aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kreismembran
diff options
context:
space:
mode:
authorAndrea Mozzini Vellen <amozzinivellen@gmail.com>2022-08-02 14:51:41 +0200
committerAndrea Mozzini Vellen <amozzinivellen@gmail.com>2022-08-02 14:51:41 +0200
commit3ccdc3ec4dcc7d33b16fc1469b0c95c0e8def66d (patch)
tree560baf1c37fb4c968b2d99408396b3fee0e09c61 /buch/papers/kreismembran
parentnumerik continues (diff)
downloadSeminarSpezielleFunktionen-3ccdc3ec4dcc7d33b16fc1469b0c95c0e8def66d.tar.gz
SeminarSpezielleFunktionen-3ccdc3ec4dcc7d33b16fc1469b0c95c0e8def66d.zip
änderungen 02.08.2022 andrea
Diffstat (limited to 'buch/papers/kreismembran')
-rw-r--r--buch/papers/kreismembran/teil1.tex54
-rw-r--r--buch/papers/kreismembran/teil2.tex45
-rw-r--r--buch/papers/kreismembran/teil3.tex8
3 files changed, 49 insertions, 58 deletions
diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex
index 39ca598..377ba48 100644
--- a/buch/papers/kreismembran/teil1.tex
+++ b/buch/papers/kreismembran/teil1.tex
@@ -30,37 +30,33 @@ Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so d
ergibt.
Es wird eine runde elastische Membran berücksichtigt, die das Gebiet $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist.
-Es wird daher davon ausgegangen, dass die Membran aus einem homogenen Material von vernachlässigbarer Dicke gefertigt ist.
-Die Membran kann verformt werden, aber innere elastische Kräfte wirken den Verformungen entgegen. Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran.
+Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran.
Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$:
\begin{align*}
u: \overline{\rm \Omega} \times \mathbb{R}_{\geq 0} &\longrightarrow \mathbb{R}\\
(r,\varphi,t) &\longmapsto u(r,\varphi,t)
\end{align*}
-Da die Membran am Rand befestigt ist, kann es keine Schwingungen geben, so dass die \textit{Dirichlet-Randbedingung} \cite{prof_dr_horst_knorrer_kreisformige_2013}
-\begin{equation*}
- u\big|_{\Gamma} = 0 \quad \text{für} \quad 0 \leq \varphi \leq 2\pi,\quad t \geq 0
-\end{equation*}
-gilt.
+Um die Vergleichbarkeit der beiden nachfolgend vorgestellten Lösungsverfahren in Abschnitt \ref{kreismembran:vergleich} zu vereinfachen, werden keine Randbedingungen vorgegeben.
-Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt:
+Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt zur zeit $t = \text{0}$:
\begin{align*}
u(r,\varphi, 0) &= f(r,\varphi)\\
u_t(r,\varphi, 0) &= g(r,\varphi).
\end{align*}
\subsection{Lösung\label{sub:lösung1}}
+Nun wird das in Abschnitt \ref{sub:aufgabestellung} vorgestellte Problem mit Hilfe der varibalen Trennungsmethode gelöst.
\subsubsection{Ansatz der Separation der Variablen\label{subsub:ansatz_separation}}
-Daher muss an dieser Stelle von einer Separation der Variablen ausgegangen werden:
+Bezug muss an dieser Stelle von einer Separation der Variablen ausgegangen werden:
\begin{equation*}
u(r,\varphi, t) = F(r)G(\varphi)T(t)
\end{equation*}
-Dank der Randbedingungen kann also gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetzt in der Differenzialgleichung ergibt sich:
+Dank der Randbedingungen kann gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetzt in der Differenzialgleichung ergibt sich:
\begin{equation*}
- \frac{1}{c^2}\frac{T''(t)}{T(t)}=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}.
+ \frac{1}{c^2}\frac{T''(t)}{T(t)}=-\kappa^2=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}.
\end{equation*}
-Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Gründen suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $k=-k^2$. Daraus ergeben sich die folgenden zwei Gleichungen:
+Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Gründen suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $-\kappa^2$. Daraus ergeben sich die folgenden zwei Gleichungen:
\begin{align*}
T''(t) + c^2\kappa^2T(t) &= 0\\
r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 &= - \frac{G''(\varphi)}{G(\varphi)}.
@@ -72,14 +68,14 @@ In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rec
\end{align*}
\subsubsection{Lösung für $G(\varphi)$\label{subsub:lösung_G}}
-Da für die Zweite Gelichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt die gemeinsame Konstante als $-\nu^2$, was die Formeln später vereinfacht. Also:
+Da für die zweite Gleichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt man die gemeinsame Konstante als $\nu=-\omega^2$, was die Formeln später vereinfacht. Also:
\begin{equation*}
G(\varphi) = C_n \cos(\varphi) + D_n \sin(\varphi)
\label{eq:cos_sin_überlagerung}
\end{equation*}
\subsubsection{Lösung für $F(r)$\label{subsub:lösung_F}}
-Die Gleichung für $F$ hat die Gestalt
+Die Gleichung für $F$ hat die Gestalt (verweis auf \ref{buch:differentialgleichungen:bessel-operator})
\begin{align}
r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0
\label{eq:2nd_degree_PDE}
@@ -90,19 +86,9 @@ Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt,
\end{equation*}
Lösungen der Besselschen Differenzialgleichung
\begin{equation*}
- x^2 y'' + xy' + (x^2 - \nu^2)y = 0
-\end{equation*}
-Die Funktionen $F(r) = J_n(\kappa r)$ lösen also die Differentialgleichung \eqref{eq:2nd_degree_PDE}. Die
-Randbedingung $F(R)=0$ impliziert, dass $\kappa R$ eine Nullstelle der Besselfunktion
-$J_n$ sein muss. Man kann zeigen, dass die Besselfunktionen $J_n, n \geq 0$, alle unendlich
-viele Nullstellen
-\begin{equation*}
- \alpha_{1n} < \alpha_{2n} < ...
-\end{equation*}
-haben, und dass $\underset{\substack{m\to\infty}}{\text{lim}} \alpha_{mn}=\infty$. Somit ergibt sich, dass $\kappa = \frac{\alpha_{mn}}{R}$ für ein $m\geq 1$, und dass
-\begin{equation*}
- F(r) = J_n (\kappa_{mn}r) \quad \text{mit} \quad \kappa_{mn}=\frac{\alpha_{mn}}{R}
+ x^2 y'' + xy' + (\kappa^2 - \nu^2)y = 0
\end{equation*}
+Die Funktionen $F(r) = J_n(\kappa r)$ lösen die Differentialgleichung \eqref{eq:2nd_degree_PDE}.
\subsubsection{Lösung für $T(t)$\label{subsub:lösung_T}}
Die Differenzialgleichung $T''(t) + c^2\kappa^2T(t) = 0$, wird auf ähnliche Weise gelöst wie $G(\varphi)$.
@@ -115,7 +101,21 @@ Durch Überlagerung aller Ergebnisse erhält man die Lösung
\end{align}
Dabei sind $m$ und $n$ ganze Zahlen, wobei $m$ für die Anzahl der Knotenkreise und $n$
-für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten.
+für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie; siehe Abbildung \ref{buch:pde:kreis:fig:pauke}. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten.
+
+\begin{figure}
+ \centering
+ \includegraphics[width=\textwidth]{chapters/090-pde/bessel/pauke.pdf}
+ %\includegraphics{chapters/090-pde/bessel/pauke.pdf}
+ \caption{Vorzeichen der Lösungsfunktionen und Knotenlinien
+ für verschiedene Werte von $\mu$ und $k$.
+ Die Bereiche, in denen die Lösungsfunktion positiv sind, ist
+ rot dargestellt, die negativen Bereiche blau.
+ In jeder Darstellung gibt es genau $k+\mu$ Knotenlinien.
+ Die Radien der kreisförmigen Knotenlinien müssen aus den Nullstellen
+ der Besselfunktionen berechnet werden.
+ \label{buch:pde:kreis:fig:pauke}}
+\end{figure}
An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche wurde festgestellt, dass die beste Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist.
diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex
index 6efda49..4fb139c 100644
--- a/buch/papers/kreismembran/teil2.tex
+++ b/buch/papers/kreismembran/teil2.tex
@@ -11,30 +11,30 @@ Er studierte auch Funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der
Die Hankel-Transformation, die die Bessel-Funktion enthält, taucht natürlich bei achsensymmetrischen Problemen auf, die in zylindrischen Polarkoordinaten formuliert sind.
In diesem Abschnitt werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert.
-\subsubsection{Hankel-Transformation \label{subsub:hankel_tansformation}}
+\subsubsection{Definition der Hankel-Transformation \label{subsub:hankel_tansformation}}
Wir führen die Definition der Hankel-Transformation \cite{lokenath_debnath_integral_2015} aus der zweidimensionalen Fourier-Transformation und ihrer Umkehrung ein, die durch:
\begin{align}
- \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) \; dx dy,\label{equation:fourier_transform}\\
- \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r}))}F(k,l) \; dx dy \label{equation:inv_fourier_transform}
+ \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) \; dx \; dy,\label{equation:fourier_transform}\\
+ \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r})}F(k,l) \; dx \; dy \label{equation:inv_fourier_transform}
\end{align}
-wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problemen am besten geeignet, mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach:
+wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problem am besten geeignet, mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach:
\begin{align}
F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}r \; dr \int_{0}^{2\pi}e^{-ikr\cos(\theta-\phi)}f(r,\theta) \; d\phi.
\label{equation:F_ohne_variable_wechsel}
\end{align}
-Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, und es wird eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren:
+Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, weil die \textit{Fourier-Theorie} besagt, dass sich jede Funktion durch Überlagerung solcher Terme darstellen lässt. Es wird auch eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren:
\begin{align}
F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}rf(r) \; dr \int_{\phi_{0}}^{2\pi+\phi_{0}}e^{in(\phi-\frac{\pi}{2})+i(n\alpha-kr\sin\alpha)} \; d\alpha,
\label{equation:F_ohne_bessel}
\end{align}
wo $\phi_{0}=(\frac{\pi}{2}-\phi)$.
-Unter Verwendung der Integraldarstellung der Besselfunktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung}
+Unter Verwendung der Integraldarstellung
\begin{equation*}
J_n(\kappa r)=\frac{1}{2\pi}\int_{\phi_{0}}^{2\pi + \phi_{0}}e^{i(n\alpha-\kappa r \sin \alpha)} \; d\alpha
\label{equation:bessel_n_ordnung}
\end{equation*}
-\eqref{equation:F_ohne_bessel} wird sie zu:
+ der Besselfunktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung} wird \eqref{equation:F_ohne_bessel} zu:
\begin{align}
F(k,\phi)&=e^{in(\phi-\frac{\pi}{2})}\int_{0}^{\infty}rJ_n(\kappa r) f(r) \; dr \nonumber \\
&=e^{in(\phi-\frac{\pi}{2})}\tilde{f}_n(\kappa),
@@ -47,37 +47,28 @@ wo $\tilde{f}_n(\kappa)$ ist die \textit{Hankel-Transformation} von $f(r)$ und i
\end{align}
\subsubsection{Inverse Hankel-Transformation \label{subsub:inverse_hankel_tansformation}}
-Ähnlich verhält es sich mit der inversen Fourier Transformation in Form von polaren Koordinaten unter der Annahme $f(r,\theta)=e^{in\theta}f(r)$ mit \eqref{equation:F_mit_bessel_step_2}, wird die inverse Fourier Transformation \eqref{equation:inv_fourier_transform}:
+Wie bei der Entwicklung der Hankel-Transformation können auch für die Umkehrformel Analogien zur Fourier-Transformation hergestellt werden. Vergleicht man die beiden Transformationen, so stellt man fest, dass sie sehr ähnlich sind, wenn man den Term $J_n(\kappa r)$ der Hankel-Transformation durch $e^{-i( \bm{\kappa}\cdot \mathbf{r})}$ der Fourier-Transformation ersetzt. Diese beide Funktionen sind orthogonal, und bei orthogonalen Matrizen genügt bekanntlich die Transponierung, um sie zu invertieren. Da das Skalarprodukt der Bessel-Funktionen jedoch nicht dasselbe ist wie das der Exponentialfunktionen, muss man durch $\kappa\; d\kappa$ statt nur durch $d\kappa$ integrieren, um die Umkehrfunktion zu erhalten.
-\begin{align*}
- e^{in\theta}f(r)&=\frac{1}{2\pi}\int_{0}^{\infty}\kappa \; d\kappa \int_{0}^{2\pi}e^{i\kappa r \cos (\theta - \phi)}F(\kappa,\phi) \; d\phi \\
- &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) \; d\kappa \int_{0}^{2\pi}e^{in(\phi - \frac{\pi}{2})- i\kappa r \cos (\theta - \phi)} \; d\phi,
-\end{align*}
-was durch den Wechsel der Variablen $\theta-\phi=-(\alpha+\frac{\pi}{2})$ und $\theta_0=-(\theta+\frac{\pi}{2})$,
-
-\begin{align*}
- &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) \; d\kappa \int_{\theta_0}^{2\pi+\theta_0}e^{in(\theta + \alpha - i\kappa r \sin\alpha)} \; d\alpha \\
- &= e^{in\theta}\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) \; d\kappa,
-\end{align*}
-
-von \eqref{equation:bessel_n_ordnung} also ist, die inverse \textit{Hankel-Transformation} so definiert:
+Von \eqref{equation:hankel} also ist, die inverse \textit{Hankel-Transformation} so definiert:
\begin{align}
\mathscr{H}^{-1}_n\{\tilde{f}_n(\kappa)\}=f(r)=\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) \; d\kappa.
\label{equation:inv_hankel}
\end{align}
-Anstelle von $\tilde{f}_n(\kappa)$, wird häufig für die Hankel-Transformation verwendet, indem die Ordnung angegeben wird.
-\eqref{equation:hankel} und \eqref{equation:inv_hankel} Integralen existieren für eine grosse Klasse von Funktionen, die normalerweise in physikalischen Anwendungen benötigt werden.
-Alternativ kann auch die berühmte Hankel-Transformationsformel verwendet werden,
+Anstelle von $\tilde{f}_n(\kappa)$, wird häufig einfach $\tilde{f}(\kappa)$ für die Hankel-Transformation verwendet, indem die Ordnung angegeben wird.
+Die Integrale \eqref{equation:hankel} und \eqref{equation:inv_hankel} existieren für bestimmte grosse Klassen von Funktionen, die normalerweise in physikalischen Anwendungen vorkommen.
+
+Alternativ dazu kann die berühmte Hankel-Integralformel
\begin{align*}
f(r) = \int_{0}^{\infty}\kappa J_n(\kappa r) \; d\kappa \int_{0}^{\infty} p J_n(\kappa p)f(p) \; dp,
\label{equation:hankel_integral_formula}
\end{align*}
-um die Hankel-Transformation \eqref{equation:hankel} und ihre Inverse \eqref{equation:inv_hankel} zu definieren.
+verwendet werden, um die Hankel-Transformation \eqref{equation:hankel} und ihre Umkehrung \eqref{equation:inv_hankel} zu definieren.
+
Insbesondere die Hankel-Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden.
-\subsection{Operative Eigenschaften der Hankel-Transformation\label{sub:op_properties_hankel}}
+\subsection{Operatoreigenschaften der Hankel-Transformation \label{sub:op_properties_hankel}}
In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Der Beweis für ihre Gültigkeit wird jedoch nicht analysiert.
\begin{satz}{Skalierung:}
@@ -88,7 +79,7 @@ In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation
\end{equation*}
\end{satz}
-\begin{satz}{Persevalsche Relation (Skalarprodukt bleibt erhalten):}
+\begin{satz}{Parsevalsche Relation:}
Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann:
\begin{equation*}
@@ -103,7 +94,7 @@ Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann:
&\mathscr{H}_n\{f'(r)\}=\frac{\kappa}{2n}\left[(n-1)\tilde{f}_{n+1}(\kappa)-(n+1)\tilde{f}_{n-1}(\kappa)\right], \quad n\geq1, \\
&\mathscr{H}_1\{f'(r)\}=-\kappa \tilde{f}_0(\kappa),
\end{align*}
-bereitgestellt dass $[rf(r)]$ verschwindet als $r\to0$ und $r\to\infty$.
+vorausgesetzt dass $[rf(r)]$ verschwindet wenn $r\to0$ und $r\to\infty$.
\end{satz}
\begin{satz}
diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex
index 7d5648a..014b6e6 100644
--- a/buch/papers/kreismembran/teil3.tex
+++ b/buch/papers/kreismembran/teil3.tex
@@ -40,7 +40,7 @@ bekommt man:
\tilde{u}(\kappa,0)=\tilde{f}(\kappa), \quad
\tilde{u}_t(\kappa,0)=\tilde{g}(\kappa).
\end{equation*}
-Die allgemeine Lösung für diese Transformation lautet, wie in Gleighung \eqref{eq:cos_sin_überlagerung} gesehen, wie folgt
+Die allgemeine Lösung für diese Gleichung lautet, wie in Abschnitt \eqref{eq:cos_sin_überlagerung} gesehen, wie folgt
\begin{equation*}
\tilde{u}(\kappa,t)=\tilde{f}(\kappa)\cos(c\kappa t) + \frac{1}{c\kappa}\tilde{g}(\kappa)\sin(c\kappa t).
@@ -60,7 +60,7 @@ Es wird in Folgenden davon ausgegangen, dass sich die Membran verformt und zum Z
\end{equation*}
so dass $\tilde{g}(\kappa)\equiv 0$ und
\begin{equation*}
- \tilde{f}(\kappa)=Aa\int_{0}^{\infty}r(a^2 + r^2)^{-\frac{1}{2}} J_0 (\kappa r) \; dr=\frac{Aa}{\kappa}e^{-a\kappa}
+ \tilde{f}(\kappa)=Aa\int_{0}^{\infty}r(a^2 + r^2)^{-\frac{1}{2}} J_0 (\kappa r) \; dr=\frac{Aa}{\kappa}e^{-a\kappa}.
\end{equation*}
Die formale Lösung \eqref{eq:formale_lösung} lautet also
\begin{align*}
@@ -68,7 +68,7 @@ Die formale Lösung \eqref{eq:formale_lösung} lautet also
&=AaRe\left\{r^2+\left(a+ict\right)^2\right\}^{-\frac{1}{2}}
\end{align*}
-Nimmt man jedoch die allgemeine Lösung mit Summationen,
+Nimmt man jedoch die allgemeine Lösung durch Überlagerung,
\begin{align}
u(r, t) = \displaystyle\sum_{m=1}^{\infty} J_0 (k_{m}r)[a_{m}\cos(c \kappa_{m} t)+b_{m}\sin(c \kappa_{m} t)]
@@ -78,7 +78,7 @@ kann man die Lösungsmethoden 1 und 2 vergleichen.
\subsection{Vergleich der Analytischen Lösungen
\label{kreismembran:vergleich}}
-Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, und in einer unendlichen Membran gibt es keine. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist.
+Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, und in einer unendlichen Membran gibt es keine, dato che abbiamo assunto che la soluzione è rotationssymmetrisch. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist.
Die Funktion hängt also nicht mehr von der Besselfunktionen $n$-ter Ordnung ab, sondern nur von der $0$-ter Ordnung.