aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil2.tex
diff options
context:
space:
mode:
authorJODBaer <55744603+JODBaer@users.noreply.github.com>2022-08-26 18:44:54 +0200
committerGitHub <noreply@github.com>2022-08-26 18:44:54 +0200
commit3e1cf3941e789dd8ba198135d2aa4e6923aa0676 (patch)
tree4e5582e55d2b5d6fc3d54d58e1ce4664ada4c4d6 /buch/papers/parzyl/teil2.tex
parentMerge branch 'master' of github.com:JODBaer/SeminarSpezielleFunktionen (diff)
parentMerge pull request #70 from haddoucher/master (diff)
downloadSeminarSpezielleFunktionen-3e1cf3941e789dd8ba198135d2aa4e6923aa0676.tar.gz
SeminarSpezielleFunktionen-3e1cf3941e789dd8ba198135d2aa4e6923aa0676.zip
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to 'buch/papers/parzyl/teil2.tex')
-rw-r--r--buch/papers/parzyl/teil2.tex207
1 files changed, 89 insertions, 118 deletions
diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex
index 0cf4283..1b63c8e 100644
--- a/buch/papers/parzyl/teil2.tex
+++ b/buch/papers/parzyl/teil2.tex
@@ -3,134 +3,105 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Anwendung in der Physik
-\label{parzyl:section:teil2}}
-\rhead{Anwendung in der Physik}
+\section{Eigenschaften
+ \label{parzyl:section:Eigenschaften}}
+\rhead{Eigenschaften}
-Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte, wie in Abbildung \ref{parzyl:fig:leiterplatte} gezeigt, finden will.
-\begin{figure}
- \centering
- \begin{minipage}{.7\textwidth}
- \centering
- \includegraphics[width=\textwidth]{papers/parzyl/images/halfplane.pdf}
- \caption{Semi-infinite Leiterplatte}
- \label{parzyl:fig:leiterplatte}
- \end{minipage}%
- \begin{minipage}{.25\textwidth}
- \centering
- \includegraphics[width=\textwidth]{papers/parzyl/img/Plane_2D.png}
- \caption{Semi-infinite Leiterplatte dargestellt in 2D}
- \label{parzyl:fig:leiterplatte_2d}
- \end{minipage}
-\end{figure}
-Die Äquipotentiallinien sind dabei in rot ,die des elektrischen Feldes in grün und semi-infinite Platte ist in blau dargestellt.
-Das dies so ist kann im Zweidimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Halbgerade, was man in Abbildung \ref{parzyl:fig:leiterplatte_2d} sieht.
-
-
-Jede komplexe Funktion $F(z)$ kann geschrieben werden als
-\begin{equation}
- F(s) = U(x,y) + iV(x,y) \quad s = x + iy \qquad s \in \mathbb{C}; x,y \in \mathbb{R}.
-\end{equation}
-Dabei müssen, falls die Funktion differenzierbar ist, die Cauchy-Riemann Differentialgleichungen
-\begin{equation}
- \frac{\partial U(x,y)}{\partial x}
- =
- \frac{\partial V(x,y)}{\partial y}
- \qquad
- \frac{\partial V(x,y)}{\partial x}
- =
- -\frac{\partial U(x,y)}{\partial y}
-\end{equation}
-gelten.
-Aus dieser Bedingung folgt
-\begin{equation}
- \label{parzyl_e_feld_zweite_ab}
- \underbrace{
- \frac{\partial^2 U(x,y)}{\partial x^2}
- +
- \frac{\partial^2 U(x,y)}{\partial y^2}
- =
- 0
- }_{\displaystyle{\nabla^2U(x,y)=0}}
- \qquad
- \underbrace{
- \frac{\partial^2 V(x,y)}{\partial x^2}
- +
- \frac{\partial^2 V(x,y)}{\partial y^2}
- =
- 0
- }_{\displaystyle{\nabla^2V(x,y) = 0}}.
-\end{equation}
-Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist.
-
-
-Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt gegeben ist als
-\begin{equation}
- \nabla^2\phi(x,y) = 0.
-\end{equation}
-Dies ist eine Bedingung, welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen.
-
-
-Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden
-\begin{equation}
- \phi(x,y) = U(x,y).
-\end{equation}
-Orthogonal zu den Äquipotenzialfläche sind die Feldlinien des elektrische Feld
-\begin{equation}
- E(x,y) = V(x,y).
-\end{equation}
-
-
-Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete
-komplexe Funktion $F(s)$ gefunden werden,
-welche eine semi-infinite Platte beschreiben kann.
-
-
-Die gesuchte Funktion in diesem Fall ist
-\begin{equation}
- F(s)
- =
- \sqrt{s}
+\subsection{Potenzreihenentwicklung
+ \label{parzyl:potenz}}
+%Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind,
+%können auch als Potenzreihen geschrieben werden
+Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden.
+Parabolische Zylinderfunktionen sind Linearkombinationen
+$A(\alpha)w_1(\alpha, x) + B(\alpha)w_2(\alpha, x)$ aus einem geraden Teil $w_1(\alpha, x)$
+und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihen
+\begin{align}
+ w_1(\alpha,x)
+ &=
+ e^{-x^2/4} \,
+ {}_{1} F_{1}
+ (
+ \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}x^2)
=
- \sqrt{x + iy}.
-\end{equation}
-Dies kann umgeformt werden zu
-\begin{equation}
- F(s)
+ e^{-\frac{x^2}{4}}
+ \sum^{\infty}_{n=0}
+ \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}}
+ \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\
+ &=
+ e^{-\frac{x^2}{4}}
+ \left (
+ 1
+ +
+ \left ( 2\alpha \right )\frac{x^2}{2!}
+ +
+ \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{x^4}{4!}
+ +
+ \dots
+ \right )
+\end{align}
+und
+\begin{align}
+ w_2(\alpha,x)
+ &=
+ xe^{-x^2/4} \,
+ {}_{1} F_{1}
+ (
+ {\textstyle \frac{1}{2}}
+ + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}x^2)
=
- \underbrace{\sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}}_{U(x,y)}
- +
- i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)}
- .
-\end{equation}
+ xe^{-\frac{x^2}{4}}
+ \sum^{\infty}_{n=0}
+ \frac{\left ( \frac{1}{2} + \alpha \right )_{n}}{\left ( \frac{3}{2}\right )_{n}}
+ \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\
+ &=
+ e^{-\frac{x^2}{4}}
+ \left (
+ x
+ +
+ \left ( 1 + 2\alpha \right )\frac{x^3}{3!}
+ +
+ \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{x^5}{5!}
+ +
+ \dots
+ \right )
+\end{align}
+sind.
-Die Äquipotentialflächen können nun betrachtet werden,
-indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt,
+Die Potenzreihen sind in der Regel unendliche Reihen.
+Es gibt allerdings die Möglichkeit, dass für bestimmte $\alpha$ die Terme in der Klammer gleich null werden
+und die Reihe somit eine endliche Anzahl $n$ Summanden hat.
+Dies geschieht bei $w_1(\alpha,x)$, falls
\begin{equation}
+ \alpha = -n \qquad n \in \mathbb{N}_0
% \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
c_1 = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
\end{equation}
-Die Flächen mit der gleichen elektrischen Feldstärke können als
+und bei $w_2(\alpha,x)$ falls
\begin{equation}
-% \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
- c_2 = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
+ \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0.
\end{equation}
-beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom
-kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt.
-%Werden diese Formeln nun nach $x$ und $y$ aufgelöst
-%\begin{equation}
-% x = \sigma \tau,
-%\end{equation}
+Der Wert von $\alpha$ ist abhängig, ob man $D_n(x)$, $U(a,x)$ oder $V(a,x)$ verwendet.
+Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt
+$\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$.
+\subsection{Ableitung}
+Die Ableitungen $\frac{\partial w_1(\alpha, x)}{\partial x}$ und $\frac{\partial w_2(\alpha, x)}{\partial x}$
+können mit den Eigenschaften der hypergeometrischen Funktionen in Abschnitt
+\ref{buch:rekursion:hypergeometrisch:stammableitung} berechnet werden.
+Zusammen mit der Produktregel ergeben sich die Ableitungen
+\begin{equation}
+ \frac{\partial w_1(\alpha,x)}{\partial x} = 2\alpha w_2(\alpha + \frac{1}{2}, x) - \frac{1}{2} x w_1(\alpha, x),
+\end{equation}
+und
%\begin{equation}
-% y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ),
+% \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k).
%\end{equation}
-%so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann.
-Werden diese Formeln nun nach $x$ und $y$ aufgelöst
-\begin{align}
- x &= c_1^2 - c_2^2 ,\\
- y &= 2c_1 c_2,
-\end{align}
-so beschreiben sie mit $\tau = c_1 \sqrt{2}$ und $\sigma = c_2 \sqrt{2}$ die Beziehung
-zwischen dem parabolischen Zylinderkoordinatensystem und dem kartesischen Koordinatensystem.
-
+\begin{equation}
+ \frac{\partial w_2(\alpha,x)}{\partial x} = e^{-x^2/4} \left(
+ x^{-1} w_2(\alpha, x) - \frac{x}{2} w_2(\alpha, x) + 2 x^2 \left(\frac{\alpha + 1}{3}\right)
+ {}_{1} F_{1} (
+ {\textstyle \frac{3}{2}}
+ + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}x^2)
+ \right)
+\end{equation}
+Nach dem selben Vorgehen können weitere Ableitungen berechnet werden.