQs9jIm1aqhCQ1lI0pO/nVH2dfsawTL1QIYk+subll6M0mKIZtOxphS0YUMdEPMBwF8iTF2B4Avub8HocMYe637752+238dwMcYY7cD2Abwc5rHYxQigSCuoTR+HJ0rageChtVHf8iMNZNxhI2rVG38ymcJ2QxN7HBt2wNU8lltSoZrBMpiccNKtGIIEBOL+a5bxf+qlJucEehkYkV30yASdKcdCFS6i01VDQWtNXxDNcuB4H4An3R//iScucNCcOcUvxkAn2Ms9fwkIFIV09S8AETgZAR61BAfv2eyaggIHziiGgiIKLTDtW2Zqanmu9Q9hUBg94fYatmJNZNxiPgjjfyv1MpHJ1Zr2eod3USEqqDbKw8ESVtQc8h2Fw+GDA2rr2WJEbbWWL3ZDwRHGWPX3Z9vADg64XElIrpARN8gone5ty0D2GGM8SvjCoCTmsdjFHxINx+uEoSW1Y/NeZTj6FwJa40uhhKc5Tj47sZ0RlAp5Cb6x3ieQMpc9eTyURPBd7RLlQ8E3P8pydJRQKwJbuR/pcDl57MYDBl6AeZwHduZLZFV7EOpFXNoCFYN1Yo55GLy3o/CUk0uI+DBTafvYaQRBJx3ry8kvvMReaUQ0RcBHAu468P+XxhjjIgmrVRnGGNXiehWAH/mDqzflTlQInofgPcBwC233CLzVGXkshkUspN3SADnBmMOBPUiegOG7baNZUVOmvOdJsViwHVNnCAAqswr5ggrY1SZvhUEInJtJuQ1gvWE7SU4uK7Rsvoo5II/Sy8jUOwjAJzPbnwIim53a72UE+osnlZXMceIGhLLwnn58ZxGBhNWmKLzPRJF5JEzxt466T4iuklExxlj14noOIC1Ca9x1f3/OSL6CoDXAfhDAAtElHOzglMAroYcx8cBfBwAzp8/r741lkTUcJpWzOWjgJMRAMDNPUs5EHDjumXjGYF5jQBwzrs1gRpqWXpjKv2ol/LY68hnBGsJ20tw1LiuYfUnBvWW1UeG1HaQ/rnF48kO12ZUIer2utcxN1dbBZw+5d5cUfACgcYxl0IsJnQ6xUWhm2s8COAB9+cHAHx2/AFEtEhERffnFQBvAvAEc0z+vwzg3WHPnzbKhfCBEboikQiO8EDQUBeMOZVhesh6pZibHAg4p6zY2BRGDZnyXVms5KW954Hp2EsAvuE0IVx7y3boShUxPWxcpaqjKYdIxRPAM4Lp6AMAkM9mMFfKiWcE7kZCRyMoZDPITBgK5GkzM+w19GsA3kZEzwB4q/s7iOg8Ef2W+5hXArhARI/CWfh/jTH2hHvfBwD8IhFdhKMZ/Lbm8RhH2MAIuz9Eb8ASKB91FpubuxqBoGGjWsgav5iqhezEdF/P8yacGjKlyyxUCthpy1NDa3sWiMwH1iiINMG1rD4qGnbIwOSdqVYgkNAIpkkNAcByrShsPDfKCNSvST4UKOia9yxDpkkNhYExtgngLQG3XwDw8+7PXwfwmgnPfw7AvTrHEDfCZonG7TzKwQVJncqhjabl+RaZRK04mffV0wgyIX0E5qihpWoBz643pZ+31uhiuVqIbZj4JIj0PrRsdd1qVMZ4kJZr232lZjKOulRGMN1AIOM3xDuhdQfpTBpg39YQ/0WRdhZHIGxnqlOdIYNCLoPlakGbGopj91oN2eXpTBIrR3S4mspsFip5pYzgxm4Xx+aTrRgCxGYS6FSyeRpBQA+HNjUkrBH0X1qBoKtPDQEuHRqw+THVSR+GNBBEIGyGq051hiyOzJWwptFUttGMpwuWZwRBc535sHKVQFkMGZnYtvvGMoLFSgFNqy89k+D6bhfH5spGjkEGdQGNoK3R5RpFDemc91oxj7Y9CLVusPtDdHqDqQeC5WpBnBpyM4KaZt/DJGpIp1NcFGkgiMCkdA3QH08nA6e7WJ0aWm9YWKmbd/ColXIYsglUggZ1VsoF744Grn+RKX8nbrmxIykY39jr4th8svoAIOaY2tLQUMLsPdqKc5A5ROY/8M9hwXDjoyyWqgVst+zADc449ro91Is55f4KjihqSIeWi0IaCCJQDtEI2jEPpfHjaL2EG4oZQW8wxHa7Fxs1BACNAM66ZQ9QyGWUePRSPhPoPsq/KMYyArcEc1uCHur2Bthp93B8PvmMoJR3elvCSl4dsVh1iPpk51d9ash5blgg2GrH0wEvi6VqAf0hE+o6b3T7RspdJ+mRnZdA1dDLHmFujFz4ilsjAJyMYKNpBXZ8RoFznXEEgrrX4BS8k6kqXryTKDlvd2SQGgLkDMZuuNVbxxJ2HgWc6pK5ct6zYQhCyx54i64s+BSsuKghINzbadut3U9yxkMQZPyG9jo9I3YYE6/53gD5LMU28wRIA0EkKoWsJwqPg/O0SXiinFgogzEomc/xLtg4M4KgL7eODxPvIxhPzXWmbwVhQYEauu4GguNTEIsBYL6c83jpILQ0rNEnWYBzB0wz1NDkY58laggQ6y7e65ppgJukEbQtM530YUgDQQRqIW3xnKeta1YLiODEgkNDXNuRDwS8mWw1Bo2gGpLut62BVvXKkAH2WAZkal4xxygjEKeGbux1AABHpxQI5sr5iRrBcMhcR1y9qqHxBanbG4IxvalwIs1w/HNYrE5bLHY2TSLGc3udvpa9BMdkjWAQ68wTIA0EkagVc+gNWKBHO7+gk9AIeCC4utOWfm6cGUG9OLI8GEfLVm9s4hd+e4xyamt44gdBjRpyzuc0qCHAsWeeRA1585w1KDngoPmZCW2GZ85BNCLH9qxoBBLGc3vdnnbpKMA1goCiC01KTgRpIIhA2IDzhjueTrdaQAQntTKC+DQCnhEEZU1tWz0j8MzVxmi5tmFqqFzIopTPeDbdIrix28FcKZeINhSE0EBg6elWOXf+9vgksdH4S70+AiCcGtpu2Sjns7H66ojAs6IW1AhMUUOTrD1UN1SiSANBBKohYmija0YkEkG5kMVStYAr2x3p5240LVQK2VgWrrCSQMeHSe0CnnTeTVNDgLP7lKGGrk+pmYxjrjQ5EJgoaQ5q/DJRuSLSDLfd7k1dKAac3XmlkI3MCIbeLAIT1FCw07FuR7cI0kAQgVpIeWSj2090eMbJhTKu7cgHght73dhojNEuL5gaUs0IJmkPnZgCgYxYfHOvi2NTKB3lmC/nsdfpBda48/PFK3RUUC0edJQ1QQ3xayGqj2DaQjEH7yUIQ8vugzE951GOSbMgTHbST0IaCCJQC8sIrF4iQjHHiYUSrqoEgt2uZ2VtGuV8FhmaQA1Z6imt33ffj9FCZy4AL1bz0hnB8SnpA4ATCIYseEFteHYH6uenWjiYEfDrX2dBymYI1UI2tHx0q21PXSjmEOkuNmUvAYwqtsazApPeWpOQBoIIhJW8JZ8RVHBtpyPU7ejHjd1ubKWOfARhULrf1PC84RrAeCDwBHqD532xEr3z4+gNhlhvWtOlhlyXyyB6aK+jX8lWDTAS5IGhrpFpAK4VdWhG0Ju6UMyxKOA3xDNJHedRDh5kxzvqO2nV0PQx6oYMrhpKOiNo2wMpk7ThkLlURnwLV5ADaX8whNUfKusSkyinptVDNkNG66pXakWsN8XsO27udcHY9HoIgNFQ96DuYhO9LdVizvOJ4uCfr24ArofoG4BTNTQrgUDEeG7UAKd/zJOmlJn01pqENBBEIKwbstHtJVI6ynFqkZeQitNDGy0L/SGLPxCMV5locsqTqpGabqWWytCVSVitF9Ho9kMHEHFwsf7k4vQ0As5HB2YEBqZl1YoHZ0w0DIjQALAQUvE0GDLsdmZDLAYc+/f1hhWagfNyVxOzwCcFglZKDU0fYeWRe10z1QKiGDWViQeCJOwQgqghXv+vmhF4VUNjO9OG1TcefPm4Sd5vEYarbiA4tVgxegwy4Hx0cCDQ11AqhYMZXssQNRRW+uoI4NPvKuY4OleE7fp0TYLJWeAld7H3C/WDIYPdH862WExES0T0BSJ6xv1/MeAxP05Ej/j+dYnoXe59v0tEz/vue63O8cQBznGPe+5b/QHs/jDxqiFALiPwAkHC1BCndFR3MsVcBrkMBWoEps85DwRrAoGAZwSzQQ0F6Vb6TpiBn2dXfQ6yH/Mh8x+2DO6uTWA0K3xy7w6njhYMVA1VA3Qx095ak6CbEXwQwJcYY3cA+JL7+z4wxr7MGHstY+y1AN4MoA3gT30P+cf8fsbYI5rHYxwZt9JhkmiZpEawVC2glM9I9RJwx9K4A8E4l6/rzMpF6KAFyXggqElkBDttHKkXp9rwNF+ZbEW919E/P9ViFi17v89T0zJDyS2UCxMzgpHP0GxQQyKBYLtlY66UQ87ApLp6QJ+F6QbKSdA9+vsBfNL9+ZMA3hXx+HcD+BPGmLxPwhQRNHQ7ScM5DiLCmaUqXtgUP33Xd7vIZQgr1fi8850Fe1xc1L+AnQCz/3WbMVBDRzg1JCAYX9nuTFUfAIBaIQeiYGqoYcAArVLIYTBksHxW1KbO+0Ilj6bVD3TR5R3wyzFeqzLwZoWHZQTtnrEMZhQIRp9rUuuMbiA4yhi77v58A8DRiMe/B8Dvj932USJ6jIg+RkQTrwAieh8RXSCiC+vr6xqHLI9qMYemPR4IkjOc8+PMcgUvbLaEH3/T7SHIxGiDUQ8oCWwZEBerAaJl0+qjZvicL1ULIBLNCDpT1QcAJ0ud1F28Z6DbPaiHo2X1jZTs8t1+0LFzc8Q4BiipgFOGYQOhdtq2EX0AGK0l/ozAK9uddiAgoi8S0fcC/t3vfxxz8siJ8joRHYczxP7zvps/BOAuAG8EsATgA5Oezxj7OGPsPGPs/OrqatRhG0W9eDAj4Dxn0mns2ZUqXthqYxgy7s+P67tdb2cTF6rFLJpj4ypHF7BmPXtAADb9pchlM1iuFiMDwWDIcG2n42k108SkWcuNbl+7uSnI3kPHUtwPrm8EHftGY7YygmLOsXWJ0giWDInbPAD7h+E0PfE/3nUm8pNljL110n1EdJOIjjPGrrsL/VrIS/1NAH/EGPOuAF82YRHR7wD4JcHjThRBXPXIJTHhQLBchd0f4vpeV2hBurLTxutOH9DwjaJeymMwZn/slTFqLNpB2kOj2/eG4ZjEaj06EKw1uugNmFfGO004/kgHa9wb3T7uOKKbERy09zAl0s+HlL5uNC3Ml/OxDmCRxdG5UqRGcNexOSN/K5sh1Iq5fdQQb2SNu0xd94w/COAB9+cHAHw25LHvxRgt5AYPkKNAvQvA9zSPJxbUS7kDwhy/kJMudTu77NASL2xE00P9wRDXdro4vRTvwuXN/fV9uU10uFbGRHq77zSpxfGlcAJBuLPr1RnoIeBYrhYCvfJNDEnxLMDt/dSQiUDAvy+7nYPHvtG0sFKbDVqII2pW+FbbxpJBS4x6aX8p9ktFI/g1AG8jomcAvNX9HUR0noh+iz+IiM4COA3gv409/z8Q0XcBfBfACoB/pnk8sWChXDiQyvKOwnkDZWMyOLNSBQBcEhCMr+92MRgy3LIUL6c9X3a+vH7jtr1u35mvq7G7GxehTXW3BmG1Fp0RcJH+9JQ1AiC465UxZmTn7k2ds/Zz1ap2IX4shFBDm007Fqt0HRytT84IOvYA3d7QmEYA8EDgzwiSCQRar84Y2wTwloDbLwD4ed/vlwCcDHjcm3X+flJYqDp8LGPMK5/bbtuoF3NKg9l1cHyuhEIuIyQYX95KZuHyBMC2v9pBf1jHeMdynCW7q3XHZsL/GY/j0mYLGULsgVUESzUnEPiPt20PMBgyI+cdOKgRmBSLAzWCpoVXnjBDs5jC0fkSNpoW+oPhgRJRT9w2qGnUS/n9YnFCc9Fnh4ybYSxWCrAHw32t3zttGwtTcEnMZAhnlip4XoAaepEHgpgXroVAakh/Z8rTZC5CN2LkS1frRfQGLLSL9PmNFk4tVmaCw16uOtekf9fO6Up9amh/Nz1jzKkaMnDeeRDfCdAI1puW19MxKzg6V8SQBZcW80zhiMFijAPUkOVk1nFvOKd/Rb8EwDlw/yKxPUWXxHMrVTy73ox83OXtNrIZir0LdsGjhnyBwABXvVAuYDBk3mLXjJEvPSlg3/H8RgvnXGpu2lhyd6F+eoj/rFvXzj83rot1egMMmZkAnM0QFir5A0Phu70BGt3+zGkEYdcF70Q3afE+V8of6COIu2IISAOBEDgH7rcqnuYAjTuP1XFpsx1pkvbiVgcnFkpGuh7DsOAFyv0agS5FMV5hshdjIOCVQFe2g7UXxhguzVAgCBqlyAPBsmYgqBf3N6yZpidWa0WvVJSDv49Z0wh4z0hQN7+XEdTjywiahkT6KKSBQACLAU0w0xypd+exOgZDFpkVPLfexLmVWuzHU8o7c3/956fR0a/3nxsTFuMcbD4KBMEZwXrTQsseeFVb0wbf9W/5KodMGaBlMrTPHM50AF6tF7E2VqEVB81iAmHXxVrDQj5LRq/HcY1gz8D3SARpIBAA/2L5d7zT9E2/82gdAPD0zcbExwzdQHH7avyBAOCVVf6MQH9627i52o5Bp8egv1UtZCcGgufXHU3mXELnMwpeIAiihgxcl/5AwEs9TWXAR+oH5z9c33ECwfEpjgANQimfxUqtGJgp3tzr4kjdbNd+vZSDPRh62X5SzEMaCATAS964RtAfDNHo9hMvHeU4u1JFPkt46sbkjODqTgfd3hC3H0koEPg6XYdDR3TVra8etyPYavWQzzomgKZBRDi1WJno7HrJrdI6tzwj1FAtmBrKkJmS5vny6PMcDV8xc72v1otY29vv83991znvJ2YsEABOVhCYEexZxjOYuTHjuaSYhzQQCMBrgnF3pLziYVrUUD6bwW2rNTx1Y2/iYy66tFFSgWC+nPfOy163h8GQeYKmzmsCo/PNd0cmh9L4cXLCFx4AnltvoZDN4MTC9Oyn/agUcijns9j07ay3Wk6WamKH6s8ITFNyR+olWP3hPmv3aztdVApZIyMfTWNiIGh0jeoDwMGhQ0kxD2kgEEAhl0G1kPUyAi8Fn6KwdeexOp66MZkaenYt2UDgZATOedk0JFqOi8XbbXO+LkFwvvDtwIlUT95o4PYjtdiFdxkcmy95NuOAc12a8r6aL+d9lJxZX62gQUDXdzs4Pl+KLcjr4NRiBVe3Owf8vW7uWUYrhoAR5bfdtj3mIQk/s9m5qmccCz5vFy5sxTn1KwqvPD6Ha7vdiTNVn77ZwFK1kNiQj4Vy4WCg1PzblUIW+Sz5xOJerF+Ks8tVNLp9zw7Zj+9f38Mrj89Ys9Nc0Rs8BDji5ZG6mWvSn+Ftt23kXB8cE+C76DWfdcO13a43gW/WcGa5Answ3EcbNq0+djs943M+uOHeZtPyMQ9pRjAz8HPg3HskblfPMLzu9AIA4JHL24H3P3ZlF68+OZ/Y8azUnU7XwZB5Hji6gYDIqcjgNefbrXjT5Fe4Ivwza/szrc2mhbWGhVcer8f2t1VwfL68LyO4sds11jPCqSHGmBeATe3WVwPmP1zf6Ux16lsYeFZ9cW2kyfGu/TNLZjUjrv1sNO1EB/WkgUAQR+pFLxMY1Q9P78J9zal5ZDOE77y4c+C+jj3AM2tN/MCp5ALB0bmSGwSsUT27geYgx/3RWTC2Wua834Nwx1HnC//Mzf0iPKfgTLlMmgJ3xhwOGYZDhrVGF0cNLaYrtSIGruhvunKFf2/W3O+R3R9ivWnNXMUQB6+88wcC7jtl2m6Eb3Q2m7aXYacZwQzh+EIZ1900fG2vi7lSLvaB0mGoFHK461gdj1zeOXDfE9d3MRgyvCbBjGA01s/ydvAmaKkj9SLWGhas/gCbLTvWXeORehFzpdyBstzvXdsFANw1cxlBCb0Bw2bLxmbLRm/AjNGV/PNca3RdEdrcrnSunEOtmPME2Ks7HTCGmbD3DsJitYDlaiEwI7jFcF9JIZfBfDmPzdZoQ5UGghnC8bkStlo2ur1BLCKRCt5wZhEPv7ANu79/7N+jl52F6wdc+igJ8AXoxl4XN/a6mC/nUczpB8ojc449NOeT45y9TER4xdE6nlnbnxE8dGkbZ5YrM9f1yu0PLm+3R7qVofMzGtNo4cZeF8cM7taJCGeWK15JLi9suC2hwgYV3H6k5lXiAU458Xw5H0sJ+XLNsRjn+s/xBCrV0kAgiOPul+7GbhdXdtre79PEX75jFW17gAuXtvbd/o3nNnFyoZxosDrqCwSXtzrGZiCs1kvYbNneDizuOvM7j9Xx5PU9r0KEMYYLl7bwxrNLsf5dFZxbdfjp59dbnheOqYzJ+zx3O7i+0zVeNnt2eTR7m3fI35ZAF7wqbj9SwzM3G15F2fdvNHDnsXgyxBV3Wt61nQ4KuYx29Z0I0kAgiBPuF+zaTgfPr7dw6wx4zvzwbcsoZDP4ytOjGc79wRB/8ewm/vIdK4key0qtgAw5C8fl7bYx6+ujc0UwBnz3qpPlxJkRAE6W1ej28bQrGD+73sR2u4d7ZzAQnF6sIJshPL/R8rIYU15IXNB94toe7MHQ+HjOM8sVXN5qoz8Y4tn1JlZqRcxPqS9HBPecmsdet4/nNloYDhmevL6Hu2OqIju9VMELWy2nkiqhkto0EAiCWzl/47lNtOwBbludfiCoFnP4wVuX8KeP3/B2Kt98fgsNq48fe0Wyc51z2QzOLlfx9M0mrmx3jFlf8x3uhRec6qi4AwHf+X/reSfL+vNnNgAA956bvUBQyGVwy1IFz200cXGtiRPzJWOzGkr5LBYqeXzbLUYwnYndcbSG/pDh4noTj13ZnbmKrHG84Ywz7vXhF7bxwlYbbXsQWyA4t1LBzT3L+UwTYh60AgER/Q0iepyIhkR0PuRx9xHRU0R0kYg+6Lv9HBF9073900Q0Wx60PpxaLGO+nMdnH70GALh1Rjxn7n/tSVzabOOb7sL1h9++gnoxhx+/60jix/LK43P4b0+vw+4PjQl/3DTvi0/exEqtEPvs1lOLZZxZruBPH78JAPjcd6/jrmN1nJ2BDDAIdx6t47Eru3j6ZgO3HzW7mJ5ZqniZmGme+vW3OAvrl7+/jqduNnD+zOwFWj9uXalhsZLH1y5u4P+76GwOXn8mnlng/Fp78vpeYpVUuhnB9wD8NQBfnfQAIsoC+E0A7wBwN4D3EtHd7t2/DuBjjLHbAWwD+DnN44kNRIR7Ts17vOZdMfGDsvjJ1xzHSq2A//tPn8LTNxt48JFr+KnXn0Qpn3xF0yuP1z3h2lSp5enFMiqFLBhLpnyTiPBX7zmBrz+7gT9+9BoeurSNd772ROx/VxVvun0ZV7Y7ePyaeariDjewZMhZCE3ilqUKVmoF/D9/9gwYA86fjWdRNYVMhnDfq4/hC0/cxB8/eg23LFViYwX89F5S64xWIGCMPckYeyriYfcCuMgYe44xZgP4FID73YH1bwbwGfdxn4QzwH5mwXniu4/PYXlGKkjKhSw+cN9deOjSNu77F19FrZTDL/z47VM5lvM+Hv0eQz0MuWzGS8t/+PZlI68ZhZ/+oTOoFnL4h7//HSxVC/jpv3Qmkb+rgh/1UYBvu9tsFvhDtzrn+44jdeOl0kSEt7/qGNr2ACu14kxSb+N49xtOo20P8K3nt/Cu152Mjbt/hS+zS+q8JOHwdBLAZd/vVwD8IIBlADuMsb7v9gNzjTmI6H0A3gcAt9xySzxHGoEH3nQW2+0e3vW62doh/o3zpwEA33huCz/3I+emVtr6g+eW8Mv//d04sVA2mpH8yl99FT71rRcTW5CPzpXwb37mDfhP376Kn/mhM7HMSDaFM8tVfPSnXg2rN8QbDNMrf/UHTuDSZgtvu/uo0dfl+KW334lyPot3vPpY4rO/VfCGM4v4jb9+D55db+If/He3xfZ38tkMfvfvvRFP3WgkVgJOQQZb+x5A9EUAxwLu+jBj7LPuY74C4JfcofXjz383gPsYYz/v/v7TcALBrwL4hksLgYhOA/gTxtirow76/Pnz7MKFA38qRYoUKVKEgIgeZowd0HMjMwLG2Fs1//ZVAKd9v59yb9sEsEBEOTcr4LenSJEiRYoEkUQ+9hCAO9wKoQKA9wB4kDmpyJcBvNt93AMAPpvA8aRIkSJFCh90y0d/ioiuAPghAP+FiD7v3n6CiD4HAO5u//0APg/gSQB/wBh73H2JDwD4RSK6CEcz+G2d40mRIkWKFPKI1AhmEalGkCJFihTymKQRzL5UnyJFihQpYkUaCFKkSJHikCMNBClSpEhxyJEGghQpUqQ45HhJisVEtA7gBcWnrwDYMHg4LwWk7/lwIH3PL3/ovt8zjLED1sQvyUCgAyK6EKSav5yRvufDgfQ9v/wR1/tNqaEUKVKkOORIA0GKFClSHHIcxkDw8WkfwBSQvufDgfQ9v/wRy/s9dBpBihQpUqTYj8OYEaRIkSJFCh/SQJAiRYoUhxwvq0BARPcR0VNEdJGIPhhwf5GIPu3e/00iOuu770Pu7U8R0U8keuCKUH2/RPQ2InqYiL7r/v/mxA9eETqfsXv/LUTUJKJfSuygNaF5Xd9DRH9BRI+7n/d0xtdJQuPazhPRJ933+iQRfSjxg1eEwHv+USL6NhH13YFf/vseIKJn3H8PSP9xxtjL4h+ALIBnAdwKoADgUQB3jz3mHwD41+7P7wHwaffnu93HFwGcc18nO+33FOP7fR2AE+7PrwZwddrvJ+737Lv/MwD+I5yJelN/TzF/zjkAjwH4Aff35Vm/rg28578N4FPuzxUAlwCcnfZ7MvSezwK4B8C/A/Bu3+1LAJ5z/190f16U+fsvp4zgXgAXGWPPMcZsAJ8CcP/YY+4H8En3588AeAs5E6jvh3PxWIyx5wFcdF9vlqH8fhlj32GMXXNvfxxAmYiKiRy1HnQ+YxDRuwA8D+c9v1Sg857fDuAxxtijAMAY22SMDRI6bh3ovGcGoEpEOQBlADaAvWQOWwuR75kxdokx9hiA4dhzfwLAFxhjW4yxbQBfAHCfzB9/OQWCkwAu+36/4t4W+BjmDMzZhbNLEnnurEHn/frx1wF8mzFmxXScJqH8nomoBmcQ0v+RwHGahM7n/AoAjIg+71IK/2sCx2sCOu/5MwBaAK4DeBHAP2eMbcV9wAagswZpr1+RM4tTvHxBRK8C8Otwdo4vd/wqgI8xxppugnAYkAPwIwDeCKAN4EvuYJIvTfewYsW9AAYATsChSf6ciL7IGHtuuoc123g5ZQRXAZz2/X7KvS3wMW7qOA9gU/C5swad9wsiOgXgjwD8DGPs2diP1gx03vMPAvgNIroE4B8B+CdE9P6Yj9cEdN7zFQBfZYxtMMbaAD4H4PWxH7E+dN7z3wbwXxljPcbYGoCvAXgpeBHprEH669e0RRKDYksOjkhyDiOx5VVjj/kF7BeY/sD9+VXYLxY/hxkX1TTf74L7+L827feR1Hsee8yv4qUjFut8zosAvg1HNM0B+CKAn5z2e4r5PX8AwO+4P1cBPAHgnmm/JxPv2ffY38VBsfh59/NedH9ekvr70z4Bhk/mXwHwNBz1/cPubR8B8E735xKcipGLAL4F4Fbfcz/sPu8pAO+Y9nuJ8/0C+N/g8KiP+P4dmfb7ifsz9r3GSyYQ6L5nAH8Hjjj+PQC/Me33Evd7BlBzb3/cDQL/eNrvxeB7fiOcLK8FJ/t53Pfcn3XPxUUAf0/2b6cWEylSpEhxyPFy0ghSpEiRIoUC0kCQIkWKFIccaSBIkSJFikOONBCkSJEixSFHGghSpEiR4pAjDQQpUqRIcciRBoIUKVKkOOT4/wEvwj3sw7mOBwAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "x = np.linspace(0,0.1,1000)\n", + "y = np.sin(100 * 2.0*np.pi*x+1.5*np.sin(30 * 2.0*np.pi*x))\n", + "plt.plot(x, y, '-')\n", + "plt.show()" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1" + }, + "kernelspec": { + "display_name": "Python 3.8.10 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/buch/papers/fm/Python animation/Bessel-FM.py b/buch/papers/fm/Python animation/Bessel-FM.py new file mode 100644 index 0000000..cf30e16 --- /dev/null +++ b/buch/papers/fm/Python animation/Bessel-FM.py @@ -0,0 +1,42 @@ +import numpy as np +from scipy import signal +from scipy.fft import fft, ifft, fftfreq +import scipy.special as sc +import scipy.fftpack +import matplotlib.pyplot as plt +from matplotlib.widgets import Slider + +# Number of samplepoints +N = 600 +# sample spacing +T = 1.0 / 800.0 +x = np.linspace(0.01, N*T, N) +beta = 1.0 +y_old = np.sin(100.0 * 2.0*np.pi*x+beta*np.sin(50.0 * 2.0*np.pi*x)) +y = 0*x; +xf = fftfreq(N, 1 / 400) +for k in range (-5, 5): + y = sc.jv(k,beta)*np.sin((100.0+k*50) * 2.0*np.pi*x) + yf = fft(y) + plt.plot(xf, np.abs(yf)) + +axbeta =plt.axes([0.25, 0.1, 0.65, 0.03]) +beta_slider = Slider( +ax=axbeta, +label="Beta", +valmin=0.1, +valmax=3, +valinit=beta, +) + +def update(val): + line.set_ydata(fm(beta_slider.val)) + fig.canvas.draw_idle() + + +beta_slider.on_changed(update) +plt.show() + +yf_old = fft(y_old) +plt.plot(xf, np.abs(yf_old)) +plt.show()
\ No newline at end of file diff --git a/buch/papers/fm/Python animation/bessel.pgf b/buch/papers/fm/Python animation/bessel.pgf new file mode 100644 index 0000000..cc7af1e --- /dev/null +++ b/buch/papers/fm/Python animation/bessel.pgf @@ -0,0 +1,2057 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{<filename>.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{<path to file>}{<filename>.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/joshua/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/joshua/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/joshua/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{4.000000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}% +\pgfpathlineto{\pgfqpoint{0.750000in}{3.520000in}}% +\pgfpathlineto{\pgfqpoint{0.750000in}{0.500000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{0.750000in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.750000in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}10.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.331250in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{1.331250in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.331250in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.331250in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}7.5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.912500in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{1.912500in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.912500in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.912500in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.493750in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{2.493750in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.493750in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.493750in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}2.5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.075000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{3.075000in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.075000in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.075000in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.656250in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{3.656250in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.656250in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.656250in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2.5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.237500in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{4.237500in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.237500in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.237500in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.818750in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{4.818750in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.818750in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.818750in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 7.5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.400000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.400000in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.400000in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10.0}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.075000in,y=0.212809in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \beta \) }% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{0.605796in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{0.605796in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{0.605796in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.323873in, y=0.553034in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{0.952919in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{0.952919in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{0.952919in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.323873in, y=0.900157in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{1.300042in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{1.300042in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{1.300042in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.323873in, y=1.247280in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{1.647165in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{1.647165in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{1.647165in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.431898in, y=1.594403in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{1.994288in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{1.994288in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{1.994288in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.431898in, y=1.941526in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{2.341411in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{2.341411in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{2.341411in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.431898in, y=2.288649in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{2.688534in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{2.688534in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{2.688534in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.431898in, y=2.635772in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{3.035657in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{3.035657in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{3.035657in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.431898in, y=2.982895in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.8}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{3.382780in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{3.382780in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{3.382780in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.431898in, y=3.330018in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 1.0}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.268318in,y=2.010000in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont Bessel \(\displaystyle J_n(\beta)\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{2.087558in}}% +\pgfpathlineto{\pgfqpoint{0.753026in}{2.089238in}}% +\pgfpathlineto{\pgfqpoint{0.773506in}{2.088244in}}% +\pgfpathlineto{\pgfqpoint{0.793986in}{2.083946in}}% +\pgfpathlineto{\pgfqpoint{0.814467in}{2.076349in}}% +\pgfpathlineto{\pgfqpoint{0.834947in}{2.065480in}}% +\pgfpathlineto{\pgfqpoint{0.855428in}{2.051393in}}% +\pgfpathlineto{\pgfqpoint{0.881029in}{2.029378in}}% +\pgfpathlineto{\pgfqpoint{0.906629in}{2.002657in}}% +\pgfpathlineto{\pgfqpoint{0.932230in}{1.971486in}}% +\pgfpathlineto{\pgfqpoint{0.962950in}{1.928646in}}% +\pgfpathlineto{\pgfqpoint{0.993671in}{1.880474in}}% +\pgfpathlineto{\pgfqpoint{1.029512in}{1.818502in}}% +\pgfpathlineto{\pgfqpoint{1.075593in}{1.731696in}}% +\pgfpathlineto{\pgfqpoint{1.137035in}{1.608436in}}% +\pgfpathlineto{\pgfqpoint{1.229197in}{1.423447in}}% +\pgfpathlineto{\pgfqpoint{1.275278in}{1.338266in}}% +\pgfpathlineto{\pgfqpoint{1.311119in}{1.278235in}}% +\pgfpathlineto{\pgfqpoint{1.341839in}{1.232297in}}% +\pgfpathlineto{\pgfqpoint{1.372560in}{1.192309in}}% +\pgfpathlineto{\pgfqpoint{1.398161in}{1.164059in}}% +\pgfpathlineto{\pgfqpoint{1.423761in}{1.140817in}}% +\pgfpathlineto{\pgfqpoint{1.444242in}{1.126046in}}% +\pgfpathlineto{\pgfqpoint{1.464722in}{1.114825in}}% +\pgfpathlineto{\pgfqpoint{1.485203in}{1.107268in}}% +\pgfpathlineto{\pgfqpoint{1.505683in}{1.103467in}}% +\pgfpathlineto{\pgfqpoint{1.526164in}{1.103488in}}% +\pgfpathlineto{\pgfqpoint{1.546644in}{1.107370in}}% +\pgfpathlineto{\pgfqpoint{1.567125in}{1.115129in}}% +\pgfpathlineto{\pgfqpoint{1.587605in}{1.126753in}}% +\pgfpathlineto{\pgfqpoint{1.608086in}{1.142205in}}% +\pgfpathlineto{\pgfqpoint{1.628566in}{1.161422in}}% +\pgfpathlineto{\pgfqpoint{1.649047in}{1.184315in}}% +\pgfpathlineto{\pgfqpoint{1.674647in}{1.217924in}}% +\pgfpathlineto{\pgfqpoint{1.700248in}{1.256823in}}% +\pgfpathlineto{\pgfqpoint{1.730968in}{1.310014in}}% +\pgfpathlineto{\pgfqpoint{1.761689in}{1.369671in}}% +\pgfpathlineto{\pgfqpoint{1.797530in}{1.446409in}}% +\pgfpathlineto{\pgfqpoint{1.838491in}{1.541833in}}% +\pgfpathlineto{\pgfqpoint{1.889692in}{1.669363in}}% +\pgfpathlineto{\pgfqpoint{2.053536in}{2.084842in}}% +\pgfpathlineto{\pgfqpoint{2.094497in}{2.177528in}}% +\pgfpathlineto{\pgfqpoint{2.130338in}{2.251280in}}% +\pgfpathlineto{\pgfqpoint{2.161059in}{2.308003in}}% +\pgfpathlineto{\pgfqpoint{2.191779in}{2.357982in}}% +\pgfpathlineto{\pgfqpoint{2.217380in}{2.394040in}}% +\pgfpathlineto{\pgfqpoint{2.242980in}{2.424708in}}% +\pgfpathlineto{\pgfqpoint{2.263461in}{2.445205in}}% +\pgfpathlineto{\pgfqpoint{2.283941in}{2.462016in}}% +\pgfpathlineto{\pgfqpoint{2.304422in}{2.475078in}}% +\pgfpathlineto{\pgfqpoint{2.324902in}{2.484355in}}% +\pgfpathlineto{\pgfqpoint{2.345383in}{2.489835in}}% +\pgfpathlineto{\pgfqpoint{2.365863in}{2.491535in}}% +\pgfpathlineto{\pgfqpoint{2.386344in}{2.489498in}}% +\pgfpathlineto{\pgfqpoint{2.406824in}{2.483791in}}% +\pgfpathlineto{\pgfqpoint{2.427305in}{2.474508in}}% +\pgfpathlineto{\pgfqpoint{2.447785in}{2.461767in}}% +\pgfpathlineto{\pgfqpoint{2.468266in}{2.445710in}}% +\pgfpathlineto{\pgfqpoint{2.493866in}{2.421230in}}% +\pgfpathlineto{\pgfqpoint{2.519467in}{2.392195in}}% +\pgfpathlineto{\pgfqpoint{2.550188in}{2.351932in}}% +\pgfpathlineto{\pgfqpoint{2.580908in}{2.306515in}}% +\pgfpathlineto{\pgfqpoint{2.616749in}{2.248188in}}% +\pgfpathlineto{\pgfqpoint{2.662830in}{2.167068in}}% +\pgfpathlineto{\pgfqpoint{2.826674in}{1.871952in}}% +\pgfpathlineto{\pgfqpoint{2.862515in}{1.816084in}}% +\pgfpathlineto{\pgfqpoint{2.893236in}{1.773136in}}% +\pgfpathlineto{\pgfqpoint{2.923956in}{1.735550in}}% +\pgfpathlineto{\pgfqpoint{2.949557in}{1.708802in}}% +\pgfpathlineto{\pgfqpoint{2.975158in}{1.686562in}}% +\pgfpathlineto{\pgfqpoint{2.995638in}{1.672198in}}% +\pgfpathlineto{\pgfqpoint{3.016119in}{1.661005in}}% +\pgfpathlineto{\pgfqpoint{3.036599in}{1.653070in}}% +\pgfpathlineto{\pgfqpoint{3.057080in}{1.648453in}}% +\pgfpathlineto{\pgfqpoint{3.077560in}{1.647191in}}% +\pgfpathlineto{\pgfqpoint{3.098041in}{1.649294in}}% +\pgfpathlineto{\pgfqpoint{3.118521in}{1.654744in}}% +\pgfpathlineto{\pgfqpoint{3.139002in}{1.663501in}}% +\pgfpathlineto{\pgfqpoint{3.159482in}{1.675496in}}% +\pgfpathlineto{\pgfqpoint{3.179962in}{1.690635in}}% +\pgfpathlineto{\pgfqpoint{3.205563in}{1.713801in}}% +\pgfpathlineto{\pgfqpoint{3.231164in}{1.741413in}}% +\pgfpathlineto{\pgfqpoint{3.261884in}{1.779941in}}% +\pgfpathlineto{\pgfqpoint{3.292605in}{1.823711in}}% +\pgfpathlineto{\pgfqpoint{3.328446in}{1.880369in}}% +\pgfpathlineto{\pgfqpoint{3.374527in}{1.959949in}}% +\pgfpathlineto{\pgfqpoint{3.446209in}{2.091693in}}% +\pgfpathlineto{\pgfqpoint{3.517890in}{2.221778in}}% +\pgfpathlineto{\pgfqpoint{3.558851in}{2.290381in}}% +\pgfpathlineto{\pgfqpoint{3.594692in}{2.344698in}}% +\pgfpathlineto{\pgfqpoint{3.625413in}{2.385878in}}% +\pgfpathlineto{\pgfqpoint{3.651014in}{2.415775in}}% +\pgfpathlineto{\pgfqpoint{3.676614in}{2.441197in}}% +\pgfpathlineto{\pgfqpoint{3.702215in}{2.461767in}}% +\pgfpathlineto{\pgfqpoint{3.722695in}{2.474508in}}% +\pgfpathlineto{\pgfqpoint{3.743176in}{2.483791in}}% +\pgfpathlineto{\pgfqpoint{3.763656in}{2.489498in}}% +\pgfpathlineto{\pgfqpoint{3.784137in}{2.491535in}}% +\pgfpathlineto{\pgfqpoint{3.804617in}{2.489835in}}% +\pgfpathlineto{\pgfqpoint{3.825098in}{2.484355in}}% +\pgfpathlineto{\pgfqpoint{3.845578in}{2.475078in}}% +\pgfpathlineto{\pgfqpoint{3.866059in}{2.462016in}}% +\pgfpathlineto{\pgfqpoint{3.886539in}{2.445205in}}% +\pgfpathlineto{\pgfqpoint{3.907020in}{2.424708in}}% +\pgfpathlineto{\pgfqpoint{3.932620in}{2.394040in}}% +\pgfpathlineto{\pgfqpoint{3.958221in}{2.357982in}}% +\pgfpathlineto{\pgfqpoint{3.983821in}{2.316819in}}% +\pgfpathlineto{\pgfqpoint{4.014542in}{2.261173in}}% +\pgfpathlineto{\pgfqpoint{4.045263in}{2.199366in}}% +\pgfpathlineto{\pgfqpoint{4.081104in}{2.120526in}}% +\pgfpathlineto{\pgfqpoint{4.127185in}{2.010684in}}% +\pgfpathlineto{\pgfqpoint{4.188626in}{1.854728in}}% +\pgfpathlineto{\pgfqpoint{4.301269in}{1.566729in}}% +\pgfpathlineto{\pgfqpoint{4.347350in}{1.457926in}}% +\pgfpathlineto{\pgfqpoint{4.383191in}{1.380189in}}% +\pgfpathlineto{\pgfqpoint{4.419032in}{1.310014in}}% +\pgfpathlineto{\pgfqpoint{4.449752in}{1.256823in}}% +\pgfpathlineto{\pgfqpoint{4.475353in}{1.217924in}}% +\pgfpathlineto{\pgfqpoint{4.500953in}{1.184315in}}% +\pgfpathlineto{\pgfqpoint{4.526554in}{1.156269in}}% +\pgfpathlineto{\pgfqpoint{4.547035in}{1.137987in}}% +\pgfpathlineto{\pgfqpoint{4.567515in}{1.123487in}}% +\pgfpathlineto{\pgfqpoint{4.587995in}{1.112826in}}% +\pgfpathlineto{\pgfqpoint{4.608476in}{1.106036in}}% +\pgfpathlineto{\pgfqpoint{4.628956in}{1.103122in}}% +\pgfpathlineto{\pgfqpoint{4.649437in}{1.104062in}}% +\pgfpathlineto{\pgfqpoint{4.669917in}{1.108809in}}% +\pgfpathlineto{\pgfqpoint{4.690398in}{1.117291in}}% +\pgfpathlineto{\pgfqpoint{4.710878in}{1.129411in}}% +\pgfpathlineto{\pgfqpoint{4.731359in}{1.145049in}}% +\pgfpathlineto{\pgfqpoint{4.751839in}{1.164059in}}% +\pgfpathlineto{\pgfqpoint{4.777440in}{1.192309in}}% +\pgfpathlineto{\pgfqpoint{4.803041in}{1.225198in}}% +\pgfpathlineto{\pgfqpoint{4.833761in}{1.270199in}}% +\pgfpathlineto{\pgfqpoint{4.869602in}{1.329314in}}% +\pgfpathlineto{\pgfqpoint{4.910563in}{1.403883in}}% +\pgfpathlineto{\pgfqpoint{4.961764in}{1.504307in}}% +\pgfpathlineto{\pgfqpoint{5.105128in}{1.790337in}}% +\pgfpathlineto{\pgfqpoint{5.146089in}{1.863354in}}% +\pgfpathlineto{\pgfqpoint{5.181929in}{1.920969in}}% +\pgfpathlineto{\pgfqpoint{5.212650in}{1.964744in}}% +\pgfpathlineto{\pgfqpoint{5.243371in}{2.002657in}}% +\pgfpathlineto{\pgfqpoint{5.268971in}{2.029378in}}% +\pgfpathlineto{\pgfqpoint{5.294572in}{2.051393in}}% +\pgfpathlineto{\pgfqpoint{5.315053in}{2.065480in}}% +\pgfpathlineto{\pgfqpoint{5.335533in}{2.076349in}}% +\pgfpathlineto{\pgfqpoint{5.356014in}{2.083946in}}% +\pgfpathlineto{\pgfqpoint{5.376494in}{2.088244in}}% +\pgfpathlineto{\pgfqpoint{5.396974in}{2.089238in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{2.087558in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{2.087558in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{1.696626in}}% +\pgfpathlineto{\pgfqpoint{0.814467in}{1.840343in}}% +\pgfpathlineto{\pgfqpoint{0.855428in}{1.909768in}}% +\pgfpathlineto{\pgfqpoint{0.891269in}{1.964990in}}% +\pgfpathlineto{\pgfqpoint{0.921989in}{2.007118in}}% +\pgfpathlineto{\pgfqpoint{0.952710in}{2.043605in}}% +\pgfpathlineto{\pgfqpoint{0.978311in}{2.069190in}}% +\pgfpathlineto{\pgfqpoint{1.003911in}{2.090009in}}% +\pgfpathlineto{\pgfqpoint{1.024392in}{2.103027in}}% +\pgfpathlineto{\pgfqpoint{1.044872in}{2.112669in}}% +\pgfpathlineto{\pgfqpoint{1.065353in}{2.118827in}}% +\pgfpathlineto{\pgfqpoint{1.085833in}{2.121422in}}% +\pgfpathlineto{\pgfqpoint{1.106314in}{2.120397in}}% +\pgfpathlineto{\pgfqpoint{1.126794in}{2.115724in}}% +\pgfpathlineto{\pgfqpoint{1.147275in}{2.107401in}}% +\pgfpathlineto{\pgfqpoint{1.167755in}{2.095453in}}% +\pgfpathlineto{\pgfqpoint{1.188236in}{2.079933in}}% +\pgfpathlineto{\pgfqpoint{1.208716in}{2.060921in}}% +\pgfpathlineto{\pgfqpoint{1.234317in}{2.032409in}}% +\pgfpathlineto{\pgfqpoint{1.259917in}{1.998874in}}% +\pgfpathlineto{\pgfqpoint{1.285518in}{1.960642in}}% +\pgfpathlineto{\pgfqpoint{1.316239in}{1.909112in}}% +\pgfpathlineto{\pgfqpoint{1.352080in}{1.842184in}}% +\pgfpathlineto{\pgfqpoint{1.393041in}{1.758442in}}% +\pgfpathlineto{\pgfqpoint{1.444242in}{1.646346in}}% +\pgfpathlineto{\pgfqpoint{1.572245in}{1.362289in}}% +\pgfpathlineto{\pgfqpoint{1.613206in}{1.280362in}}% +\pgfpathlineto{\pgfqpoint{1.649047in}{1.215890in}}% +\pgfpathlineto{\pgfqpoint{1.679767in}{1.167290in}}% +\pgfpathlineto{\pgfqpoint{1.705368in}{1.132210in}}% +\pgfpathlineto{\pgfqpoint{1.730968in}{1.102582in}}% +\pgfpathlineto{\pgfqpoint{1.751449in}{1.083102in}}% +\pgfpathlineto{\pgfqpoint{1.771929in}{1.067590in}}% +\pgfpathlineto{\pgfqpoint{1.792410in}{1.056219in}}% +\pgfpathlineto{\pgfqpoint{1.812890in}{1.049132in}}% +\pgfpathlineto{\pgfqpoint{1.828251in}{1.046700in}}% +\pgfpathlineto{\pgfqpoint{1.843611in}{1.046782in}}% +\pgfpathlineto{\pgfqpoint{1.858971in}{1.049407in}}% +\pgfpathlineto{\pgfqpoint{1.874332in}{1.054594in}}% +\pgfpathlineto{\pgfqpoint{1.889692in}{1.062353in}}% +\pgfpathlineto{\pgfqpoint{1.910173in}{1.076696in}}% +\pgfpathlineto{\pgfqpoint{1.930653in}{1.095578in}}% +\pgfpathlineto{\pgfqpoint{1.951134in}{1.118939in}}% +\pgfpathlineto{\pgfqpoint{1.971614in}{1.146687in}}% +\pgfpathlineto{\pgfqpoint{1.997215in}{1.187350in}}% +\pgfpathlineto{\pgfqpoint{2.022815in}{1.234366in}}% +\pgfpathlineto{\pgfqpoint{2.048416in}{1.287354in}}% +\pgfpathlineto{\pgfqpoint{2.079137in}{1.358190in}}% +\pgfpathlineto{\pgfqpoint{2.114977in}{1.449684in}}% +\pgfpathlineto{\pgfqpoint{2.155938in}{1.563913in}}% +\pgfpathlineto{\pgfqpoint{2.207140in}{1.717153in}}% +\pgfpathlineto{\pgfqpoint{2.370983in}{2.217374in}}% +\pgfpathlineto{\pgfqpoint{2.411944in}{2.327896in}}% +\pgfpathlineto{\pgfqpoint{2.442665in}{2.403052in}}% +\pgfpathlineto{\pgfqpoint{2.473386in}{2.470271in}}% +\pgfpathlineto{\pgfqpoint{2.498986in}{2.519452in}}% +\pgfpathlineto{\pgfqpoint{2.524587in}{2.561823in}}% +\pgfpathlineto{\pgfqpoint{2.545068in}{2.590485in}}% +\pgfpathlineto{\pgfqpoint{2.565548in}{2.614254in}}% +\pgfpathlineto{\pgfqpoint{2.586029in}{2.632938in}}% +\pgfpathlineto{\pgfqpoint{2.601389in}{2.643518in}}% +\pgfpathlineto{\pgfqpoint{2.616749in}{2.651092in}}% +\pgfpathlineto{\pgfqpoint{2.632110in}{2.655617in}}% +\pgfpathlineto{\pgfqpoint{2.647470in}{2.657057in}}% +\pgfpathlineto{\pgfqpoint{2.662830in}{2.655390in}}% +\pgfpathlineto{\pgfqpoint{2.678191in}{2.650603in}}% +\pgfpathlineto{\pgfqpoint{2.693551in}{2.642696in}}% +\pgfpathlineto{\pgfqpoint{2.708911in}{2.631677in}}% +\pgfpathlineto{\pgfqpoint{2.724272in}{2.617568in}}% +\pgfpathlineto{\pgfqpoint{2.744752in}{2.594005in}}% +\pgfpathlineto{\pgfqpoint{2.765233in}{2.565112in}}% +\pgfpathlineto{\pgfqpoint{2.785713in}{2.531028in}}% +\pgfpathlineto{\pgfqpoint{2.811314in}{2.481388in}}% +\pgfpathlineto{\pgfqpoint{2.836914in}{2.424317in}}% +\pgfpathlineto{\pgfqpoint{2.862515in}{2.360295in}}% +\pgfpathlineto{\pgfqpoint{2.893236in}{2.275073in}}% +\pgfpathlineto{\pgfqpoint{2.929077in}{2.165443in}}% +\pgfpathlineto{\pgfqpoint{2.970038in}{2.029041in}}% +\pgfpathlineto{\pgfqpoint{3.021239in}{1.846491in}}% +\pgfpathlineto{\pgfqpoint{3.195323in}{1.212928in}}% +\pgfpathlineto{\pgfqpoint{3.236284in}{1.080664in}}% +\pgfpathlineto{\pgfqpoint{3.272125in}{0.975558in}}% +\pgfpathlineto{\pgfqpoint{3.302845in}{0.894817in}}% +\pgfpathlineto{\pgfqpoint{3.328446in}{0.834903in}}% +\pgfpathlineto{\pgfqpoint{3.354047in}{0.782238in}}% +\pgfpathlineto{\pgfqpoint{3.379647in}{0.737258in}}% +\pgfpathlineto{\pgfqpoint{3.400128in}{0.707053in}}% +\pgfpathlineto{\pgfqpoint{3.420608in}{0.682146in}}% +\pgfpathlineto{\pgfqpoint{3.441089in}{0.662653in}}% +\pgfpathlineto{\pgfqpoint{3.456449in}{0.651634in}}% +\pgfpathlineto{\pgfqpoint{3.471809in}{0.643726in}}% +\pgfpathlineto{\pgfqpoint{3.487170in}{0.638940in}}% +\pgfpathlineto{\pgfqpoint{3.502530in}{0.637273in}}% +\pgfpathlineto{\pgfqpoint{3.517890in}{0.638713in}}% +\pgfpathlineto{\pgfqpoint{3.533251in}{0.643238in}}% +\pgfpathlineto{\pgfqpoint{3.548611in}{0.650812in}}% +\pgfpathlineto{\pgfqpoint{3.563971in}{0.661392in}}% +\pgfpathlineto{\pgfqpoint{3.584452in}{0.680076in}}% +\pgfpathlineto{\pgfqpoint{3.604932in}{0.703844in}}% +\pgfpathlineto{\pgfqpoint{3.625413in}{0.732506in}}% +\pgfpathlineto{\pgfqpoint{3.645893in}{0.765842in}}% +\pgfpathlineto{\pgfqpoint{3.671494in}{0.813703in}}% +\pgfpathlineto{\pgfqpoint{3.697095in}{0.867935in}}% +\pgfpathlineto{\pgfqpoint{3.727815in}{0.940570in}}% +\pgfpathlineto{\pgfqpoint{3.763656in}{1.034286in}}% +\pgfpathlineto{\pgfqpoint{3.804617in}{1.150816in}}% +\pgfpathlineto{\pgfqpoint{3.860938in}{1.321912in}}% +\pgfpathlineto{\pgfqpoint{3.988941in}{1.715539in}}% +\pgfpathlineto{\pgfqpoint{4.029902in}{1.830883in}}% +\pgfpathlineto{\pgfqpoint{4.065743in}{1.923621in}}% +\pgfpathlineto{\pgfqpoint{4.096464in}{1.995699in}}% +\pgfpathlineto{\pgfqpoint{4.127185in}{2.059964in}}% +\pgfpathlineto{\pgfqpoint{4.152785in}{2.106979in}}% +\pgfpathlineto{\pgfqpoint{4.178386in}{2.147643in}}% +\pgfpathlineto{\pgfqpoint{4.198866in}{2.175391in}}% +\pgfpathlineto{\pgfqpoint{4.219347in}{2.198752in}}% +\pgfpathlineto{\pgfqpoint{4.239827in}{2.217634in}}% +\pgfpathlineto{\pgfqpoint{4.260308in}{2.231976in}}% +\pgfpathlineto{\pgfqpoint{4.280788in}{2.241750in}}% +\pgfpathlineto{\pgfqpoint{4.296149in}{2.246082in}}% +\pgfpathlineto{\pgfqpoint{4.311509in}{2.247857in}}% +\pgfpathlineto{\pgfqpoint{4.326869in}{2.247097in}}% +\pgfpathlineto{\pgfqpoint{4.342230in}{2.243835in}}% +\pgfpathlineto{\pgfqpoint{4.357590in}{2.238111in}}% +\pgfpathlineto{\pgfqpoint{4.378071in}{2.226740in}}% +\pgfpathlineto{\pgfqpoint{4.398551in}{2.211228in}}% +\pgfpathlineto{\pgfqpoint{4.419032in}{2.191748in}}% +\pgfpathlineto{\pgfqpoint{4.439512in}{2.168497in}}% +\pgfpathlineto{\pgfqpoint{4.465113in}{2.134469in}}% +\pgfpathlineto{\pgfqpoint{4.490713in}{2.095377in}}% +\pgfpathlineto{\pgfqpoint{4.521434in}{2.042531in}}% +\pgfpathlineto{\pgfqpoint{4.557275in}{1.973957in}}% +\pgfpathlineto{\pgfqpoint{4.598236in}{1.888550in}}% +\pgfpathlineto{\pgfqpoint{4.659677in}{1.752047in}}% +\pgfpathlineto{\pgfqpoint{4.751839in}{1.546791in}}% +\pgfpathlineto{\pgfqpoint{4.797920in}{1.452145in}}% +\pgfpathlineto{\pgfqpoint{4.833761in}{1.385218in}}% +\pgfpathlineto{\pgfqpoint{4.864482in}{1.333687in}}% +\pgfpathlineto{\pgfqpoint{4.895203in}{1.288362in}}% +\pgfpathlineto{\pgfqpoint{4.920803in}{1.255807in}}% +\pgfpathlineto{\pgfqpoint{4.946404in}{1.228334in}}% +\pgfpathlineto{\pgfqpoint{4.966884in}{1.210185in}}% +\pgfpathlineto{\pgfqpoint{4.987365in}{1.195552in}}% +\pgfpathlineto{\pgfqpoint{5.007845in}{1.184507in}}% +\pgfpathlineto{\pgfqpoint{5.028326in}{1.177095in}}% +\pgfpathlineto{\pgfqpoint{5.048806in}{1.173335in}}% +\pgfpathlineto{\pgfqpoint{5.069287in}{1.173219in}}% +\pgfpathlineto{\pgfqpoint{5.089767in}{1.176711in}}% +\pgfpathlineto{\pgfqpoint{5.110248in}{1.183749in}}% +\pgfpathlineto{\pgfqpoint{5.130728in}{1.194245in}}% +\pgfpathlineto{\pgfqpoint{5.151209in}{1.208087in}}% +\pgfpathlineto{\pgfqpoint{5.171689in}{1.225140in}}% +\pgfpathlineto{\pgfqpoint{5.197290in}{1.250725in}}% +\pgfpathlineto{\pgfqpoint{5.222890in}{1.280719in}}% +\pgfpathlineto{\pgfqpoint{5.253611in}{1.321959in}}% +\pgfpathlineto{\pgfqpoint{5.289452in}{1.376320in}}% +\pgfpathlineto{\pgfqpoint{5.330413in}{1.445009in}}% +\pgfpathlineto{\pgfqpoint{5.381614in}{1.537494in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.597703in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.597703in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{1.216606in}}% +\pgfpathlineto{\pgfqpoint{0.753026in}{1.221334in}}% +\pgfpathlineto{\pgfqpoint{0.773506in}{1.230156in}}% +\pgfpathlineto{\pgfqpoint{0.793986in}{1.242306in}}% +\pgfpathlineto{\pgfqpoint{0.814467in}{1.257718in}}% +\pgfpathlineto{\pgfqpoint{0.840068in}{1.281435in}}% +\pgfpathlineto{\pgfqpoint{0.865668in}{1.309880in}}% +\pgfpathlineto{\pgfqpoint{0.891269in}{1.342765in}}% +\pgfpathlineto{\pgfqpoint{0.921989in}{1.387602in}}% +\pgfpathlineto{\pgfqpoint{0.957830in}{1.446431in}}% +\pgfpathlineto{\pgfqpoint{0.998791in}{1.520692in}}% +\pgfpathlineto{\pgfqpoint{1.049992in}{1.620888in}}% +\pgfpathlineto{\pgfqpoint{1.193356in}{1.906162in}}% +\pgfpathlineto{\pgfqpoint{1.234317in}{1.978026in}}% +\pgfpathlineto{\pgfqpoint{1.265038in}{2.026309in}}% +\pgfpathlineto{\pgfqpoint{1.295758in}{2.068752in}}% +\pgfpathlineto{\pgfqpoint{1.321359in}{2.099055in}}% +\pgfpathlineto{\pgfqpoint{1.346959in}{2.124290in}}% +\pgfpathlineto{\pgfqpoint{1.367440in}{2.140574in}}% +\pgfpathlineto{\pgfqpoint{1.387920in}{2.153205in}}% +\pgfpathlineto{\pgfqpoint{1.408401in}{2.162042in}}% +\pgfpathlineto{\pgfqpoint{1.428881in}{2.166971in}}% +\pgfpathlineto{\pgfqpoint{1.449362in}{2.167905in}}% +\pgfpathlineto{\pgfqpoint{1.469842in}{2.164788in}}% +\pgfpathlineto{\pgfqpoint{1.490323in}{2.157590in}}% +\pgfpathlineto{\pgfqpoint{1.510803in}{2.146316in}}% +\pgfpathlineto{\pgfqpoint{1.531284in}{2.130996in}}% +\pgfpathlineto{\pgfqpoint{1.551764in}{2.111695in}}% +\pgfpathlineto{\pgfqpoint{1.572245in}{2.088506in}}% +\pgfpathlineto{\pgfqpoint{1.597845in}{2.054244in}}% +\pgfpathlineto{\pgfqpoint{1.623446in}{2.014409in}}% +\pgfpathlineto{\pgfqpoint{1.654167in}{1.959785in}}% +\pgfpathlineto{\pgfqpoint{1.684887in}{1.898458in}}% +\pgfpathlineto{\pgfqpoint{1.720728in}{1.819647in}}% +\pgfpathlineto{\pgfqpoint{1.761689in}{1.722017in}}% +\pgfpathlineto{\pgfqpoint{1.823131in}{1.566276in}}% +\pgfpathlineto{\pgfqpoint{1.915293in}{1.332110in}}% +\pgfpathlineto{\pgfqpoint{1.956254in}{1.236020in}}% +\pgfpathlineto{\pgfqpoint{1.992095in}{1.159534in}}% +\pgfpathlineto{\pgfqpoint{2.022815in}{1.101214in}}% +\pgfpathlineto{\pgfqpoint{2.048416in}{1.058625in}}% +\pgfpathlineto{\pgfqpoint{2.074017in}{1.022179in}}% +\pgfpathlineto{\pgfqpoint{2.094497in}{0.997838in}}% +\pgfpathlineto{\pgfqpoint{2.114977in}{0.978071in}}% +\pgfpathlineto{\pgfqpoint{2.135458in}{0.963123in}}% +\pgfpathlineto{\pgfqpoint{2.150818in}{0.955205in}}% +\pgfpathlineto{\pgfqpoint{2.166179in}{0.950198in}}% +\pgfpathlineto{\pgfqpoint{2.181539in}{0.948173in}}% +\pgfpathlineto{\pgfqpoint{2.196899in}{0.949189in}}% +\pgfpathlineto{\pgfqpoint{2.212260in}{0.953295in}}% +\pgfpathlineto{\pgfqpoint{2.227620in}{0.960530in}}% +\pgfpathlineto{\pgfqpoint{2.242980in}{0.970921in}}% +\pgfpathlineto{\pgfqpoint{2.258341in}{0.984483in}}% +\pgfpathlineto{\pgfqpoint{2.278821in}{1.007506in}}% +\pgfpathlineto{\pgfqpoint{2.299302in}{1.036155in}}% +\pgfpathlineto{\pgfqpoint{2.319782in}{1.070372in}}% +\pgfpathlineto{\pgfqpoint{2.340263in}{1.110064in}}% +\pgfpathlineto{\pgfqpoint{2.365863in}{1.167179in}}% +\pgfpathlineto{\pgfqpoint{2.391464in}{1.232315in}}% +\pgfpathlineto{\pgfqpoint{2.422185in}{1.320479in}}% +\pgfpathlineto{\pgfqpoint{2.452905in}{1.418727in}}% +\pgfpathlineto{\pgfqpoint{2.488746in}{1.544721in}}% +\pgfpathlineto{\pgfqpoint{2.529707in}{1.701401in}}% +\pgfpathlineto{\pgfqpoint{2.580908in}{1.911607in}}% +\pgfpathlineto{\pgfqpoint{2.662830in}{2.264717in}}% +\pgfpathlineto{\pgfqpoint{2.739632in}{2.590813in}}% +\pgfpathlineto{\pgfqpoint{2.785713in}{2.773303in}}% +\pgfpathlineto{\pgfqpoint{2.821554in}{2.904226in}}% +\pgfpathlineto{\pgfqpoint{2.857395in}{3.023000in}}% +\pgfpathlineto{\pgfqpoint{2.888116in}{3.113554in}}% +\pgfpathlineto{\pgfqpoint{2.913716in}{3.180177in}}% +\pgfpathlineto{\pgfqpoint{2.939317in}{3.238121in}}% +\pgfpathlineto{\pgfqpoint{2.959797in}{3.277873in}}% +\pgfpathlineto{\pgfqpoint{2.980278in}{3.311504in}}% +\pgfpathlineto{\pgfqpoint{3.000758in}{3.338818in}}% +\pgfpathlineto{\pgfqpoint{3.016119in}{3.355062in}}% +\pgfpathlineto{\pgfqpoint{3.031479in}{3.367610in}}% +\pgfpathlineto{\pgfqpoint{3.046839in}{3.376420in}}% +\pgfpathlineto{\pgfqpoint{3.062200in}{3.381465in}}% +\pgfpathlineto{\pgfqpoint{3.077560in}{3.382727in}}% +\pgfpathlineto{\pgfqpoint{3.092920in}{3.380203in}}% +\pgfpathlineto{\pgfqpoint{3.108281in}{3.373901in}}% +\pgfpathlineto{\pgfqpoint{3.123641in}{3.363840in}}% +\pgfpathlineto{\pgfqpoint{3.139002in}{3.350056in}}% +\pgfpathlineto{\pgfqpoint{3.154362in}{3.332591in}}% +\pgfpathlineto{\pgfqpoint{3.174842in}{3.303681in}}% +\pgfpathlineto{\pgfqpoint{3.195323in}{3.268501in}}% +\pgfpathlineto{\pgfqpoint{3.215803in}{3.227253in}}% +\pgfpathlineto{\pgfqpoint{3.241404in}{3.167529in}}% +\pgfpathlineto{\pgfqpoint{3.267005in}{3.099239in}}% +\pgfpathlineto{\pgfqpoint{3.297725in}{3.006858in}}% +\pgfpathlineto{\pgfqpoint{3.328446in}{2.904226in}}% +\pgfpathlineto{\pgfqpoint{3.364287in}{2.773303in}}% +\pgfpathlineto{\pgfqpoint{3.405248in}{2.611735in}}% +\pgfpathlineto{\pgfqpoint{3.461569in}{2.375278in}}% +\pgfpathlineto{\pgfqpoint{3.610053in}{1.742341in}}% +\pgfpathlineto{\pgfqpoint{3.656134in}{1.563621in}}% +\pgfpathlineto{\pgfqpoint{3.691974in}{1.436012in}}% +\pgfpathlineto{\pgfqpoint{3.722695in}{1.336179in}}% +\pgfpathlineto{\pgfqpoint{3.753416in}{1.246270in}}% +\pgfpathlineto{\pgfqpoint{3.779017in}{1.179576in}}% +\pgfpathlineto{\pgfqpoint{3.804617in}{1.120828in}}% +\pgfpathlineto{\pgfqpoint{3.830218in}{1.070372in}}% +\pgfpathlineto{\pgfqpoint{3.850698in}{1.036155in}}% +\pgfpathlineto{\pgfqpoint{3.871179in}{1.007506in}}% +\pgfpathlineto{\pgfqpoint{3.891659in}{0.984483in}}% +\pgfpathlineto{\pgfqpoint{3.912140in}{0.967105in}}% +\pgfpathlineto{\pgfqpoint{3.927500in}{0.957769in}}% +\pgfpathlineto{\pgfqpoint{3.942860in}{0.951581in}}% +\pgfpathlineto{\pgfqpoint{3.958221in}{0.948509in}}% +\pgfpathlineto{\pgfqpoint{3.973581in}{0.948513in}}% +\pgfpathlineto{\pgfqpoint{3.988941in}{0.951539in}}% +\pgfpathlineto{\pgfqpoint{4.004302in}{0.957524in}}% +\pgfpathlineto{\pgfqpoint{4.019662in}{0.966396in}}% +\pgfpathlineto{\pgfqpoint{4.040143in}{0.982570in}}% +\pgfpathlineto{\pgfqpoint{4.060623in}{1.003504in}}% +\pgfpathlineto{\pgfqpoint{4.081104in}{1.028948in}}% +\pgfpathlineto{\pgfqpoint{4.106704in}{1.066671in}}% +\pgfpathlineto{\pgfqpoint{4.132305in}{1.110414in}}% +\pgfpathlineto{\pgfqpoint{4.163026in}{1.169944in}}% +\pgfpathlineto{\pgfqpoint{4.198866in}{1.247581in}}% +\pgfpathlineto{\pgfqpoint{4.239827in}{1.344626in}}% +\pgfpathlineto{\pgfqpoint{4.296149in}{1.486961in}}% +\pgfpathlineto{\pgfqpoint{4.398551in}{1.747046in}}% +\pgfpathlineto{\pgfqpoint{4.439512in}{1.842878in}}% +\pgfpathlineto{\pgfqpoint{4.475353in}{1.919592in}}% +\pgfpathlineto{\pgfqpoint{4.506074in}{1.978779in}}% +\pgfpathlineto{\pgfqpoint{4.536794in}{2.030989in}}% +\pgfpathlineto{\pgfqpoint{4.562395in}{2.068636in}}% +\pgfpathlineto{\pgfqpoint{4.587995in}{2.100580in}}% +\pgfpathlineto{\pgfqpoint{4.608476in}{2.121838in}}% +\pgfpathlineto{\pgfqpoint{4.628956in}{2.139158in}}% +\pgfpathlineto{\pgfqpoint{4.649437in}{2.152462in}}% +\pgfpathlineto{\pgfqpoint{4.669917in}{2.161700in}}% +\pgfpathlineto{\pgfqpoint{4.690398in}{2.166855in}}% +\pgfpathlineto{\pgfqpoint{4.710878in}{2.167941in}}% +\pgfpathlineto{\pgfqpoint{4.731359in}{2.165001in}}% +\pgfpathlineto{\pgfqpoint{4.751839in}{2.158105in}}% +\pgfpathlineto{\pgfqpoint{4.772320in}{2.147355in}}% +\pgfpathlineto{\pgfqpoint{4.792800in}{2.132879in}}% +\pgfpathlineto{\pgfqpoint{4.813281in}{2.114830in}}% +\pgfpathlineto{\pgfqpoint{4.838881in}{2.087519in}}% +\pgfpathlineto{\pgfqpoint{4.864482in}{2.055307in}}% +\pgfpathlineto{\pgfqpoint{4.895203in}{2.010820in}}% +\pgfpathlineto{\pgfqpoint{4.925923in}{1.960790in}}% +\pgfpathlineto{\pgfqpoint{4.961764in}{1.896680in}}% +\pgfpathlineto{\pgfqpoint{5.007845in}{1.807644in}}% +\pgfpathlineto{\pgfqpoint{5.176809in}{1.473501in}}% +\pgfpathlineto{\pgfqpoint{5.212650in}{1.412018in}}% +\pgfpathlineto{\pgfqpoint{5.243371in}{1.364487in}}% +\pgfpathlineto{\pgfqpoint{5.274092in}{1.322519in}}% +\pgfpathlineto{\pgfqpoint{5.299692in}{1.292260in}}% +\pgfpathlineto{\pgfqpoint{5.325293in}{1.266622in}}% +\pgfpathlineto{\pgfqpoint{5.350893in}{1.245856in}}% +\pgfpathlineto{\pgfqpoint{5.371374in}{1.232884in}}% +\pgfpathlineto{\pgfqpoint{5.391854in}{1.223225in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.216606in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.216606in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{1.597703in}}% +\pgfpathlineto{\pgfqpoint{0.814467in}{1.453986in}}% +\pgfpathlineto{\pgfqpoint{0.855428in}{1.384562in}}% +\pgfpathlineto{\pgfqpoint{0.891269in}{1.329340in}}% +\pgfpathlineto{\pgfqpoint{0.921989in}{1.287212in}}% +\pgfpathlineto{\pgfqpoint{0.952710in}{1.250725in}}% +\pgfpathlineto{\pgfqpoint{0.978311in}{1.225140in}}% +\pgfpathlineto{\pgfqpoint{1.003911in}{1.204320in}}% +\pgfpathlineto{\pgfqpoint{1.024392in}{1.191302in}}% +\pgfpathlineto{\pgfqpoint{1.044872in}{1.181661in}}% +\pgfpathlineto{\pgfqpoint{1.065353in}{1.175502in}}% +\pgfpathlineto{\pgfqpoint{1.085833in}{1.172908in}}% +\pgfpathlineto{\pgfqpoint{1.106314in}{1.173933in}}% +\pgfpathlineto{\pgfqpoint{1.126794in}{1.178606in}}% +\pgfpathlineto{\pgfqpoint{1.147275in}{1.186929in}}% +\pgfpathlineto{\pgfqpoint{1.167755in}{1.198876in}}% +\pgfpathlineto{\pgfqpoint{1.188236in}{1.214396in}}% +\pgfpathlineto{\pgfqpoint{1.208716in}{1.233409in}}% +\pgfpathlineto{\pgfqpoint{1.234317in}{1.261921in}}% +\pgfpathlineto{\pgfqpoint{1.259917in}{1.295456in}}% +\pgfpathlineto{\pgfqpoint{1.285518in}{1.333687in}}% +\pgfpathlineto{\pgfqpoint{1.316239in}{1.385218in}}% +\pgfpathlineto{\pgfqpoint{1.352080in}{1.452145in}}% +\pgfpathlineto{\pgfqpoint{1.393041in}{1.535887in}}% +\pgfpathlineto{\pgfqpoint{1.444242in}{1.647984in}}% +\pgfpathlineto{\pgfqpoint{1.572245in}{1.932041in}}% +\pgfpathlineto{\pgfqpoint{1.613206in}{2.013968in}}% +\pgfpathlineto{\pgfqpoint{1.649047in}{2.078440in}}% +\pgfpathlineto{\pgfqpoint{1.679767in}{2.127039in}}% +\pgfpathlineto{\pgfqpoint{1.705368in}{2.162120in}}% +\pgfpathlineto{\pgfqpoint{1.730968in}{2.191748in}}% +\pgfpathlineto{\pgfqpoint{1.751449in}{2.211228in}}% +\pgfpathlineto{\pgfqpoint{1.771929in}{2.226740in}}% +\pgfpathlineto{\pgfqpoint{1.792410in}{2.238111in}}% +\pgfpathlineto{\pgfqpoint{1.812890in}{2.245198in}}% +\pgfpathlineto{\pgfqpoint{1.828251in}{2.247630in}}% +\pgfpathlineto{\pgfqpoint{1.843611in}{2.247548in}}% +\pgfpathlineto{\pgfqpoint{1.858971in}{2.244923in}}% +\pgfpathlineto{\pgfqpoint{1.874332in}{2.239735in}}% +\pgfpathlineto{\pgfqpoint{1.889692in}{2.231976in}}% +\pgfpathlineto{\pgfqpoint{1.910173in}{2.217634in}}% +\pgfpathlineto{\pgfqpoint{1.930653in}{2.198752in}}% +\pgfpathlineto{\pgfqpoint{1.951134in}{2.175391in}}% +\pgfpathlineto{\pgfqpoint{1.971614in}{2.147643in}}% +\pgfpathlineto{\pgfqpoint{1.997215in}{2.106979in}}% +\pgfpathlineto{\pgfqpoint{2.022815in}{2.059964in}}% +\pgfpathlineto{\pgfqpoint{2.048416in}{2.006975in}}% +\pgfpathlineto{\pgfqpoint{2.079137in}{1.936139in}}% +\pgfpathlineto{\pgfqpoint{2.114977in}{1.844645in}}% +\pgfpathlineto{\pgfqpoint{2.155938in}{1.730417in}}% +\pgfpathlineto{\pgfqpoint{2.207140in}{1.577176in}}% +\pgfpathlineto{\pgfqpoint{2.370983in}{1.076956in}}% +\pgfpathlineto{\pgfqpoint{2.411944in}{0.966434in}}% +\pgfpathlineto{\pgfqpoint{2.442665in}{0.891278in}}% +\pgfpathlineto{\pgfqpoint{2.473386in}{0.824058in}}% +\pgfpathlineto{\pgfqpoint{2.498986in}{0.774878in}}% +\pgfpathlineto{\pgfqpoint{2.524587in}{0.732506in}}% +\pgfpathlineto{\pgfqpoint{2.545068in}{0.703844in}}% +\pgfpathlineto{\pgfqpoint{2.565548in}{0.680076in}}% +\pgfpathlineto{\pgfqpoint{2.586029in}{0.661392in}}% +\pgfpathlineto{\pgfqpoint{2.601389in}{0.650812in}}% +\pgfpathlineto{\pgfqpoint{2.616749in}{0.643238in}}% +\pgfpathlineto{\pgfqpoint{2.632110in}{0.638713in}}% +\pgfpathlineto{\pgfqpoint{2.647470in}{0.637273in}}% +\pgfpathlineto{\pgfqpoint{2.662830in}{0.638940in}}% +\pgfpathlineto{\pgfqpoint{2.678191in}{0.643726in}}% +\pgfpathlineto{\pgfqpoint{2.693551in}{0.651634in}}% +\pgfpathlineto{\pgfqpoint{2.708911in}{0.662653in}}% +\pgfpathlineto{\pgfqpoint{2.724272in}{0.676762in}}% +\pgfpathlineto{\pgfqpoint{2.744752in}{0.700324in}}% +\pgfpathlineto{\pgfqpoint{2.765233in}{0.729218in}}% +\pgfpathlineto{\pgfqpoint{2.785713in}{0.763302in}}% +\pgfpathlineto{\pgfqpoint{2.811314in}{0.812941in}}% +\pgfpathlineto{\pgfqpoint{2.836914in}{0.870013in}}% +\pgfpathlineto{\pgfqpoint{2.862515in}{0.934035in}}% +\pgfpathlineto{\pgfqpoint{2.893236in}{1.019257in}}% +\pgfpathlineto{\pgfqpoint{2.929077in}{1.128887in}}% +\pgfpathlineto{\pgfqpoint{2.970038in}{1.265288in}}% +\pgfpathlineto{\pgfqpoint{3.021239in}{1.447839in}}% +\pgfpathlineto{\pgfqpoint{3.195323in}{2.081402in}}% +\pgfpathlineto{\pgfqpoint{3.236284in}{2.213666in}}% +\pgfpathlineto{\pgfqpoint{3.272125in}{2.318771in}}% +\pgfpathlineto{\pgfqpoint{3.302845in}{2.399513in}}% +\pgfpathlineto{\pgfqpoint{3.328446in}{2.459426in}}% +\pgfpathlineto{\pgfqpoint{3.354047in}{2.512092in}}% +\pgfpathlineto{\pgfqpoint{3.379647in}{2.557072in}}% +\pgfpathlineto{\pgfqpoint{3.400128in}{2.587277in}}% +\pgfpathlineto{\pgfqpoint{3.420608in}{2.612183in}}% +\pgfpathlineto{\pgfqpoint{3.441089in}{2.631677in}}% +\pgfpathlineto{\pgfqpoint{3.456449in}{2.642696in}}% +\pgfpathlineto{\pgfqpoint{3.471809in}{2.650603in}}% +\pgfpathlineto{\pgfqpoint{3.487170in}{2.655390in}}% +\pgfpathlineto{\pgfqpoint{3.502530in}{2.657057in}}% +\pgfpathlineto{\pgfqpoint{3.517890in}{2.655617in}}% +\pgfpathlineto{\pgfqpoint{3.533251in}{2.651092in}}% +\pgfpathlineto{\pgfqpoint{3.548611in}{2.643518in}}% +\pgfpathlineto{\pgfqpoint{3.563971in}{2.632938in}}% +\pgfpathlineto{\pgfqpoint{3.584452in}{2.614254in}}% +\pgfpathlineto{\pgfqpoint{3.604932in}{2.590485in}}% +\pgfpathlineto{\pgfqpoint{3.625413in}{2.561823in}}% +\pgfpathlineto{\pgfqpoint{3.645893in}{2.528487in}}% +\pgfpathlineto{\pgfqpoint{3.671494in}{2.480626in}}% +\pgfpathlineto{\pgfqpoint{3.697095in}{2.426395in}}% +\pgfpathlineto{\pgfqpoint{3.727815in}{2.353759in}}% +\pgfpathlineto{\pgfqpoint{3.763656in}{2.260043in}}% +\pgfpathlineto{\pgfqpoint{3.804617in}{2.143513in}}% +\pgfpathlineto{\pgfqpoint{3.860938in}{1.972417in}}% +\pgfpathlineto{\pgfqpoint{3.988941in}{1.578791in}}% +\pgfpathlineto{\pgfqpoint{4.029902in}{1.463447in}}% +\pgfpathlineto{\pgfqpoint{4.065743in}{1.370709in}}% +\pgfpathlineto{\pgfqpoint{4.096464in}{1.298630in}}% +\pgfpathlineto{\pgfqpoint{4.127185in}{1.234366in}}% +\pgfpathlineto{\pgfqpoint{4.152785in}{1.187350in}}% +\pgfpathlineto{\pgfqpoint{4.178386in}{1.146687in}}% +\pgfpathlineto{\pgfqpoint{4.198866in}{1.118939in}}% +\pgfpathlineto{\pgfqpoint{4.219347in}{1.095578in}}% +\pgfpathlineto{\pgfqpoint{4.239827in}{1.076696in}}% +\pgfpathlineto{\pgfqpoint{4.260308in}{1.062353in}}% +\pgfpathlineto{\pgfqpoint{4.280788in}{1.052580in}}% +\pgfpathlineto{\pgfqpoint{4.296149in}{1.048248in}}% +\pgfpathlineto{\pgfqpoint{4.311509in}{1.046473in}}% +\pgfpathlineto{\pgfqpoint{4.326869in}{1.047233in}}% +\pgfpathlineto{\pgfqpoint{4.342230in}{1.050495in}}% +\pgfpathlineto{\pgfqpoint{4.357590in}{1.056219in}}% +\pgfpathlineto{\pgfqpoint{4.378071in}{1.067590in}}% +\pgfpathlineto{\pgfqpoint{4.398551in}{1.083102in}}% +\pgfpathlineto{\pgfqpoint{4.419032in}{1.102582in}}% +\pgfpathlineto{\pgfqpoint{4.439512in}{1.125833in}}% +\pgfpathlineto{\pgfqpoint{4.465113in}{1.159861in}}% +\pgfpathlineto{\pgfqpoint{4.490713in}{1.198952in}}% +\pgfpathlineto{\pgfqpoint{4.521434in}{1.251799in}}% +\pgfpathlineto{\pgfqpoint{4.557275in}{1.320372in}}% +\pgfpathlineto{\pgfqpoint{4.598236in}{1.405779in}}% +\pgfpathlineto{\pgfqpoint{4.659677in}{1.542283in}}% +\pgfpathlineto{\pgfqpoint{4.751839in}{1.747538in}}% +\pgfpathlineto{\pgfqpoint{4.797920in}{1.842184in}}% +\pgfpathlineto{\pgfqpoint{4.833761in}{1.909112in}}% +\pgfpathlineto{\pgfqpoint{4.864482in}{1.960642in}}% +\pgfpathlineto{\pgfqpoint{4.895203in}{2.005968in}}% +\pgfpathlineto{\pgfqpoint{4.920803in}{2.038523in}}% +\pgfpathlineto{\pgfqpoint{4.946404in}{2.065996in}}% +\pgfpathlineto{\pgfqpoint{4.966884in}{2.084144in}}% +\pgfpathlineto{\pgfqpoint{4.987365in}{2.098778in}}% +\pgfpathlineto{\pgfqpoint{5.007845in}{2.109823in}}% +\pgfpathlineto{\pgfqpoint{5.028326in}{2.117235in}}% +\pgfpathlineto{\pgfqpoint{5.048806in}{2.120995in}}% +\pgfpathlineto{\pgfqpoint{5.069287in}{2.121111in}}% +\pgfpathlineto{\pgfqpoint{5.089767in}{2.117619in}}% +\pgfpathlineto{\pgfqpoint{5.110248in}{2.110581in}}% +\pgfpathlineto{\pgfqpoint{5.130728in}{2.100085in}}% +\pgfpathlineto{\pgfqpoint{5.151209in}{2.086242in}}% +\pgfpathlineto{\pgfqpoint{5.171689in}{2.069190in}}% +\pgfpathlineto{\pgfqpoint{5.197290in}{2.043605in}}% +\pgfpathlineto{\pgfqpoint{5.222890in}{2.013611in}}% +\pgfpathlineto{\pgfqpoint{5.253611in}{1.972370in}}% +\pgfpathlineto{\pgfqpoint{5.289452in}{1.918010in}}% +\pgfpathlineto{\pgfqpoint{5.330413in}{1.849320in}}% +\pgfpathlineto{\pgfqpoint{5.381614in}{1.756835in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.696626in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.696626in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{2.087558in}}% +\pgfpathlineto{\pgfqpoint{0.753026in}{2.089238in}}% +\pgfpathlineto{\pgfqpoint{0.773506in}{2.088244in}}% +\pgfpathlineto{\pgfqpoint{0.793986in}{2.083946in}}% +\pgfpathlineto{\pgfqpoint{0.814467in}{2.076349in}}% +\pgfpathlineto{\pgfqpoint{0.834947in}{2.065480in}}% +\pgfpathlineto{\pgfqpoint{0.855428in}{2.051393in}}% +\pgfpathlineto{\pgfqpoint{0.881029in}{2.029378in}}% +\pgfpathlineto{\pgfqpoint{0.906629in}{2.002657in}}% +\pgfpathlineto{\pgfqpoint{0.932230in}{1.971486in}}% +\pgfpathlineto{\pgfqpoint{0.962950in}{1.928646in}}% +\pgfpathlineto{\pgfqpoint{0.993671in}{1.880474in}}% +\pgfpathlineto{\pgfqpoint{1.029512in}{1.818502in}}% +\pgfpathlineto{\pgfqpoint{1.075593in}{1.731696in}}% +\pgfpathlineto{\pgfqpoint{1.137035in}{1.608436in}}% +\pgfpathlineto{\pgfqpoint{1.229197in}{1.423447in}}% +\pgfpathlineto{\pgfqpoint{1.275278in}{1.338266in}}% +\pgfpathlineto{\pgfqpoint{1.311119in}{1.278235in}}% +\pgfpathlineto{\pgfqpoint{1.341839in}{1.232297in}}% +\pgfpathlineto{\pgfqpoint{1.372560in}{1.192309in}}% +\pgfpathlineto{\pgfqpoint{1.398161in}{1.164059in}}% +\pgfpathlineto{\pgfqpoint{1.423761in}{1.140817in}}% +\pgfpathlineto{\pgfqpoint{1.444242in}{1.126046in}}% +\pgfpathlineto{\pgfqpoint{1.464722in}{1.114825in}}% +\pgfpathlineto{\pgfqpoint{1.485203in}{1.107268in}}% +\pgfpathlineto{\pgfqpoint{1.505683in}{1.103467in}}% +\pgfpathlineto{\pgfqpoint{1.526164in}{1.103488in}}% +\pgfpathlineto{\pgfqpoint{1.546644in}{1.107370in}}% +\pgfpathlineto{\pgfqpoint{1.567125in}{1.115129in}}% +\pgfpathlineto{\pgfqpoint{1.587605in}{1.126753in}}% +\pgfpathlineto{\pgfqpoint{1.608086in}{1.142205in}}% +\pgfpathlineto{\pgfqpoint{1.628566in}{1.161422in}}% +\pgfpathlineto{\pgfqpoint{1.649047in}{1.184315in}}% +\pgfpathlineto{\pgfqpoint{1.674647in}{1.217924in}}% +\pgfpathlineto{\pgfqpoint{1.700248in}{1.256823in}}% +\pgfpathlineto{\pgfqpoint{1.730968in}{1.310014in}}% +\pgfpathlineto{\pgfqpoint{1.761689in}{1.369671in}}% +\pgfpathlineto{\pgfqpoint{1.797530in}{1.446409in}}% +\pgfpathlineto{\pgfqpoint{1.838491in}{1.541833in}}% +\pgfpathlineto{\pgfqpoint{1.889692in}{1.669363in}}% +\pgfpathlineto{\pgfqpoint{2.053536in}{2.084842in}}% +\pgfpathlineto{\pgfqpoint{2.094497in}{2.177528in}}% +\pgfpathlineto{\pgfqpoint{2.130338in}{2.251280in}}% +\pgfpathlineto{\pgfqpoint{2.161059in}{2.308003in}}% +\pgfpathlineto{\pgfqpoint{2.191779in}{2.357982in}}% +\pgfpathlineto{\pgfqpoint{2.217380in}{2.394040in}}% +\pgfpathlineto{\pgfqpoint{2.242980in}{2.424708in}}% +\pgfpathlineto{\pgfqpoint{2.263461in}{2.445205in}}% +\pgfpathlineto{\pgfqpoint{2.283941in}{2.462016in}}% +\pgfpathlineto{\pgfqpoint{2.304422in}{2.475078in}}% +\pgfpathlineto{\pgfqpoint{2.324902in}{2.484355in}}% +\pgfpathlineto{\pgfqpoint{2.345383in}{2.489835in}}% +\pgfpathlineto{\pgfqpoint{2.365863in}{2.491535in}}% +\pgfpathlineto{\pgfqpoint{2.386344in}{2.489498in}}% +\pgfpathlineto{\pgfqpoint{2.406824in}{2.483791in}}% +\pgfpathlineto{\pgfqpoint{2.427305in}{2.474508in}}% +\pgfpathlineto{\pgfqpoint{2.447785in}{2.461767in}}% +\pgfpathlineto{\pgfqpoint{2.468266in}{2.445710in}}% +\pgfpathlineto{\pgfqpoint{2.493866in}{2.421230in}}% +\pgfpathlineto{\pgfqpoint{2.519467in}{2.392195in}}% +\pgfpathlineto{\pgfqpoint{2.550188in}{2.351932in}}% +\pgfpathlineto{\pgfqpoint{2.580908in}{2.306515in}}% +\pgfpathlineto{\pgfqpoint{2.616749in}{2.248188in}}% +\pgfpathlineto{\pgfqpoint{2.662830in}{2.167068in}}% +\pgfpathlineto{\pgfqpoint{2.826674in}{1.871952in}}% +\pgfpathlineto{\pgfqpoint{2.862515in}{1.816084in}}% +\pgfpathlineto{\pgfqpoint{2.893236in}{1.773136in}}% +\pgfpathlineto{\pgfqpoint{2.923956in}{1.735550in}}% +\pgfpathlineto{\pgfqpoint{2.949557in}{1.708802in}}% +\pgfpathlineto{\pgfqpoint{2.975158in}{1.686562in}}% +\pgfpathlineto{\pgfqpoint{2.995638in}{1.672198in}}% +\pgfpathlineto{\pgfqpoint{3.016119in}{1.661005in}}% +\pgfpathlineto{\pgfqpoint{3.036599in}{1.653070in}}% +\pgfpathlineto{\pgfqpoint{3.057080in}{1.648453in}}% +\pgfpathlineto{\pgfqpoint{3.077560in}{1.647191in}}% +\pgfpathlineto{\pgfqpoint{3.098041in}{1.649294in}}% +\pgfpathlineto{\pgfqpoint{3.118521in}{1.654744in}}% +\pgfpathlineto{\pgfqpoint{3.139002in}{1.663501in}}% +\pgfpathlineto{\pgfqpoint{3.159482in}{1.675496in}}% +\pgfpathlineto{\pgfqpoint{3.179962in}{1.690635in}}% +\pgfpathlineto{\pgfqpoint{3.205563in}{1.713801in}}% +\pgfpathlineto{\pgfqpoint{3.231164in}{1.741413in}}% +\pgfpathlineto{\pgfqpoint{3.261884in}{1.779941in}}% +\pgfpathlineto{\pgfqpoint{3.292605in}{1.823711in}}% +\pgfpathlineto{\pgfqpoint{3.328446in}{1.880369in}}% +\pgfpathlineto{\pgfqpoint{3.374527in}{1.959949in}}% +\pgfpathlineto{\pgfqpoint{3.446209in}{2.091693in}}% +\pgfpathlineto{\pgfqpoint{3.517890in}{2.221778in}}% +\pgfpathlineto{\pgfqpoint{3.558851in}{2.290381in}}% +\pgfpathlineto{\pgfqpoint{3.594692in}{2.344698in}}% +\pgfpathlineto{\pgfqpoint{3.625413in}{2.385878in}}% +\pgfpathlineto{\pgfqpoint{3.651014in}{2.415775in}}% +\pgfpathlineto{\pgfqpoint{3.676614in}{2.441197in}}% +\pgfpathlineto{\pgfqpoint{3.702215in}{2.461767in}}% +\pgfpathlineto{\pgfqpoint{3.722695in}{2.474508in}}% +\pgfpathlineto{\pgfqpoint{3.743176in}{2.483791in}}% +\pgfpathlineto{\pgfqpoint{3.763656in}{2.489498in}}% +\pgfpathlineto{\pgfqpoint{3.784137in}{2.491535in}}% +\pgfpathlineto{\pgfqpoint{3.804617in}{2.489835in}}% +\pgfpathlineto{\pgfqpoint{3.825098in}{2.484355in}}% +\pgfpathlineto{\pgfqpoint{3.845578in}{2.475078in}}% +\pgfpathlineto{\pgfqpoint{3.866059in}{2.462016in}}% +\pgfpathlineto{\pgfqpoint{3.886539in}{2.445205in}}% +\pgfpathlineto{\pgfqpoint{3.907020in}{2.424708in}}% +\pgfpathlineto{\pgfqpoint{3.932620in}{2.394040in}}% +\pgfpathlineto{\pgfqpoint{3.958221in}{2.357982in}}% +\pgfpathlineto{\pgfqpoint{3.983821in}{2.316819in}}% +\pgfpathlineto{\pgfqpoint{4.014542in}{2.261173in}}% +\pgfpathlineto{\pgfqpoint{4.045263in}{2.199366in}}% +\pgfpathlineto{\pgfqpoint{4.081104in}{2.120526in}}% +\pgfpathlineto{\pgfqpoint{4.127185in}{2.010684in}}% +\pgfpathlineto{\pgfqpoint{4.188626in}{1.854728in}}% +\pgfpathlineto{\pgfqpoint{4.301269in}{1.566729in}}% +\pgfpathlineto{\pgfqpoint{4.347350in}{1.457926in}}% +\pgfpathlineto{\pgfqpoint{4.383191in}{1.380189in}}% +\pgfpathlineto{\pgfqpoint{4.419032in}{1.310014in}}% +\pgfpathlineto{\pgfqpoint{4.449752in}{1.256823in}}% +\pgfpathlineto{\pgfqpoint{4.475353in}{1.217924in}}% +\pgfpathlineto{\pgfqpoint{4.500953in}{1.184315in}}% +\pgfpathlineto{\pgfqpoint{4.526554in}{1.156269in}}% +\pgfpathlineto{\pgfqpoint{4.547035in}{1.137987in}}% +\pgfpathlineto{\pgfqpoint{4.567515in}{1.123487in}}% +\pgfpathlineto{\pgfqpoint{4.587995in}{1.112826in}}% +\pgfpathlineto{\pgfqpoint{4.608476in}{1.106036in}}% +\pgfpathlineto{\pgfqpoint{4.628956in}{1.103122in}}% +\pgfpathlineto{\pgfqpoint{4.649437in}{1.104062in}}% +\pgfpathlineto{\pgfqpoint{4.669917in}{1.108809in}}% +\pgfpathlineto{\pgfqpoint{4.690398in}{1.117291in}}% +\pgfpathlineto{\pgfqpoint{4.710878in}{1.129411in}}% +\pgfpathlineto{\pgfqpoint{4.731359in}{1.145049in}}% +\pgfpathlineto{\pgfqpoint{4.751839in}{1.164059in}}% +\pgfpathlineto{\pgfqpoint{4.777440in}{1.192309in}}% +\pgfpathlineto{\pgfqpoint{4.803041in}{1.225198in}}% +\pgfpathlineto{\pgfqpoint{4.833761in}{1.270199in}}% +\pgfpathlineto{\pgfqpoint{4.869602in}{1.329314in}}% +\pgfpathlineto{\pgfqpoint{4.910563in}{1.403883in}}% +\pgfpathlineto{\pgfqpoint{4.961764in}{1.504307in}}% +\pgfpathlineto{\pgfqpoint{5.105128in}{1.790337in}}% +\pgfpathlineto{\pgfqpoint{5.146089in}{1.863354in}}% +\pgfpathlineto{\pgfqpoint{5.181929in}{1.920969in}}% +\pgfpathlineto{\pgfqpoint{5.212650in}{1.964744in}}% +\pgfpathlineto{\pgfqpoint{5.243371in}{2.002657in}}% +\pgfpathlineto{\pgfqpoint{5.268971in}{2.029378in}}% +\pgfpathlineto{\pgfqpoint{5.294572in}{2.051393in}}% +\pgfpathlineto{\pgfqpoint{5.315053in}{2.065480in}}% +\pgfpathlineto{\pgfqpoint{5.335533in}{2.076349in}}% +\pgfpathlineto{\pgfqpoint{5.356014in}{2.083946in}}% +\pgfpathlineto{\pgfqpoint{5.376494in}{2.088244in}}% +\pgfpathlineto{\pgfqpoint{5.396974in}{2.089238in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{2.087558in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{2.087558in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{1.521515in}}% +\pgfpathlineto{\pgfqpoint{0.783746in}{1.606794in}}% +\pgfpathlineto{\pgfqpoint{0.947590in}{1.905224in}}% +\pgfpathlineto{\pgfqpoint{0.988551in}{1.970384in}}% +\pgfpathlineto{\pgfqpoint{1.024392in}{2.021154in}}% +\pgfpathlineto{\pgfqpoint{1.055113in}{2.059124in}}% +\pgfpathlineto{\pgfqpoint{1.080713in}{2.086366in}}% +\pgfpathlineto{\pgfqpoint{1.106314in}{2.109260in}}% +\pgfpathlineto{\pgfqpoint{1.131914in}{2.127526in}}% +\pgfpathlineto{\pgfqpoint{1.152395in}{2.138650in}}% +\pgfpathlineto{\pgfqpoint{1.172875in}{2.146565in}}% +\pgfpathlineto{\pgfqpoint{1.193356in}{2.151195in}}% +\pgfpathlineto{\pgfqpoint{1.213836in}{2.152486in}}% +\pgfpathlineto{\pgfqpoint{1.234317in}{2.150404in}}% +\pgfpathlineto{\pgfqpoint{1.254797in}{2.144938in}}% +\pgfpathlineto{\pgfqpoint{1.275278in}{2.136097in}}% +\pgfpathlineto{\pgfqpoint{1.295758in}{2.123915in}}% +\pgfpathlineto{\pgfqpoint{1.316239in}{2.108444in}}% +\pgfpathlineto{\pgfqpoint{1.341839in}{2.084598in}}% +\pgfpathlineto{\pgfqpoint{1.367440in}{2.055922in}}% +\pgfpathlineto{\pgfqpoint{1.393041in}{2.022656in}}% +\pgfpathlineto{\pgfqpoint{1.423761in}{1.977081in}}% +\pgfpathlineto{\pgfqpoint{1.454482in}{1.925878in}}% +\pgfpathlineto{\pgfqpoint{1.490323in}{1.859898in}}% +\pgfpathlineto{\pgfqpoint{1.531284in}{1.777673in}}% +\pgfpathlineto{\pgfqpoint{1.582485in}{1.667422in}}% +\pgfpathlineto{\pgfqpoint{1.771929in}{1.250513in}}% +\pgfpathlineto{\pgfqpoint{1.812890in}{1.171326in}}% +\pgfpathlineto{\pgfqpoint{1.848731in}{1.108376in}}% +\pgfpathlineto{\pgfqpoint{1.879452in}{1.059883in}}% +\pgfpathlineto{\pgfqpoint{1.910173in}{1.016970in}}% +\pgfpathlineto{\pgfqpoint{1.935773in}{0.985773in}}% +\pgfpathlineto{\pgfqpoint{1.961374in}{0.958934in}}% +\pgfpathlineto{\pgfqpoint{1.986974in}{0.936595in}}% +\pgfpathlineto{\pgfqpoint{2.012575in}{0.918855in}}% +\pgfpathlineto{\pgfqpoint{2.033056in}{0.908010in}}% +\pgfpathlineto{\pgfqpoint{2.053536in}{0.900144in}}% +\pgfpathlineto{\pgfqpoint{2.074017in}{0.895242in}}% +\pgfpathlineto{\pgfqpoint{2.094497in}{0.893271in}}% +\pgfpathlineto{\pgfqpoint{2.114977in}{0.894176in}}% +\pgfpathlineto{\pgfqpoint{2.135458in}{0.897889in}}% +\pgfpathlineto{\pgfqpoint{2.155938in}{0.904320in}}% +\pgfpathlineto{\pgfqpoint{2.181539in}{0.916024in}}% +\pgfpathlineto{\pgfqpoint{2.207140in}{0.931580in}}% +\pgfpathlineto{\pgfqpoint{2.232740in}{0.950717in}}% +\pgfpathlineto{\pgfqpoint{2.263461in}{0.977990in}}% +\pgfpathlineto{\pgfqpoint{2.294182in}{1.009426in}}% +\pgfpathlineto{\pgfqpoint{2.330023in}{1.050554in}}% +\pgfpathlineto{\pgfqpoint{2.370983in}{1.102180in}}% +\pgfpathlineto{\pgfqpoint{2.427305in}{1.178446in}}% +\pgfpathlineto{\pgfqpoint{2.565548in}{1.368082in}}% +\pgfpathlineto{\pgfqpoint{2.611629in}{1.425304in}}% +\pgfpathlineto{\pgfqpoint{2.652590in}{1.471530in}}% +\pgfpathlineto{\pgfqpoint{2.688431in}{1.507772in}}% +\pgfpathlineto{\pgfqpoint{2.724272in}{1.539721in}}% +\pgfpathlineto{\pgfqpoint{2.760113in}{1.567175in}}% +\pgfpathlineto{\pgfqpoint{2.790833in}{1.587085in}}% +\pgfpathlineto{\pgfqpoint{2.821554in}{1.603704in}}% +\pgfpathlineto{\pgfqpoint{2.852275in}{1.617160in}}% +\pgfpathlineto{\pgfqpoint{2.882995in}{1.627654in}}% +\pgfpathlineto{\pgfqpoint{2.918836in}{1.636514in}}% +\pgfpathlineto{\pgfqpoint{2.954677in}{1.642236in}}% +\pgfpathlineto{\pgfqpoint{2.995638in}{1.645737in}}% +\pgfpathlineto{\pgfqpoint{3.051959in}{1.647130in}}% +\pgfpathlineto{\pgfqpoint{3.159482in}{1.648885in}}% +\pgfpathlineto{\pgfqpoint{3.200443in}{1.652741in}}% +\pgfpathlineto{\pgfqpoint{3.236284in}{1.658876in}}% +\pgfpathlineto{\pgfqpoint{3.272125in}{1.668230in}}% +\pgfpathlineto{\pgfqpoint{3.302845in}{1.679201in}}% +\pgfpathlineto{\pgfqpoint{3.333566in}{1.693172in}}% +\pgfpathlineto{\pgfqpoint{3.364287in}{1.710332in}}% +\pgfpathlineto{\pgfqpoint{3.395008in}{1.730798in}}% +\pgfpathlineto{\pgfqpoint{3.425728in}{1.754608in}}% +\pgfpathlineto{\pgfqpoint{3.461569in}{1.786557in}}% +\pgfpathlineto{\pgfqpoint{3.497410in}{1.822800in}}% +\pgfpathlineto{\pgfqpoint{3.538371in}{1.869025in}}% +\pgfpathlineto{\pgfqpoint{3.584452in}{1.926248in}}% +\pgfpathlineto{\pgfqpoint{3.640773in}{2.001687in}}% +\pgfpathlineto{\pgfqpoint{3.799497in}{2.218490in}}% +\pgfpathlineto{\pgfqpoint{3.840458in}{2.267812in}}% +\pgfpathlineto{\pgfqpoint{3.876299in}{2.306295in}}% +\pgfpathlineto{\pgfqpoint{3.907020in}{2.335020in}}% +\pgfpathlineto{\pgfqpoint{3.937740in}{2.359200in}}% +\pgfpathlineto{\pgfqpoint{3.963341in}{2.375494in}}% +\pgfpathlineto{\pgfqpoint{3.988941in}{2.387988in}}% +\pgfpathlineto{\pgfqpoint{4.014542in}{2.396441in}}% +\pgfpathlineto{\pgfqpoint{4.035023in}{2.400153in}}% +\pgfpathlineto{\pgfqpoint{4.055503in}{2.401059in}}% +\pgfpathlineto{\pgfqpoint{4.075983in}{2.399087in}}% +\pgfpathlineto{\pgfqpoint{4.096464in}{2.394186in}}% +\pgfpathlineto{\pgfqpoint{4.116944in}{2.386320in}}% +\pgfpathlineto{\pgfqpoint{4.137425in}{2.375474in}}% +\pgfpathlineto{\pgfqpoint{4.157905in}{2.361653in}}% +\pgfpathlineto{\pgfqpoint{4.183506in}{2.340228in}}% +\pgfpathlineto{\pgfqpoint{4.209107in}{2.314278in}}% +\pgfpathlineto{\pgfqpoint{4.234707in}{2.283939in}}% +\pgfpathlineto{\pgfqpoint{4.265428in}{2.241999in}}% +\pgfpathlineto{\pgfqpoint{4.296149in}{2.194403in}}% +\pgfpathlineto{\pgfqpoint{4.331989in}{2.132385in}}% +\pgfpathlineto{\pgfqpoint{4.367830in}{2.064259in}}% +\pgfpathlineto{\pgfqpoint{4.413911in}{1.969404in}}% +\pgfpathlineto{\pgfqpoint{4.470233in}{1.845837in}}% +\pgfpathlineto{\pgfqpoint{4.613596in}{1.527360in}}% +\pgfpathlineto{\pgfqpoint{4.659677in}{1.434431in}}% +\pgfpathlineto{\pgfqpoint{4.695518in}{1.368451in}}% +\pgfpathlineto{\pgfqpoint{4.731359in}{1.309246in}}% +\pgfpathlineto{\pgfqpoint{4.762080in}{1.264666in}}% +\pgfpathlineto{\pgfqpoint{4.787680in}{1.232297in}}% +\pgfpathlineto{\pgfqpoint{4.813281in}{1.204569in}}% +\pgfpathlineto{\pgfqpoint{4.838881in}{1.181713in}}% +\pgfpathlineto{\pgfqpoint{4.859362in}{1.167058in}}% +\pgfpathlineto{\pgfqpoint{4.879842in}{1.155707in}}% +\pgfpathlineto{\pgfqpoint{4.900323in}{1.147708in}}% +\pgfpathlineto{\pgfqpoint{4.920803in}{1.143088in}}% +\pgfpathlineto{\pgfqpoint{4.941284in}{1.141851in}}% +\pgfpathlineto{\pgfqpoint{4.961764in}{1.143981in}}% +\pgfpathlineto{\pgfqpoint{4.982245in}{1.149438in}}% +\pgfpathlineto{\pgfqpoint{5.002725in}{1.158163in}}% +\pgfpathlineto{\pgfqpoint{5.023206in}{1.170075in}}% +\pgfpathlineto{\pgfqpoint{5.043686in}{1.185070in}}% +\pgfpathlineto{\pgfqpoint{5.069287in}{1.207964in}}% +\pgfpathlineto{\pgfqpoint{5.094887in}{1.235205in}}% +\pgfpathlineto{\pgfqpoint{5.125608in}{1.273176in}}% +\pgfpathlineto{\pgfqpoint{5.156329in}{1.316305in}}% +\pgfpathlineto{\pgfqpoint{5.192170in}{1.372195in}}% +\pgfpathlineto{\pgfqpoint{5.233131in}{1.441903in}}% +\pgfpathlineto{\pgfqpoint{5.289452in}{1.544396in}}% +\pgfpathlineto{\pgfqpoint{5.412335in}{1.770126in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.772815in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.772815in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{1.521515in}}% +\pgfpathlineto{\pgfqpoint{0.783746in}{1.606794in}}% +\pgfpathlineto{\pgfqpoint{0.947590in}{1.905224in}}% +\pgfpathlineto{\pgfqpoint{0.988551in}{1.970384in}}% +\pgfpathlineto{\pgfqpoint{1.024392in}{2.021154in}}% +\pgfpathlineto{\pgfqpoint{1.055113in}{2.059124in}}% +\pgfpathlineto{\pgfqpoint{1.080713in}{2.086366in}}% +\pgfpathlineto{\pgfqpoint{1.106314in}{2.109260in}}% +\pgfpathlineto{\pgfqpoint{1.131914in}{2.127526in}}% +\pgfpathlineto{\pgfqpoint{1.152395in}{2.138650in}}% +\pgfpathlineto{\pgfqpoint{1.172875in}{2.146565in}}% +\pgfpathlineto{\pgfqpoint{1.193356in}{2.151195in}}% +\pgfpathlineto{\pgfqpoint{1.213836in}{2.152486in}}% +\pgfpathlineto{\pgfqpoint{1.234317in}{2.150404in}}% +\pgfpathlineto{\pgfqpoint{1.254797in}{2.144938in}}% +\pgfpathlineto{\pgfqpoint{1.275278in}{2.136097in}}% +\pgfpathlineto{\pgfqpoint{1.295758in}{2.123915in}}% +\pgfpathlineto{\pgfqpoint{1.316239in}{2.108444in}}% +\pgfpathlineto{\pgfqpoint{1.341839in}{2.084598in}}% +\pgfpathlineto{\pgfqpoint{1.367440in}{2.055922in}}% +\pgfpathlineto{\pgfqpoint{1.393041in}{2.022656in}}% +\pgfpathlineto{\pgfqpoint{1.423761in}{1.977081in}}% +\pgfpathlineto{\pgfqpoint{1.454482in}{1.925878in}}% +\pgfpathlineto{\pgfqpoint{1.490323in}{1.859898in}}% +\pgfpathlineto{\pgfqpoint{1.531284in}{1.777673in}}% +\pgfpathlineto{\pgfqpoint{1.582485in}{1.667422in}}% +\pgfpathlineto{\pgfqpoint{1.771929in}{1.250513in}}% +\pgfpathlineto{\pgfqpoint{1.812890in}{1.171326in}}% +\pgfpathlineto{\pgfqpoint{1.848731in}{1.108376in}}% +\pgfpathlineto{\pgfqpoint{1.879452in}{1.059883in}}% +\pgfpathlineto{\pgfqpoint{1.910173in}{1.016970in}}% +\pgfpathlineto{\pgfqpoint{1.935773in}{0.985773in}}% +\pgfpathlineto{\pgfqpoint{1.961374in}{0.958934in}}% +\pgfpathlineto{\pgfqpoint{1.986974in}{0.936595in}}% +\pgfpathlineto{\pgfqpoint{2.012575in}{0.918855in}}% +\pgfpathlineto{\pgfqpoint{2.033056in}{0.908010in}}% +\pgfpathlineto{\pgfqpoint{2.053536in}{0.900144in}}% +\pgfpathlineto{\pgfqpoint{2.074017in}{0.895242in}}% +\pgfpathlineto{\pgfqpoint{2.094497in}{0.893271in}}% +\pgfpathlineto{\pgfqpoint{2.114977in}{0.894176in}}% +\pgfpathlineto{\pgfqpoint{2.135458in}{0.897889in}}% +\pgfpathlineto{\pgfqpoint{2.155938in}{0.904320in}}% +\pgfpathlineto{\pgfqpoint{2.181539in}{0.916024in}}% +\pgfpathlineto{\pgfqpoint{2.207140in}{0.931580in}}% +\pgfpathlineto{\pgfqpoint{2.232740in}{0.950717in}}% +\pgfpathlineto{\pgfqpoint{2.263461in}{0.977990in}}% +\pgfpathlineto{\pgfqpoint{2.294182in}{1.009426in}}% +\pgfpathlineto{\pgfqpoint{2.330023in}{1.050554in}}% +\pgfpathlineto{\pgfqpoint{2.370983in}{1.102180in}}% +\pgfpathlineto{\pgfqpoint{2.427305in}{1.178446in}}% +\pgfpathlineto{\pgfqpoint{2.565548in}{1.368082in}}% +\pgfpathlineto{\pgfqpoint{2.611629in}{1.425304in}}% +\pgfpathlineto{\pgfqpoint{2.652590in}{1.471530in}}% +\pgfpathlineto{\pgfqpoint{2.688431in}{1.507772in}}% +\pgfpathlineto{\pgfqpoint{2.724272in}{1.539721in}}% +\pgfpathlineto{\pgfqpoint{2.760113in}{1.567175in}}% +\pgfpathlineto{\pgfqpoint{2.790833in}{1.587085in}}% +\pgfpathlineto{\pgfqpoint{2.821554in}{1.603704in}}% +\pgfpathlineto{\pgfqpoint{2.852275in}{1.617160in}}% +\pgfpathlineto{\pgfqpoint{2.882995in}{1.627654in}}% +\pgfpathlineto{\pgfqpoint{2.918836in}{1.636514in}}% +\pgfpathlineto{\pgfqpoint{2.954677in}{1.642236in}}% +\pgfpathlineto{\pgfqpoint{2.995638in}{1.645737in}}% +\pgfpathlineto{\pgfqpoint{3.051959in}{1.647130in}}% +\pgfpathlineto{\pgfqpoint{3.159482in}{1.648885in}}% +\pgfpathlineto{\pgfqpoint{3.200443in}{1.652741in}}% +\pgfpathlineto{\pgfqpoint{3.236284in}{1.658876in}}% +\pgfpathlineto{\pgfqpoint{3.272125in}{1.668230in}}% +\pgfpathlineto{\pgfqpoint{3.302845in}{1.679201in}}% +\pgfpathlineto{\pgfqpoint{3.333566in}{1.693172in}}% +\pgfpathlineto{\pgfqpoint{3.364287in}{1.710332in}}% +\pgfpathlineto{\pgfqpoint{3.395008in}{1.730798in}}% +\pgfpathlineto{\pgfqpoint{3.425728in}{1.754608in}}% +\pgfpathlineto{\pgfqpoint{3.461569in}{1.786557in}}% +\pgfpathlineto{\pgfqpoint{3.497410in}{1.822800in}}% +\pgfpathlineto{\pgfqpoint{3.538371in}{1.869025in}}% +\pgfpathlineto{\pgfqpoint{3.584452in}{1.926248in}}% +\pgfpathlineto{\pgfqpoint{3.640773in}{2.001687in}}% +\pgfpathlineto{\pgfqpoint{3.799497in}{2.218490in}}% +\pgfpathlineto{\pgfqpoint{3.840458in}{2.267812in}}% +\pgfpathlineto{\pgfqpoint{3.876299in}{2.306295in}}% +\pgfpathlineto{\pgfqpoint{3.907020in}{2.335020in}}% +\pgfpathlineto{\pgfqpoint{3.937740in}{2.359200in}}% +\pgfpathlineto{\pgfqpoint{3.963341in}{2.375494in}}% +\pgfpathlineto{\pgfqpoint{3.988941in}{2.387988in}}% +\pgfpathlineto{\pgfqpoint{4.014542in}{2.396441in}}% +\pgfpathlineto{\pgfqpoint{4.035023in}{2.400153in}}% +\pgfpathlineto{\pgfqpoint{4.055503in}{2.401059in}}% +\pgfpathlineto{\pgfqpoint{4.075983in}{2.399087in}}% +\pgfpathlineto{\pgfqpoint{4.096464in}{2.394186in}}% +\pgfpathlineto{\pgfqpoint{4.116944in}{2.386320in}}% +\pgfpathlineto{\pgfqpoint{4.137425in}{2.375474in}}% +\pgfpathlineto{\pgfqpoint{4.157905in}{2.361653in}}% +\pgfpathlineto{\pgfqpoint{4.183506in}{2.340228in}}% +\pgfpathlineto{\pgfqpoint{4.209107in}{2.314278in}}% +\pgfpathlineto{\pgfqpoint{4.234707in}{2.283939in}}% +\pgfpathlineto{\pgfqpoint{4.265428in}{2.241999in}}% +\pgfpathlineto{\pgfqpoint{4.296149in}{2.194403in}}% +\pgfpathlineto{\pgfqpoint{4.331989in}{2.132385in}}% +\pgfpathlineto{\pgfqpoint{4.367830in}{2.064259in}}% +\pgfpathlineto{\pgfqpoint{4.413911in}{1.969404in}}% +\pgfpathlineto{\pgfqpoint{4.470233in}{1.845837in}}% +\pgfpathlineto{\pgfqpoint{4.613596in}{1.527360in}}% +\pgfpathlineto{\pgfqpoint{4.659677in}{1.434431in}}% +\pgfpathlineto{\pgfqpoint{4.695518in}{1.368451in}}% +\pgfpathlineto{\pgfqpoint{4.731359in}{1.309246in}}% +\pgfpathlineto{\pgfqpoint{4.762080in}{1.264666in}}% +\pgfpathlineto{\pgfqpoint{4.787680in}{1.232297in}}% +\pgfpathlineto{\pgfqpoint{4.813281in}{1.204569in}}% +\pgfpathlineto{\pgfqpoint{4.838881in}{1.181713in}}% +\pgfpathlineto{\pgfqpoint{4.859362in}{1.167058in}}% +\pgfpathlineto{\pgfqpoint{4.879842in}{1.155707in}}% +\pgfpathlineto{\pgfqpoint{4.900323in}{1.147708in}}% +\pgfpathlineto{\pgfqpoint{4.920803in}{1.143088in}}% +\pgfpathlineto{\pgfqpoint{4.941284in}{1.141851in}}% +\pgfpathlineto{\pgfqpoint{4.961764in}{1.143981in}}% +\pgfpathlineto{\pgfqpoint{4.982245in}{1.149438in}}% +\pgfpathlineto{\pgfqpoint{5.002725in}{1.158163in}}% +\pgfpathlineto{\pgfqpoint{5.023206in}{1.170075in}}% +\pgfpathlineto{\pgfqpoint{5.043686in}{1.185070in}}% +\pgfpathlineto{\pgfqpoint{5.069287in}{1.207964in}}% +\pgfpathlineto{\pgfqpoint{5.094887in}{1.235205in}}% +\pgfpathlineto{\pgfqpoint{5.125608in}{1.273176in}}% +\pgfpathlineto{\pgfqpoint{5.156329in}{1.316305in}}% +\pgfpathlineto{\pgfqpoint{5.192170in}{1.372195in}}% +\pgfpathlineto{\pgfqpoint{5.233131in}{1.441903in}}% +\pgfpathlineto{\pgfqpoint{5.289452in}{1.544396in}}% +\pgfpathlineto{\pgfqpoint{5.412335in}{1.770126in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.772815in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.772815in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{0.750000in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.400000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{0.500000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{3.520000in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.515451in}{2.185746in}}% +\pgfpathlineto{\pgfqpoint{5.302778in}{2.185746in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.330556in}{2.185746in}}{\pgfqpoint{5.330556in}{2.213523in}}% +\pgfpathlineto{\pgfqpoint{5.330556in}{3.422778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.330556in}{3.450556in}}{\pgfqpoint{5.302778in}{3.450556in}}% +\pgfpathlineto{\pgfqpoint{4.515451in}{3.450556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.487674in}{3.450556in}}{\pgfqpoint{4.487674in}{3.422778in}}% +\pgfpathlineto{\pgfqpoint{4.487674in}{2.213523in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.487674in}{2.185746in}}{\pgfqpoint{4.515451in}{2.185746in}}% +\pgfpathlineto{\pgfqpoint{4.515451in}{2.185746in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.543229in}{3.338088in}}% +\pgfpathlineto{\pgfqpoint{4.682118in}{3.338088in}}% +\pgfpathlineto{\pgfqpoint{4.821007in}{3.338088in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.932118in,y=3.289477in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont n=-2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.543229in}{3.134231in}}% +\pgfpathlineto{\pgfqpoint{4.682118in}{3.134231in}}% +\pgfpathlineto{\pgfqpoint{4.821007in}{3.134231in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.932118in,y=3.085620in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont n=-1}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.543229in}{2.930374in}}% +\pgfpathlineto{\pgfqpoint{4.682118in}{2.930374in}}% +\pgfpathlineto{\pgfqpoint{4.821007in}{2.930374in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.932118in,y=2.881762in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont n=0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.543229in}{2.726516in}}% +\pgfpathlineto{\pgfqpoint{4.682118in}{2.726516in}}% +\pgfpathlineto{\pgfqpoint{4.821007in}{2.726516in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.932118in,y=2.677905in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont n=1}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.543229in}{2.522659in}}% +\pgfpathlineto{\pgfqpoint{4.682118in}{2.522659in}}% +\pgfpathlineto{\pgfqpoint{4.821007in}{2.522659in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.932118in,y=2.474048in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont n=2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.543229in}{2.318802in}}% +\pgfpathlineto{\pgfqpoint{4.682118in}{2.318802in}}% +\pgfpathlineto{\pgfqpoint{4.821007in}{2.318802in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.932118in,y=2.270191in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont n=3}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/fm/Quellen/A2-14.pdf b/buch/papers/fm/Quellen/A2-14.pdf Binary files differnew file mode 100644 index 0000000..7348cca --- /dev/null +++ b/buch/papers/fm/Quellen/A2-14.pdf diff --git a/buch/papers/fm/Quellen/FM_presentation.pdf b/buch/papers/fm/Quellen/FM_presentation.pdf Binary files differnew file mode 100644 index 0000000..496e35e --- /dev/null +++ b/buch/papers/fm/Quellen/FM_presentation.pdf diff --git a/buch/papers/fm/Quellen/Frequency modulation (FM) and Bessel functions.pdf b/buch/papers/fm/Quellen/Frequency modulation (FM) and Bessel functions.pdf Binary files differnew file mode 100644 index 0000000..a6e701c --- /dev/null +++ b/buch/papers/fm/Quellen/Frequency modulation (FM) and Bessel functions.pdf diff --git a/buch/papers/fm/Quellen/Seydel2022_Book_HöhereMathematikImAlltag.pdf b/buch/papers/fm/Quellen/Seydel2022_Book_HöhereMathematikImAlltag.pdf Binary files differnew file mode 100644 index 0000000..2a0bddd --- /dev/null +++ b/buch/papers/fm/Quellen/Seydel2022_Book_HöhereMathematikImAlltag.pdf diff --git a/buch/papers/fm/main.tex b/buch/papers/fm/main.tex index 1e75235..731f56f 100644 --- a/buch/papers/fm/main.tex +++ b/buch/papers/fm/main.tex @@ -1,36 +1,42 @@ +% !TeX root = ../../buch.tex % % main.tex -- Paper zum Thema <fm> % % (c) 2020 Hochschule Rapperswil -% -\chapter{Thema\label{chapter:fm}} -\lhead{Thema} +% + +\chapter{FM Bessel\label{chapter:fm}} +\lhead{FM} \begin{refsection} -\chapterauthor{Hans Muster} - -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} - -\input{papers/fm/teil0.tex} -\input{papers/fm/teil1.tex} -\input{papers/fm/teil2.tex} -\input{papers/fm/teil3.tex} + +\chapterauthor{Joshua Bär} + +Die Frequenzmodulation ist eine Modulation die man auch schon im alten Radio findet. +Falls du dich an die Zeit erinnerst, konnte man zwischen \textit{FM-AM} Umschalten, +dies bedeutete so viel wie: \textit{F}requenz-\textit{M}odulation und \textit{A}mplituden-\textit{M}odulation. +Durch die Modulation wird ein Nachrichtensignal \(m(t)\) auf ein Trägersignal (z.B. ein Sinus- oder Rechtecksignal) abgebildet (kombiniert). +Durch dieses Auftragen vom Nachrichtensignal \(m(t)\) kann das modulierte Signal in einem gewünschten Frequenzbereich übertragen werden. +Der ursprünglich Frequenzbereich des Nachrichtensignal \(m(t)\) erstreckt sich typischerweise von 0 Hz bis zur Bandbreite \(B_m\). +\newline +Beim Empfänger wird dann durch Demodulation das ursprüngliche Nachrichtensignal \(m(t)\) so originalgetreu wie möglich zurückgewonnen. +\newline +Beim Trägersignal \(x_c(t)\) handelt es sich um ein informationsloses Hilfssignal. +Durch die Modulation mit dem Nachrichtensignal \(m(t)\) wird es zum modulierten zu übertragenden Signal. +Für alle Erklärungen wird ein sinusförmiges Trägersignal benutzt, jedoch kann auch ein Rechtecksignal, +welches Digital einfach umzusetzten ist, +genauso als Trägersignal genutzt werden kann. +Zuerst wird erklärt was \textit{FM-AM} ist, danach wie sich diese im Frequenzspektrum verhalten. +Erst dann erklär ich dir wie die Besselfunktion mit der Frequenzmodulation( acro?) zusammenhängt. +Nun zur Modulation im nächsten Abschnitt.\cite{fm:NAT} + + +\input{papers/fm/00_modulation.tex} +\input{papers/fm/01_AM.tex} +\input{papers/fm/02_FM.tex} +\input{papers/fm/03_bessel.tex} +\input{papers/fm/04_fazit.tex} \printbibliography[heading=subbibliography] \end{refsection} + + diff --git a/buch/papers/fm/packages.tex b/buch/papers/fm/packages.tex index 4cba2b6..7bbbe35 100644 --- a/buch/papers/fm/packages.tex +++ b/buch/papers/fm/packages.tex @@ -7,4 +7,5 @@ % if your paper needs special packages, add package commands as in the % following example %\usepackage{packagename} - +\usepackage{xcolor} +\usepackage{pgf} diff --git a/buch/papers/fm/references.bib b/buch/papers/fm/references.bib index 76eb265..21b910b 100644 --- a/buch/papers/fm/references.bib +++ b/buch/papers/fm/references.bib @@ -23,6 +23,17 @@ volume = {2} } +@book{fm:NAT, + title = {Nachrichtentechnik 1 + 2}, + author = {Thomas Kneubühler}, + publisher = {None}, + year = {2021}, + isbn = {}, + inseries = {Script for students}, + volume = {} +} + + @article{fm:mendezmueller, author = { Tabea Méndez and Andreas Müller }, title = { Noncommutative harmonic analysis and image registration }, diff --git a/buch/papers/fm/standalone.tex b/buch/papers/fm/standalone.tex new file mode 100644 index 0000000..c161ed5 --- /dev/null +++ b/buch/papers/fm/standalone.tex @@ -0,0 +1,31 @@ +\documentclass{book} + +\def\IncludeBookCover{0} +\input{common/packages.tex} + +% additional packages used by the individual papers, add a line for +% each paper +\input{papers/common/addpackages.tex} + +% workaround for biblatex bug +\makeatletter +\def\blx@maxline{77} +\makeatother +\addbibresource{chapters/references.bib} + +% Bibresources for each article +\input{papers/common/addbibresources.tex} + +% make sure the last index starts on an odd page +\AtEndDocument{\clearpage\ifodd\value{page}\else\null\clearpage\fi} +\makeindex + +%\pgfplotsset{compat=1.12} +\setlength{\headheight}{15pt} % fix headheight warning +\DeclareGraphicsRule{*}{mps}{*}{} + +\begin{document} + \input{common/macros.tex} + \def\chapterauthor#1{{\large #1}\bigskip\bigskip} + \input{papers/fm/main.tex} +\end{document} diff --git a/buch/papers/fm/teil0.tex b/buch/papers/fm/teil0.tex deleted file mode 100644 index 55697df..0000000 --- a/buch/papers/fm/teil0.tex +++ /dev/null @@ -1,22 +0,0 @@ -% -% einleitung.tex -- Beispiel-File für die Einleitung -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 0\label{fm:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{fm:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. - -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. - - diff --git a/buch/papers/fm/teil1.tex b/buch/papers/fm/teil1.tex deleted file mode 100644 index 6f9edf1..0000000 --- a/buch/papers/fm/teil1.tex +++ /dev/null @@ -1,55 +0,0 @@ -% -% teil1.tex -- Beispiel-File für das Paper -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 1 -\label{fm:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{fm:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{fm:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{fm:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{fm:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. - - diff --git a/buch/papers/fm/teil2.tex b/buch/papers/fm/teil2.tex deleted file mode 100644 index 6ab6fa0..0000000 --- a/buch/papers/fm/teil2.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil2.tex -- Beispiel-File für teil2 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 2 -\label{fm:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{fm:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/fm/teil3.tex b/buch/papers/fm/teil3.tex deleted file mode 100644 index 3bcfc4d..0000000 --- a/buch/papers/fm/teil3.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil3.tex -- Beispiel-File für Teil 3 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 3 -\label{fm:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{fm:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - |