aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kreismembran/teil2.tex
diff options
context:
space:
mode:
authorAndrea Mozzini Vellen <amozzinivellen@gmail.com>2022-05-18 13:55:56 +0200
committerAndrea Mozzini Vellen <amozzinivellen@gmail.com>2022-05-18 13:55:56 +0200
commit955047b8a63a3b08b27d9203030e2b5193e21dab (patch)
tree8dace2e57fa79082af1292c3f7c1b201cbb60800 /buch/papers/kreismembran/teil2.tex
parentIntro chapters (diff)
downloadSeminarSpezielleFunktionen-955047b8a63a3b08b27d9203030e2b5193e21dab.tar.gz
SeminarSpezielleFunktionen-955047b8a63a3b08b27d9203030e2b5193e21dab.zip
Ersten Entwurf
Diffstat (limited to 'buch/papers/kreismembran/teil2.tex')
-rw-r--r--buch/papers/kreismembran/teil2.tex128
1 files changed, 96 insertions, 32 deletions
diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex
index 45357f2..8afe817 100644
--- a/buch/papers/kreismembran/teil2.tex
+++ b/buch/papers/kreismembran/teil2.tex
@@ -2,48 +2,112 @@
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Lösung der partiellen Differentialgleichung
- \label{kreismembran:section:teil2}}
-\rhead{Lösung der partiellen Differentialgleichung}
+\section{Die Hankel Transformation \label{kreismembran:section:teil2}}
+\rhead{Die Hankel Transformation}
+
+Hermann Hankel (1839-1873) war ein deutscher Mathematiker, der für seinen Beitrag zur mathematischen Analyse und insbesondere für seine namensgebende Transformation bekannt ist.
+Diese Transformation tritt bei der Untersuchung von funktionen auf, die nur von der Enternung des Ursprungs abhängen.
+Er studierte auch funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art.
+Die Hankel Transformation mit Bessel Funktionen al Kern taucht natürlich bei achsensymmetrischen Problemen auf, die in Zylindrischen Polarkoordinaten formuliert sind.
+In diesem Kapitel werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert.
+
+
+Wir führen die Definition der Hankel Transformation aus der zweidimensionalen Fourier Transformation und ihrer Umkehrung ein, die durch:
+\begin{align}
+ \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) dx dy,\label{equation:fourier_transform}\\
+ \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r}))}F(k,l) dx dy \label{equation:inv_fourier_transform}
+\end{align}
+wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Wie bereits erwähnt, sind Polarkoordinaten für diese Art von Problemen am besten geeignet, also mit, $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$, findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach:
+\begin{align}
+ F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}r dr \int_{0}^{2\pi}e^{-ikr\cos(\theta-\phi)}f(r,\theta) d\phi.
+ \label{equation:F_ohne_variable_wechsel}
+\end{align}
+Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, und es wird eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren:
+\begin{align}
+ F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}rf(r) dr \int_{\phi_{0}}^{2\pi+\phi_{0}}e^{in(\phi-\frac{\pi}{2})+i(n\alpha-kr\sin\alpha)} d\alpha,
+ \label{equation:F_ohne_bessel}
+\end{align}
+wo $\phi_{0}=(\frac{\pi}{2}-\phi)$.
+
+Unter Verwendung der Integral Darstellung der Besselfunktion vom Ordnung n
+\begin{align}
+ J_n(\kappa r)=\frac{1}{2\pi}\int_{\phi_{0}}^{2\pi + \phi_{0}}e^{i(n\alpha-\kappa r \sin \alpha)} d\alpha
+ \label{equation:bessel_n_ordnung}
+\end{align}
+\eqref{equation:F_ohne_bessel} wird sie zu:
+\begin{align}
+ F(k,\phi)&=e^{in(\phi-\frac{\pi}{2})}\int_{0}^{\infty}rJ_n(\kappa r) f(r) dr \label{equation:F_mit_bessel_step_1} \\
+ &=e^{in(\phi-\frac{\pi}{2})}\tilde{f}_n(\kappa),
+ \label{equation:F_mit_bessel_step_2}
+\end{align}
+wo $\tilde{f}_n(\kappa)$ ist die \textit{Hankel Transformation} von $f(r)$ und ist formell definiert durch:
+\begin{align}
+ \mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)=\int_{0}^{\infty}rJ_n(\kappa r) f(r) dr.
+ \label{equation:hankel}
+\end{align}
+
+Ähnlich verhält es sich mit der inversen Fourier Transformation in Form von polaren Koordinaten unter der Annahme $f(r,\theta)=e^{in\theta}f(r)$ mit \eqref{equation:F_mit_bessel_step_2}, wird die inverse Fourier Transformation \eqref{equation:inv_fourier_transform}:
+
+\begin{align}
+ e^{in\theta}f(r)&=\frac{1}{2\pi}\int_{0}^{\infty}\kappa d\kappa \int_{0}^{2\pi}e^{i\kappa r \cos (\theta - \phi)}F(\kappa,\phi) d\phi\\
+ &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) d\kappa \int_{0}^{2\pi}e^{in(\phi - \frac{\pi}{2})- i\kappa r \cos (\theta - \phi)} d\phi,
+\end{align}
+was durch den Wechsel der Variablen $\theta-\phi=-(\alpha+\frac{\pi}{2})$ und $\theta_0=-(\theta+\frac{\pi}{2})$,
+
+\begin{align}
+ &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) d\kappa \int_{\theta_0}^{2\pi+\theta_0}e^{in(\theta + \alpha - i\kappa r \sin\alpha)} d\alpha \nonumber \\
+ &= e^{in\theta}\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) d\kappa,\quad \text{von \eqref{equation:bessel_n_ordnung}}
+\end{align}
+
+Also, die inverse \textit{Hankel Transformation} ist so definiert:
+\begin{align}
+ \mathscr{H}^{-1}_n\{\tilde{f}_n(\kappa)\}=f(r)=\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) d\kappa.
+ \label{equation:inv_hankel}
+\end{align}
+
+Anstelle von $\tilde{f}_n(\kappa)$, wird häufig für die Hankel Transformation verwendet, indem die Ordnung angegeben wird.
+\eqref{equation:hankel} und \eqref{equation:inv_hankel} Integralen existieren für eine grosse Klasse von Funktionen, die normalerweise in physikalischen Anwendungen benötigt werden.
+Alternativ kann auch die berühmte Hankel Transformationsformel verwendet werden,
+
+\begin{align}
+ f(r) = \int_{0}^{\infty}\kappa J_n(\kappa r) d\kappa \int_{0}^{\infty} p J_n(\kappa p)f(p) dp,
+ \label{equation:hankel_integral_formula}
+\end{align}
+um die Hankel Transformation \eqref{equation:hankel} und ihre Inverse \eqref{equation:inv_hankel} zu definieren.
+Insbesondere die Hankel Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden.
+
+\subsection{Operative Eigenschaften der Hankel Transformation\label{sub:op_properties_hankel}}
+In diesem Kapitel werden die operativen Eigenschaften der Hankel Transformation aufgeführt. Der Beweis für ihre Gültigkeit wird jedoch nicht analysiert.
+
+\subsubsection{Theorem 1: Skalierung \label{subsub:skalierung}}
+Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann:
-Wie im vorherigen Kapitel gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt:
\begin{equation*}
- \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u
+ \mathscr{H}_n\{f(ar)\}=\frac{1}{a^{2}}\tilde{f}_n \left(\frac{\kappa}{a}\right), \quad a>0.
\end{equation*}
-Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so dass sich der Laplaceoperator ergibt:
+
+\subsubsection{Theorem 2: Persevalsche Relation \label{subsub:perseval}}
+Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann:
+
\begin{equation*}
- \Delta
- =
- \frac{\partial^2}{\partial r^2}
- +
- \frac1r
- \frac{\partial}{\partial r}
- +
- \frac{1}{r 2}
- \frac{\partial^2}{\partial\varphi^2}.
- \label{buch:pde:kreis:laplace}
+ \int_{0}^{\infty}rf(r) dr = \int_{0}^{\infty}\kappa\tilde{f}(\kappa)\tilde{g}(\kappa) d\kappa.
\end{equation*}
-Es wird eine runde elastische Membran berücksichtigt, die den Gebietbereich $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist.
-Es wird daher davon ausgegangen, dass die Membran aus einem homogenen Material von vernachlässigbarer Dicke gefertigt ist.
-Die Membran kann verformt werden, aber innere elastische Kräfte wirken den Verformungen entgegen. Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eigespannten homogenen schwingenden Membran.
+\subsubsection{Theorem 3: Hankel Transformationen von Ableitungen \label{subsub:ableitungen}}
+Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann:
-Daher ist die Membranabweichung im Punkt $(r,\theta)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$:
\begin{align*}
- u: \overline{\rm \Omega} \times \mathbb{R}_{\geq 0} &\longrightarrow \mathbb{R}\\
- (r,\theta,t) &\longmapsto u(r,\theta,t)
+ &\mathscr{H}_n\{f'(r)\}=\frac{\kappa}{2n}\left[(n-1)\tilde{f}_{n+1}(\kappa)-(n+1)\tilde{f}_{n-1}(\kappa)\right], \quad n\geq1, \\
+ &\mathscr{H}_1\{f'(r)\}=-\kappa \tilde{f}_0(\kappa),
\end{align*}
-Da die Membran am Rand befestigt ist, kann es keine Schwingungen geben, so dass die \textit{Dirichlet-Randbedingung} gilt:
-\begin{equation*}
- u\big|_{\Gamma} = 0
-\end{equation*}
+bereitgestellt dass $[rf(r)]$ verschwindet als $r\to0$ und $r\to\infty$.
+\subsubsection{Theorem 4 \label{subsub:thorem4}}
+Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann:
-Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt:
+\begin{equation*}
+ \mathscr{H}_n \left\{ \left( \nabla^2 - \frac{n^2}{r^2} f(r)\right)\right\}= \mathscr{H}_n\left\{\frac{1}{r}\frac{d}{dr}\left(r\frac{df}{dr}\right) - \frac{n^2}{r^2}f(r)\right\}=-\kappa^2\tilde{f}_{n}(\kappa),
+\end{equation*}
+bereitgestellt dass $rf'(r)$ und $rf(r)$ verschwinden als $r\to0$ und $r\to\infty$.
-\begin{align*}
- u(r,\theta, 0) &:= f(x,y)\\
- \frac{\partial}{\partial t} u(r,\theta, 0) &:= g(x,y)
-\end{align*}
-An dieser Stelle könnte man zum Beispiel die bereits in Kapitel (TODO:refKAPITEL) vorgestellte Methode der Separation anwenden. Da es sich in diesem Fall jedoch um einem achsensymmetrischen Problem handelt, das in Polarkoordinaten formuliert ist, wird man die Transformationsmethode verwenden, insbesondere die Hankel Transformation.