aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kugel/images/spherecurve.m
diff options
context:
space:
mode:
authorNicolas Tobler <nicolas.tobler@ost.ch>2022-08-23 22:33:40 +0200
committerNicolas Tobler <nicolas.tobler@ost.ch>2022-08-23 22:33:40 +0200
commit6ac6dd132a11abd9ec4955cd2e35e22408c982e6 (patch)
tree902445b16ec2f2b9df3b3659b6139926469c267f /buch/papers/kugel/images/spherecurve.m
parentAdded Berechnung der rationalen Funktion (diff)
parentMerge pull request #63 from NaoPross/master (diff)
downloadSeminarSpezielleFunktionen-6ac6dd132a11abd9ec4955cd2e35e22408c982e6.tar.gz
SeminarSpezielleFunktionen-6ac6dd132a11abd9ec4955cd2e35e22408c982e6.zip
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to 'buch/papers/kugel/images/spherecurve.m')
-rw-r--r--buch/papers/kugel/images/spherecurve.m160
1 files changed, 0 insertions, 160 deletions
diff --git a/buch/papers/kugel/images/spherecurve.m b/buch/papers/kugel/images/spherecurve.m
deleted file mode 100644
index 99d5c9a..0000000
--- a/buch/papers/kugel/images/spherecurve.m
+++ /dev/null
@@ -1,160 +0,0 @@
-#
-# spherecurve.m
-#
-# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-#
-global a;
-a = 5;
-global A;
-A = 10;
-
-phisteps = 400;
-hphi = 2 * pi / phisteps;
-thetasteps = 200;
-htheta = pi / thetasteps;
-
-function retval = f(z)
- global a;
- global A;
- retval = A * exp(a * (z^2 - 1));
-endfunction
-
-function retval = g(z)
- global a;
- retval = -f(z) * 2 * a * (2 * a * z^4 + (3 - 2*a) * z^2 - 1);
- # 2
- # - a 2 4 2 2 a z
- #(%o6) - %e (4 a z + (6 a - 4 a ) z - 2 a) %e
-endfunction
-
-phi = (1 + sqrt(5)) / 2;
-
-global axes;
-axes = [
- 0, 0, 1, -1, phi, -phi;
- 1, -1, phi, phi, 0, 0;
- phi, phi, 0, 0, 1, 1;
-];
-axes = axes / (sqrt(phi^2+1));
-
-function retval = kugel(theta, phi)
- retval = [
- cos(phi) * sin(theta);
- sin(phi) * sin(theta);
- cos(theta)
- ];
-endfunction
-
-function retval = F(v)
- global axes;
- s = 0;
- for i = (1:6)
- z = axes(:,i)' * v;
- s = s + f(z);
- endfor
- retval = s / 6;
-endfunction
-
-function retval = F2(theta, phi)
- v = kugel(theta, phi);
- retval = F(v);
-endfunction
-
-function retval = G(v)
- global axes;
- s = 0;
- for i = (1:6)
- s = s + g(axes(:,i)' * v);
- endfor
- retval = s / 6;
-endfunction
-
-function retval = G2(theta, phi)
- v = kugel(theta, phi);
- retval = G(v);
-endfunction
-
-function retval = cnormalize(u)
- utop = 11;
- ubottom = -30;
- retval = (u - ubottom) / (utop - ubottom);
- if (retval > 1)
- retval = 1;
- endif
- if (retval < 0)
- retval = 0;
- endif
-endfunction
-
-global umin;
-umin = 0;
-global umax;
-umax = 0;
-
-function color = farbe(v)
- global umin;
- global umax;
- u = G(v);
- if (u < umin)
- umin = u;
- endif
- if (u > umax)
- umax = u;
- endif
- u = cnormalize(u);
- color = [ u, 0.5, 1-u ];
- color = color/max(color);
-endfunction
-
-function dreieck(fn, v0, v1, v2)
- fprintf(fn, " mesh {\n");
- c = (v0 + v1 + v2) / 3;
- c = c / norm(c);
- color = farbe(c);
- v0 = v0 * (1 + F(v0));
- v1 = v1 * (1 + F(v1));
- v2 = v2 * (1 + F(v2));
- fprintf(fn, "\ttriangle {\n");
- fprintf(fn, "\t <%.6f,%.6f,%.6f>,\n", v0(1,1), v0(3,1), v0(2,1));
- fprintf(fn, "\t <%.6f,%.6f,%.6f>,\n", v1(1,1), v1(3,1), v1(2,1));
- fprintf(fn, "\t <%.6f,%.6f,%.6f>\n", v2(1,1), v2(3,1), v2(2,1));
- fprintf(fn, "\t}\n");
- fprintf(fn, "\tpigment { color rgb<%.4f,%.4f,%.4f> }\n",
- color(1,1), color(1,2), color(1,3));
- fprintf(fn, "\tfinish { metallic specular 0.5 }\n");
- fprintf(fn, " }\n");
-endfunction
-
-fn = fopen("spherecurve2.inc", "w");
-
- for i = (1:phisteps)
- # Polkappe nord
- v0 = [ 0; 0; 1 ];
- v1 = kugel(htheta, (i-1) * hphi);
- v2 = kugel(htheta, i * hphi);
- fprintf(fn, " // i = %d\n", i);
- dreieck(fn, v0, v1, v2);
-
- # Polkappe sued
- v0 = [ 0; 0; -1 ];
- v1 = kugel(pi-htheta, (i-1) * hphi);
- v2 = kugel(pi-htheta, i * hphi);
- dreieck(fn, v0, v1, v2);
- endfor
-
- for j = (1:thetasteps-2)
- for i = (1:phisteps)
- v0 = kugel( j * htheta, (i-1) * hphi);
- v1 = kugel((j+1) * htheta, (i-1) * hphi);
- v2 = kugel( j * htheta, i * hphi);
- v3 = kugel((j+1) * htheta, i * hphi);
- fprintf(fn, " // i = %d, j = %d\n", i, j);
- dreieck(fn, v0, v1, v2);
- dreieck(fn, v1, v2, v3);
- endfor
- endfor
-
-fclose(fn);
-
-umin
-umax