aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil1.tex
diff options
context:
space:
mode:
authorerik-loeffler <100943759+erik-loeffler@users.noreply.github.com>2022-08-15 09:54:10 +0200
committerGitHub <noreply@github.com>2022-08-15 09:54:10 +0200
commit504d47a5a03f60cd54425cfd97fbff750a3f9061 (patch)
tree74aef248a603bad26b825371af8526b008807950 /buch/papers/parzyl/teil1.tex
parentMerge pull request #3 from haddoucher/sturmliouville/erik-branch (diff)
parentMerge pull request #49 from HeadAndToes/master (diff)
downloadSeminarSpezielleFunktionen-504d47a5a03f60cd54425cfd97fbff750a3f9061.tar.gz
SeminarSpezielleFunktionen-504d47a5a03f60cd54425cfd97fbff750a3f9061.zip
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to 'buch/papers/parzyl/teil1.tex')
-rw-r--r--buch/papers/parzyl/teil1.tex63
1 files changed, 18 insertions, 45 deletions
diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex
index 9ea60e2..f297189 100644
--- a/buch/papers/parzyl/teil1.tex
+++ b/buch/papers/parzyl/teil1.tex
@@ -3,53 +3,26 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Teil 1
+\section{Lösung
\label{parzyl:section:teil1}}
\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{parzyl:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
+Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} können mit einer Substitution
+in die Whittaker Gleichung gelöst werden.
+\begin{definition}
+ Die Funktion
+ \begin{equation*}
+ W_{k,m}(z) =
+ e^{-z/2} z^{m+1/2} \,
+ {}_{1} F_{1}(\frac{1}{2} + m - k, 1 + 2m; z)
+ \end{equation*}
+ heisst Whittaker Funktion und ist eine Lösung
+ von
+ \begin{equation}
+ \frac{d^2W}{d z^2} +
+ \left(-\frac{1}{4} + \frac{k}{z} + \frac{\frac{1}{4} - m^2}{z^2} \right) W = 0.
+ \end{equation}
+\end{definition}
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{parzyl:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{parzyl:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{parzyl:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
+Lösung Folgt\dots