aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kugel/images/spherecurve.cpp
diff options
context:
space:
mode:
authorJoshua Baer <joshua.baer@ost.ch>2022-08-19 12:42:35 +0200
committerJoshua Baer <joshua.baer@ost.ch>2022-08-19 12:42:35 +0200
commit9333645ed4f17ff0e565fc68ee1a079a687cf93d (patch)
tree145840c7662b6017bc0dad7aa6cc536e4dcdb70b /buch/papers/kugel/images/spherecurve.cpp
parentanother parts added (diff)
parentMerge branch 'AndreasFMueller:master' into master (diff)
downloadSeminarSpezielleFunktionen-9333645ed4f17ff0e565fc68ee1a079a687cf93d.tar.gz
SeminarSpezielleFunktionen-9333645ed4f17ff0e565fc68ee1a079a687cf93d.zip
Merge branch 'master' of github.com:JODBaer/SeminarSpezielleFunktionen
Diffstat (limited to 'buch/papers/kugel/images/spherecurve.cpp')
-rw-r--r--buch/papers/kugel/images/spherecurve.cpp292
1 files changed, 0 insertions, 292 deletions
diff --git a/buch/papers/kugel/images/spherecurve.cpp b/buch/papers/kugel/images/spherecurve.cpp
deleted file mode 100644
index 8ddf5e5..0000000
--- a/buch/papers/kugel/images/spherecurve.cpp
+++ /dev/null
@@ -1,292 +0,0 @@
-/*
- * spherecurve.cpp
- *
- * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
- */
-#include <cstdio>
-#include <cstdlib>
-#include <cmath>
-#include <string>
-#include <iostream>
-
-inline double sqr(double x) { return x * x; }
-
-/**
- * \brief Class for 3d vectors (also used as colors)
- */
-class vector {
- double X[3];
-public:
- vector() { X[0] = X[1] = X[2] = 0; }
- vector(double a) { X[0] = X[1] = X[2] = a; }
- vector(double x, double y, double z) {
- X[0] = x; X[1] = y; X[2] = z;
- }
- vector(double theta, double phi) {
- double s = sin(theta);
- X[0] = cos(phi) * s;
- X[1] = sin(phi) * s;
- X[2] = cos(theta);
- }
- vector(const vector& other) {
- for (int i = 0; i < 3; i++) {
- X[i] = other.X[i];
- }
- }
- vector operator+(const vector& other) const {
- return vector(X[0] + other.X[0],
- X[1] + other.X[1],
- X[2] + other.X[2]);
- }
- vector operator*(double l) const {
- return vector(X[0] * l, X[1] * l, X[2] * l);
- }
- double operator*(const vector& other) const {
- double s = 0;
- for (int i = 0; i < 3; i++) {
- s += X[i] * other.X[i];
- }
- return s;
- }
- double norm() const {
- double s = 0;
- for (int i = 0; i < 3; i++) {
- s += sqr(X[i]);
- }
- return sqrt(s);
- }
- vector normalize() const {
- double l = norm();
- return vector(X[0]/l, X[1]/l, X[2]/l);
- }
- double max() const {
- return std::max(X[0], std::max(X[1], X[2]));
- }
- double l0norm() const {
- double l = 0;
- for (int i = 0; i < 3; i++) {
- if (fabs(X[i]) > l) {
- l = fabs(X[i]);
- }
- }
- return l;
- }
- vector l0normalize() const {
- double l = l0norm();
- vector result(X[0]/l, X[1]/l, X[2]/l);
- return result;
- }
- const double& operator[](int i) const { return X[i]; }
- double& operator[](int i) { return X[i]; }
-};
-
-/**
- * \brief Derived 3d vector class implementing color
- *
- * The constructor in this class converts a single value into a
- * color on a suitable gradient.
- */
-class color : public vector {
-public:
- static double utop;
- static double ubottom;
- static double green;
-public:
- color(double u) {
- u = (u - ubottom) / (utop - ubottom);
- if (u > 1) {
- u = 1;
- }
- if (u < 0) {
- u = 0;
- }
- u = pow(u,2);
- (*this)[0] = u;
- (*this)[1] = green * u * (1 - u);
- (*this)[2] = 1-u;
- double l = l0norm();
- for (int i = 0; i < 3; i++) {
- (*this)[i] /= l;
- }
- }
-};
-
-double color::utop = 12;
-double color::ubottom = -31;
-double color::green = 0.5;
-
-/**
- * \brief Surface model
- *
- * This class contains the definitions of the functions to plot
- * and the parameters to
- */
-class surfacefunction {
- static vector axes[6];
-
- double _a;
- double _A;
-
- double _umin;
- double _umax;
-public:
- double a() const { return _a; }
- double A() const { return _A; }
-
- double umin() const { return _umin; }
- double umax() const { return _umax; }
-
- surfacefunction(double a, double A) : _a(a), _A(A), _umin(0), _umax(0) {
- }
-
- double f(double z) {
- return A() * exp(a() * (sqr(z) - 1));
- }
-
- double g(double z) {
- return -f(z) * 2*a() * ((2*a()*sqr(z) + (3-2*a()))*sqr(z) - 1);
- }
-
- double F(const vector& v) {
- double s = 0;
- for (int i = 0; i < 6; i++) {
- s += f(axes[i] * v);
- }
- return s / 6;
- }
-
- double G(const vector& v) {
- double s = 0;
- for (int i = 0; i < 6; i++) {
- s += g(axes[i] * v);
- }
- return s / 6;
- }
-protected:
- color farbe(const vector& v) {
- double u = G(v);
- if (u < _umin) {
- _umin = u;
- }
- if (u > _umax) {
- _umax = u;
- }
- return color(u);
- }
-};
-
-static double phi = (1 + sqrt(5)) / 2;
-static double sl = sqrt(sqr(phi) + 1);
-vector surfacefunction::axes[6] = {
- vector( 0. , -1./sl, phi/sl ),
- vector( 0. , 1./sl, phi/sl ),
- vector( 1./sl, phi/sl, 0. ),
- vector( -1./sl, phi/sl, 0. ),
- vector( phi/sl, 0. , 1./sl ),
- vector( -phi/sl, 0. , 1./sl )
-};
-
-/**
- * \brief Class to construct the plot
- */
-class surface : public surfacefunction {
- FILE *outfile;
-
- int _phisteps;
- int _thetasteps;
- double _hphi;
- double _htheta;
-public:
- int phisteps() const { return _phisteps; }
- int thetasteps() const { return _thetasteps; }
- double hphi() const { return _hphi; }
- double htheta() const { return _htheta; }
- void phisteps(int s) { _phisteps = s; _hphi = 2 * M_PI / s; }
- void thetasteps(int s) { _thetasteps = s; _htheta = M_PI / s; }
-
- surface(const std::string& filename, double a, double A)
- : surfacefunction(a, A) {
- outfile = fopen(filename.c_str(), "w");
- phisteps(400);
- thetasteps(200);
- }
-
- ~surface() {
- fclose(outfile);
- }
-
-private:
- void triangle(const vector& v0, const vector& v1, const vector& v2) {
- fprintf(outfile, " mesh {\n");
- vector c = (v0 + v1 + v2) * (1./3.);
- vector color = farbe(c.normalize());
- vector V0 = v0 * (1 + F(v0));
- vector V1 = v1 * (1 + F(v1));
- vector V2 = v2 * (1 + F(v2));
- fprintf(outfile, "\ttriangle {\n");
- fprintf(outfile, "\t <%.6f,%.6f,%.6f>,\n",
- V0[0], V0[2], V0[1]);
- fprintf(outfile, "\t <%.6f,%.6f,%.6f>,\n",
- V1[0], V1[2], V1[1]);
- fprintf(outfile, "\t <%.6f,%.6f,%.6f>\n",
- V2[0], V2[2], V2[1]);
- fprintf(outfile, "\t}\n");
- fprintf(outfile, "\tpigment { color rgb<%.4f,%.4f,%.4f> }\n",
- color[0], color[1], color[2]);
- fprintf(outfile, "\tfinish { metallic specular 0.5 }\n");
- fprintf(outfile, " }\n");
- }
-
- void northcap() {
- vector v0(0, 0, 1);
- for (int i = 1; i <= phisteps(); i++) {
- fprintf(outfile, " // northcap i = %d\n", i);
- vector v1(htheta(), (i - 1) * hphi());
- vector v2(htheta(), i * hphi());
- triangle(v0, v1, v2);
- }
- }
-
- void southcap() {
- vector v0(0, 0, -1);
- for (int i = 1; i <= phisteps(); i++) {
- fprintf(outfile, " // southcap i = %d\n", i);
- vector v1(M_PI - htheta(), (i - 1) * hphi());
- vector v2(M_PI - htheta(), i * hphi());
- triangle(v0, v1, v2);
- }
- }
-
- void zone() {
- for (int j = 1; j < thetasteps() - 1; j++) {
- for (int i = 1; i <= phisteps(); i++) {
- fprintf(outfile, " // zone j = %d, i = %d\n",
- j, i);
- vector v0( j * htheta(), (i-1) * hphi());
- vector v1((j+1) * htheta(), (i-1) * hphi());
- vector v2( j * htheta(), i * hphi());
- vector v3((j+1) * htheta(), i * hphi());
- triangle(v0, v1, v2);
- triangle(v1, v2, v3);
- }
- }
- }
-public:
- void draw() {
- northcap();
- southcap();
- zone();
- }
-};
-
-/**
- * \brief main function
- */
-int main(int argc, char *argv[]) {
- surface S("spherecurve.inc", 5, 10);
- color::green = 1.0;
- S.draw();
- std::cout << "umin: " << S.umin() << std::endl;
- std::cout << "umax: " << S.umax() << std::endl;
- return EXIT_SUCCESS;
-}