aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/laguerre/eigenschaften.tex
diff options
context:
space:
mode:
authorPatrik Müller <patrik.mueller@ost.ch>2022-07-23 15:19:20 +0200
committerPatrik Müller <patrik.mueller@ost.ch>2022-07-23 15:19:20 +0200
commit5da2fa5a5e6a2fa2b8a23745b8c300d15a06669d (patch)
treeb45cb1805d7e26491f7ced7c9bd2379ecfc8bf6b /buch/papers/laguerre/eigenschaften.tex
parentMerge pull request #25 from JODBaer/master (diff)
downloadSeminarSpezielleFunktionen-5da2fa5a5e6a2fa2b8a23745b8c300d15a06669d.tar.gz
SeminarSpezielleFunktionen-5da2fa5a5e6a2fa2b8a23745b8c300d15a06669d.zip
Restruct paper, correct typos, add positive conclusion, add more citations and references, small changes to plots
Diffstat (limited to 'buch/papers/laguerre/eigenschaften.tex')
-rw-r--r--buch/papers/laguerre/eigenschaften.tex129
1 files changed, 101 insertions, 28 deletions
diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex
index 4adbe86..55d2276 100644
--- a/buch/papers/laguerre/eigenschaften.tex
+++ b/buch/papers/laguerre/eigenschaften.tex
@@ -3,32 +3,83 @@
%
% (c) 2022 Patrik Müller, Ostschweizer Fachhochschule
%
-\section{Orthogonalität
- \label{laguerre:section:orthogonal}}
-Im Abschnitt~\ref{laguerre:section:definition}
+\subsection{Orthogonalität%
+\label{laguerre:subsection:orthogonal}}
+\rhead{Orthogonalität}%
+Im Abschnitt~\ref{laguerre:subsection:potenzreihenansatz}
haben wir die Behauptung aufgestellt,
dass die Laguerre-Polynome orthogonal sind.
Zu dieser Behauptung möchten wir nun einen Beweis liefern.
-Wenn wir \eqref{laguerre:dgl} in ein
-Sturm-Liouville-Problem umwandeln können, haben wir bewiesen, dass es sich
-bei den Laguerre-Polynomen um orthogonale Polynome handelt (siehe
-Abschnitt~\ref{buch:integrale:subsection:sturm-liouville-problem}).
-Der Beweis kann äquivalent auch über den Sturm-Liouville-Operator
+%
+Um die Orthogonalität von Funktionen zu zeigen,
+bieten sich folgende Möglichkeiten an:
+\begin{enumerate}
+\item Identifizieren der Funktion als Eigenfunktion eines Skalarproduktes
+mit einem selbstadjungierten Operator.
+Dafür muss aber zuerst bewiesen werden,
+dass der verwendete Operator selbstadjungiert ist.
+Die Theorie dazu findet sich in den
+Abschnitten~\ref{buch:orthogonal:section:orthogonale-polynome-und-dgl} und
+\ref{buch:orthogonalitaet:section:bessel}.
+\item Umformen der Differentialgleichung in die Form der
+Sturm-Liouville-Differentialgleichung,
+denn für dieses verallgemeinerte Problem
+ist die Orthogonalität bereits bewiesen.
+Die Theorie dazu findet sich im Abschnitt~\ref{buch:integrale:subsection:sturm-liouville-problem}.
+\end{enumerate}
+
+% \subsubsection{Plan}
+\subsubsection{Idee}
+Für den Beweis der Orthogonalität der Laguerre-Polynome möchten
+wir den zweiten Ansatz über das Sturm-Liouville-Problem verwenden.
+% Dazu müssen wir die Laguerre-Differentialgleichung~\eqref{laguerre:dgl}
+% in die Form der Sturm-Liouville-Differentialgleichung bringen.
+Allerdings möchten wir nicht die Laguerre-Differentialgleichung
+in die richtige Form bringen,
+sondern den Laguerre-Operator
\begin{align}
-S
+\Lambda
=
-\frac{1}{w(x)} \left(-\frac{d}{dx}p(x) \frac{d}{dx} + q(x) \right).
-\label{laguerre:slop}
+x \frac{d}{dx^2} + (\nu + 1 -x) \frac{d}{dx}
+\label{laguerre:lagop}
+.
\end{align}
-und den Laguerre-Operator
+Da es sich beim Sturm-Liouville-Problem um ein Eigenwertproblem handelt,
+kann die Orthogonalität äquivalent über denn Sturm-Liouville-Operator
\begin{align}
-\Lambda
+S
=
-x \frac{d}{dx^2} + (\nu + 1 -x) \frac{d}{dx}
+\frac{1}{w(x)} \left(-\frac{d}{dx}p(x) \frac{d}{dx} + q(x) \right).
+\label{laguerre:slop}
\end{align}
-erhalten werden,
-indem wir diese Operatoren einander gleichsetzen.
-Aus der Beziehung
+bewiesen werden.
+Dazu müssen wir die Operatoren einander gleichsetzen.
+
+% Wenn wir \eqref{laguerre:dgl} in ein
+% Sturm-Liouville-Problem umwandeln können, haben wir bewiesen, dass es sich
+% bei den Laguerre-Polynomen um orthogonale Polynome handelt (siehe
+% Abschnitt~\ref{buch:integrale:subsection:sturm-liouville-problem}).
+% Der Beweis kann äquivalent auch über den Sturm-Liouville-Operator
+% \begin{align}
+% S
+% =
+% \frac{1}{w(x)} \left(-\frac{d}{dx}p(x) \frac{d}{dx} + q(x) \right).
+% \label{laguerre:slop}
+% \end{align}
+% und den Laguerre-Operator
+% \begin{align}
+% \Lambda
+% =
+% x \frac{d}{dx^2} + (\nu + 1 -x) \frac{d}{dx}
+% \end{align}
+% erhalten werden,
+% indem wir diese Operatoren einander gleichsetzen.
+
+\subsubsection{Umformen in Sturm-Liouville-Operator}
+% Aus der Beziehung von
+Setzen wir nun
+\eqref{laguerre:lagop} und \eqref{laguerre:slop}
+einander gleich
\begin{align}
S
& =
@@ -75,11 +126,13 @@ x^{\nu+1} e^{-x} \frac{d^2}{dx^2} +
=
x \frac{d^2}{dx^2} + (\nu + 1 - x) \frac{d}{dx}.
\end{align*}
-Mittels Koeffizientenvergleich kann nun abgelesen werden, dass $w(x) = x^\nu
-e^{-x}$ und $C=1$ mit $\nu > -1$.
+Mittels Koeffizientenvergleich kann nun abgelesen werden,
+dass $w(x) = x^\nu e^{-x}$ und $C=1$ mit $\nu > -1$.
Die Gewichtsfunktion $w(x)$ wächst für $x\rightarrow-\infty$ sehr schnell an,
deshalb ist die Laguerre-Gewichtsfunktion nur geeignet für den
Definitionsbereich $(0, \infty)$.
+
+\subsubsection{Randbedingungen}
Bleibt nur noch sicherzustellen, dass die Randbedingungen,
\begin{align}
k_0 y(0) + h_0 p(0)y'(0)
@@ -93,10 +146,12 @@ k_\infty y(\infty) + h_\infty p(\infty) y'(\infty)
\label{laguerre:sllag_randb}
\end{align}
mit $|k_i|^2 + |h_i|^2 \neq 0,\,\forall i \in \{0, \infty\}$, erfüllt sind.
-Am linken Rand (Gleichung~\eqref{laguerre:sllag_randa}) kann $y(0) = 1$, $k_0 =
-0$ und $h_0 = 1$ verwendet werden,
+%
+Am linken Rand \eqref{laguerre:sllag_randa} kann $y(0) = 1$, $k_0 = 0$ und
+$h_0 = 1$ verwendet werden,
was auch die Laguerre-Polynome ergeben haben.
-Für den rechten Rand ist die Bedingung (Gleichung~\eqref{laguerre:sllag_randb})
+
+Für den rechten Rand ist die Bedingung \eqref{laguerre:sllag_randb}
\begin{align*}
\lim_{x \rightarrow \infty} p(x) y'(x)
& =
@@ -105,9 +160,27 @@ Für den rechten Rand ist die Bedingung (Gleichung~\eqref{laguerre:sllag_randb})
0
\end{align*}
für beliebige Polynomlösungen erfüllt für $k_\infty=0$ und $h_\infty=1$.
-Damit können wir schlussfolgern:
-Die verallgemeinerten Laguerre-Polynome sind orthogonal
-bezüglich des Skalarproduktes auf dem Intervall $(0, \infty)$
-mit der verallgemeinerten Laguerre\--Gewichtsfunktion $w(x)=x^\nu e^{-x}$.
-Die Laguerre-Polynome ($\nu=0$) sind somit orthognal im Intervall $(0, \infty)$
-mit der Gewichtsfunktion $w(x)=e^{-x}$.
+
+% Somit können wir schlussfolgern:
+\begin{satz}
+Die Laguerre-Polynome %($\nu=0$)
+\eqref{laguerre:polynom}
+% \begin{align*}
+% L_n(x)
+% =
+% \sum_{k=0}^{n} \frac{(-1)^k}{k!} \binom{n}{k} x^k
+% \end{align*}
+sind orthognale Polynome bezüglich des Skalarproduktes
+im Intervall~$(0, \infty)$ mit der Gewichts\-funktion~$w(x)=e^{-x}$.
+\end{satz}
+
+\begin{satz}
+Die assoziierten Laguerre-Polynome \eqref{laguerre:allg_polynom}
+% \begin{align*}
+% L_n^\nu(x)
+% =
+% \sum_{k=0}^{n} \frac{(-1)^k}{(\nu + 1)_k} \binom{n}{k} x^k.
+% \end{align*}
+sind orthogonale Polynome bezüglich des Skalarproduktes
+im Intervall~$(0, \infty)$ mit der Gewichts\-funktion~$w(x)=x^\nu e^{-x}$.
+\end{satz}