diff options
author | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-08-23 22:33:40 +0200 |
---|---|---|
committer | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-08-23 22:33:40 +0200 |
commit | 6ac6dd132a11abd9ec4955cd2e35e22408c982e6 (patch) | |
tree | 902445b16ec2f2b9df3b3659b6139926469c267f /buch/papers/parzyl | |
parent | Added Berechnung der rationalen Funktion (diff) | |
parent | Merge pull request #63 from NaoPross/master (diff) | |
download | SeminarSpezielleFunktionen-6ac6dd132a11abd9ec4955cd2e35e22408c982e6.tar.gz SeminarSpezielleFunktionen-6ac6dd132a11abd9ec4955cd2e35e22408c982e6.zip |
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to 'buch/papers/parzyl')
-rw-r--r-- | buch/papers/parzyl/images/Makefile | 16 | ||||
-rw-r--r-- | buch/papers/parzyl/images/common.inc | 64 | ||||
-rw-r--r-- | buch/papers/parzyl/images/halfplane.jpg | bin | 0 -> 200681 bytes | |||
-rw-r--r-- | buch/papers/parzyl/images/halfplane.pdf | bin | 0 -> 208606 bytes | |||
-rw-r--r-- | buch/papers/parzyl/images/halfplane.png | bin | 0 -> 473623 bytes | |||
-rw-r--r-- | buch/papers/parzyl/images/halfplane.pov | 201 | ||||
-rw-r--r-- | buch/papers/parzyl/images/halfplane.tex | 41 | ||||
-rw-r--r-- | buch/papers/parzyl/img/D_plot.png | bin | 0 -> 746370 bytes | |||
-rw-r--r-- | buch/papers/parzyl/img/Plane_2D.png | bin | 0 -> 209118 bytes | |||
-rw-r--r-- | buch/papers/parzyl/img/coordinates.png | bin | 0 -> 1215422 bytes | |||
-rw-r--r-- | buch/papers/parzyl/img/plane.pdf | bin | 0 -> 2072 bytes | |||
-rw-r--r-- | buch/papers/parzyl/img/v_plot.png | bin | 0 -> 648430 bytes | |||
-rw-r--r-- | buch/papers/parzyl/main.tex | 4 | ||||
-rw-r--r-- | buch/papers/parzyl/references.bib | 42 | ||||
-rw-r--r-- | buch/papers/parzyl/teil0.tex | 153 | ||||
-rw-r--r-- | buch/papers/parzyl/teil1.tex | 186 | ||||
-rw-r--r-- | buch/papers/parzyl/teil2.tex | 109 | ||||
-rw-r--r-- | buch/papers/parzyl/teil3.tex | 102 |
18 files changed, 795 insertions, 123 deletions
diff --git a/buch/papers/parzyl/images/Makefile b/buch/papers/parzyl/images/Makefile new file mode 100644 index 0000000..4bd13ec --- /dev/null +++ b/buch/papers/parzyl/images/Makefile @@ -0,0 +1,16 @@ +# +# Makefile to build 3d images +# +# (c) 2022 Prof Dr Andreas Müller +# + +all: halfplane.pdf + +halfplane.pdf: halfplane.tex halfplane.jpg + pdflatex halfplane.tex +halfplane.png: halfplane.pov + povray +A0.1 -W1920 -H1080 -Ohalfplane.png halfplane.pov +halfplane.jpg: halfplane.png Makefile + convert -extract 1280x1080+340+0 halfplane.png \ + -density 300 -units PixelsPerInch halfplane.jpg + diff --git a/buch/papers/parzyl/images/common.inc b/buch/papers/parzyl/images/common.inc new file mode 100644 index 0000000..28aed2b --- /dev/null +++ b/buch/papers/parzyl/images/common.inc @@ -0,0 +1,64 @@ +// +// common.inc -- some common useful tools for drawing 3d images +// +// (c) 2018 Prof Dr Andreas Müller, Hochschule Rapperswil +// + +// +// draw a right angle quarter circle at point <o> with legs <v1> and <v2> and +// color <c> +// +#declare rechterwinkelradius = 0.5; +#declare rechterwinkelthickness = 0.01; +#macro rechterwinkel(o, v1, v2, c) +intersection { + sphere { o, rechterwinkelradius } + #declare rnormale = vnormalize(vcross(v1, v2)); + plane { rnormale, vdot(o, rnormale) + rechterwinkelthickness * rechterwinkelradius / 0.5 } + plane { -rnormale, -vdot(o, rnormale) + rechterwinkelthickness * rechterwinkelradius / 0.5 } + plane { -v1, -vdot(o, v1) } + plane { -v2, -vdot(o, v2) } + pigment { + color c + } +} +sphere { o + 0.45 * (vnormalize(v1) +vnormalize(v2)) * rechterwinkelradius, + 0.05 * rechterwinkelradius / 0.5 + pigment { + color c + } +} +#end + +// +// draw an arrow from <from> to <to> with thickness <arrowthickness> with +// color <c> +// +#macro arrow(from, to, arrowthickness, c) + #declare arrowdirection = vnormalize(to - from); + #declare arrowlength = vlength(to - from); + union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } + } +#end + diff --git a/buch/papers/parzyl/images/halfplane.jpg b/buch/papers/parzyl/images/halfplane.jpg Binary files differnew file mode 100644 index 0000000..8cb5ae3 --- /dev/null +++ b/buch/papers/parzyl/images/halfplane.jpg diff --git a/buch/papers/parzyl/images/halfplane.pdf b/buch/papers/parzyl/images/halfplane.pdf Binary files differnew file mode 100644 index 0000000..7275810 --- /dev/null +++ b/buch/papers/parzyl/images/halfplane.pdf diff --git a/buch/papers/parzyl/images/halfplane.png b/buch/papers/parzyl/images/halfplane.png Binary files differnew file mode 100644 index 0000000..5beefa0 --- /dev/null +++ b/buch/papers/parzyl/images/halfplane.png diff --git a/buch/papers/parzyl/images/halfplane.pov b/buch/papers/parzyl/images/halfplane.pov new file mode 100644 index 0000000..419bb67 --- /dev/null +++ b/buch/papers/parzyl/images/halfplane.pov @@ -0,0 +1,201 @@ +// +// 3dimage.pov +// +// (c) 2022 Prof Dr Andreas Müller +// +#version 3.7; +#include "colors.inc" +#include "skies.inc" +#include "common.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.63; +#declare ar = 0.02; + +#declare Cameracenter = <5,3,-4>; +#declare Worldpoint = <0,-0.80, 0>; +#declare Lightsource = < 7,10,-3>; +#declare Lightdirection = vnormalize(Lightsource - Worldpoint); +#declare Lightaxis1 = vnormalize(vcross(Lightdirection, <0,1,0>)); +#declare Lightaxis2 = vnormalize(vcross(Lightaxis1, Lightdirection)); + +camera { + location Cameracenter + look_at Worldpoint + right 16/9 * x * imagescale + up y * imagescale +} + +light_source { + Lightsource color White + area_light Lightaxis1 Lightaxis2, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color White + } +} + +arrow( <-2.1, 0, 0 >, < 2.2, 0, 0 >, ar, White) +arrow( < 0, -1.1, 0 >, < 0, 1.3, 0 >, ar, White) +arrow( < 0, 0, -2 >, < 0, 0, 2.2 >, ar, White) + +#declare planecolor = rgb<0.2,0.6,1.0>; +#declare r = 0.01; + +#macro planebox() + box { <-2.1,-1.1,-2.1>, <0,1.1,2.1> } +#end + +intersection { + plane { <0, 0, 1>, 0.001 } + plane { <0, 0, -1>, 0.001 } + planebox() + pigment { + color planecolor transmit 0.3 + } + finish { + metallic + specular 0.95 + } +} + +#declare Xstep = 0.2; + +intersection { + union { + #declare X = 0; + #while (X > -2.5) + cylinder { <X,-3,0>, <X,+3,0>, r } + #declare X = X - Xstep; + #end + + #declare Y = Xstep; + #while (Y < 2.5) + cylinder { <-3, Y, 0>, <0, Y, 0>, r } + cylinder { <-3, -Y, 0>, <0, -Y, 0>, r } + #declare Y = Y + Xstep; + #end + } + planebox() + pigment { + color planecolor + } + finish { + metallic + specular 0.95 + } +} + +#declare parammin = -4; +#declare parammax = 4; +#declare paramsteps = 100; +#declare paramstep = (parammax - parammin) / paramsteps; + +#macro punkt(sigma, tau, Z) + < + 0.5 * (tau*tau - sigma*sigma) + Z, + sigma * tau, + > +#end + +#macro sigmasurface(sigma, farbe) + #declare taumin1 = 2/sigma; + #declare taumin2 = sqrt(4+sigma*sigma); + #if (taumin1 > taumin2) + #declare taumin = -taumin2; + #else + #declare taumin = -taumin1; + #end + + mesh { + #declare tau = taumin; + #declare taumax = -taumin; + #declare taustep = (taumax - taumin) / paramsteps; + #while (tau < taumax - taustep/2) + triangle { + punkt(sigma, tau, -1), + punkt(sigma, tau, 0), + punkt(sigma, tau + taustep, -1) + } + triangle { + punkt(sigma, tau + taustep, -1), + punkt(sigma, tau + taustep, 0), + punkt(sigma, tau, 0) + } + #declare tau = tau + taustep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } + } + + union { + #declare tau = taumin; + #declare taumax = -taumin; + #declare taustep = (taumax - taumin) / paramsteps; + #while (tau < taumax - taustep/2) + sphere { punkt(sigma, tau, 0), r } + cylinder { + punkt(sigma, tau, 0), + punkt(sigma, tau + taustep, 0), + r + } + #declare tau = tau + taustep; + #end + sphere { punkt(sigma, tau, 0), r } + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } + + } +#end + +#declare greensurfacecolor = rgb<0.6,1.0,0.6>; +#declare redsurfacecolor = rgb<1.0,0.6,0.6>; + +sigmasurface(0.25, greensurfacecolor) +sigmasurface(0.5, greensurfacecolor) +sigmasurface(0.75, greensurfacecolor) +sigmasurface(1, greensurfacecolor) +sigmasurface(1.25, greensurfacecolor) +sigmasurface(1.5, greensurfacecolor) +sigmasurface(1.75, greensurfacecolor) +sigmasurface(2, greensurfacecolor) + +union { + sigmasurface(0.25, redsurfacecolor) + sigmasurface(0.5, redsurfacecolor) + sigmasurface(0.75, redsurfacecolor) + sigmasurface(1.00, redsurfacecolor) + sigmasurface(1.25, redsurfacecolor) + sigmasurface(1.5, redsurfacecolor) + sigmasurface(1.75, redsurfacecolor) + sigmasurface(2, redsurfacecolor) + rotate <0, 180, 0> +} + +box { <-2,-1,-2>, <2,-0.99,2> + pigment { + color rgb<1.0,0.8,0.6> transmit 0.8 + } + finish { + specular 0.9 + metallic + } +} diff --git a/buch/papers/parzyl/images/halfplane.tex b/buch/papers/parzyl/images/halfplane.tex new file mode 100644 index 0000000..e470057 --- /dev/null +++ b/buch/papers/parzyl/images/halfplane.tex @@ -0,0 +1,41 @@ +% +% halfplane.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{5} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=10cm]{halfplane.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0,3.7) {$z$}; +\node at (3.3,-0.3) {$x$}; +\node at (2.7,2.5) {$y$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/parzyl/img/D_plot.png b/buch/papers/parzyl/img/D_plot.png Binary files differnew file mode 100644 index 0000000..6c61eea --- /dev/null +++ b/buch/papers/parzyl/img/D_plot.png diff --git a/buch/papers/parzyl/img/Plane_2D.png b/buch/papers/parzyl/img/Plane_2D.png Binary files differnew file mode 100644 index 0000000..f55e3cf --- /dev/null +++ b/buch/papers/parzyl/img/Plane_2D.png diff --git a/buch/papers/parzyl/img/coordinates.png b/buch/papers/parzyl/img/coordinates.png Binary files differnew file mode 100644 index 0000000..0ea3701 --- /dev/null +++ b/buch/papers/parzyl/img/coordinates.png diff --git a/buch/papers/parzyl/img/plane.pdf b/buch/papers/parzyl/img/plane.pdf Binary files differnew file mode 100644 index 0000000..c52c336 --- /dev/null +++ b/buch/papers/parzyl/img/plane.pdf diff --git a/buch/papers/parzyl/img/v_plot.png b/buch/papers/parzyl/img/v_plot.png Binary files differnew file mode 100644 index 0000000..7cd5455 --- /dev/null +++ b/buch/papers/parzyl/img/v_plot.png diff --git a/buch/papers/parzyl/main.tex b/buch/papers/parzyl/main.tex index 528a2e2..fd2aea7 100644 --- a/buch/papers/parzyl/main.tex +++ b/buch/papers/parzyl/main.tex @@ -6,13 +6,13 @@ \chapter{Parabolische Zylinderfunktionen\label{chapter:parzyl}} \lhead{Parabolische Zylinderfunktionen} \begin{refsection} -\chapterauthor{Thierry Schwaller, Alain Keller} +\chapterauthor{Alain Keller und Thierry Schwaller} \input{papers/parzyl/teil0.tex} \input{papers/parzyl/teil1.tex} \input{papers/parzyl/teil2.tex} - +\input{papers/parzyl/teil3.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/parzyl/references.bib b/buch/papers/parzyl/references.bib index 494ff7c..9639d0b 100644 --- a/buch/papers/parzyl/references.bib +++ b/buch/papers/parzyl/references.bib @@ -33,3 +33,45 @@ url = {https://doi.org/10.1016/j.acha.2017.11.004} } +@book{parzyl:whittaker, + place={Cambridge}, + edition={4}, + series={Cambridge Mathematical Library}, + title={A Course of Modern Analysis}, + DOI={10.1017/CBO9780511608759}, + publisher={Cambridge University Press}, + author={Whittaker, E. T. and Watson, G. N.}, + year={1996}, + collection={Cambridge Mathematical Library}} + +@book{parzyl:abramowitz-stegun, + added-at = {2008-06-25T06:25:58.000+0200}, + address = {New York}, + author = {Abramowitz, Milton and Stegun, Irene A.}, + edition = {ninth Dover printing, tenth GPO printing}, + interhash = {d4914a420f489f7c5129ed01ec3cf80c}, + intrahash = {23ec744709b3a776a1af0a3fd65cd09f}, + keywords = {Handbook}, + publisher = {Dover}, + timestamp = {2008-06-25T06:25:58.000+0200}, + title = {Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables}, + year = 1972 +} + +@online{parzyl:coordinates, + title = {Parabolic cylindrical coordinates}, + url = {https://en.wikipedia.org/wiki/Parabolic_cylindrical_coordinates}, + date = {2022-08-17}, + year = {2022}, + month = {8}, + day = {17} +} + +@online{parzyl:scalefac, + title = {An introduction to curvlinear orthogonal coordinates}, + url = {http://dslavsk.sites.luc.edu/courses/phys301/classnotes/scalefactorscomplete.pdf}, + date = {2022-08-18}, + year = {2022}, + month = {08}, + day = {18} +}
\ No newline at end of file diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 4b251db..3bf9257 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -4,88 +4,114 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Einleitung\label{parzyl:section:teil0}} -\rhead{Teil 0} -Die Laplace-Gleichung ist eine wichtige Gleichung in der Physik. -Mit ihr lässt sich zum Beispiel das elektrische Feld in einem ladungsfreien Raum bestimmen. -In diesem Kapitel wird die Lösung der Laplace-Gleichung im -parabolischen Zylinderkoordinatensystem genauer untersucht. -\subsection{Laplace Gleichung} -Die partielle Differentialgleichung +\rhead{Einleitung} +%Die Laplace-Gleichung ist eine wichtige Gleichung in der Physik. +%Mit ihr lässt sich zum Beispiel das elektrische Feld in einem ladungsfreien Raum bestimmen. +%In diesem Kapitel wird die Lösung der Laplace-Gleichung im +%parabolischen Zylinderkoordinatensystem genauer untersucht. +Die Helmholtz-Gleichung ist eine wichtige Gleichung in der Physik. +Mit ihr lässt sich zum Beispiel das Verhalten von elektromagnetischen Wellen beschreiben. +In diesem Kapitel werden die Lösungen der Helmholtz-Gleichung im parabolischen Zylinderkoordinatensystem, +die parabolischen Zylinderfunktionen, genauer untersucht. + +\subsection{Helmholtz-Gleichung} +Die partielle Differentialgleichung \begin{equation} - \Delta f = 0 + \Delta f = \lambda f \end{equation} -ist als Laplace-Gleichung bekannt. -Sie ist eine spezielle Form der Poisson-Gleichung +ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwertproblem für den Laplace-Operator. +Sie ist eine der Gleichungen, welche auftritt, wenn die Wellengleichung \begin{equation} - \Delta f = g + \left ( \nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right ) u(\textbf{r},t) + = + 0 \end{equation} -mit g als beliebige Funktion. -In der Physik hat die Laplace-Gleichung in verschieden Gebieten -verwendet, zum Beispiel im Elektromagnetismus. -Das Gaussche Gesetz in den Maxwellgleichungen +mit Hilfe von Separation \begin{equation} - \nabla \cdot E = \frac{\varrho}{\epsilon_0} -\label{parzyl:eq:max1} -\end{equation} -besagt das die Divergenz eines Elektrischen Feldes an einem -Punkt gleich der Ladung an diesem Punkt ist. -Das elektrische Feld ist hierbei der Gradient des elektrischen -Potentials + u(\textbf{r},t) = A(\textbf{r})T(t) +\end{equation} +in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der Teil, +welcher zeitunabhängig ist \begin{equation} - \nabla \phi = E. + \nabla^2 A(\textbf{r}) = \lambda A(\textbf{r}). \end{equation} -Eingesetzt in \eqref{parzyl:eq:max1} resultiert -\begin{equation} - \nabla \cdot \nabla \phi = \Delta \phi = \frac{\varrho}{\epsilon_0}, -\end{equation} -was eine Possion-Gleichung ist. -An Ladungsfreien Stellen, ist der rechte Teil der Gleichung $0$. + +%\subsection{Laplace Gleichung} +%Die partielle Differentialgleichung +%\begin{equation} +% \Delta f = 0 +%\end{equation} +%ist als Laplace-Gleichung bekannt. +%Sie ist eine spezielle Form der Poisson-Gleichung +%\begin{equation} +% \Delta f = g +%\end{equation} +%mit $g$ als beliebiger Funktion. +%In der Physik hat die Laplace-Gleichung in verschiedenen Gebieten +%verwendet, zum Beispiel im Elektromagnetismus. +%Das Gaussche Gesetz in den Maxwellgleichungen +%\begin{equation} +% \nabla \cdot E = \frac{\varrho}{\epsilon_0} +%\label{parzyl:eq:max1} +%\end{equation} +%besagt, dass die Divergenz eines elektrischen Feldes an einem +%Punkt gleich der Ladungsdichte an diesem Punkt ist. +%Das elektrische Feld ist hierbei der Gradient des elektrischen +%Potentials +%\begin{equation} +% \nabla \phi = E. +%\end{equation} +%Eingesetzt in \eqref{parzyl:eq:max1} resultiert +%\begin{equation} +% \nabla \cdot \nabla \phi = \Delta \phi = \frac{\varrho}{\epsilon_0}, +%\end{equation} +%was eine Poisson-Gleichung ist. +%An ladungsfreien Stellen ist der rechte Teil der Gleichung $0$. \subsection{Parabolische Zylinderkoordinaten \label{parzyl:subsection:finibus}} -Im parabolischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. +Das parabolischen Zylinderkoordinatensystem \cite{parzyl:coordinates} ist ein krummliniges Koordinatensystem, +bei dem parabolische Zylinder die Koordinatenflächen bilden. Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit \begin{align} - x & = \sigma \tau \\ + x & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ \label{parzyl:coordRelationsa} - y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ + y & = \sigma \tau\\ z & = z. \label{parzyl:coordRelationse} \end{align} -Wird $\tau$ oder $\sigma$ konstant gesetzt resultieren die Parabeln +Wird $\sigma$ oder $\tau$ konstant gesetzt, resultieren die Parabeln \begin{equation} - y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right) + x = \frac{1}{2} \left( \frac{y^2}{\sigma^2} - \sigma^2 \right) \end{equation} und \begin{equation} - y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right). + x = \frac{1}{2} \left( -\frac{y^2}{\tau^2} + \tau^2 \right). \end{equation} \begin{figure} \centering - \includegraphics[scale=0.4]{papers/parzyl/img/koordinaten.png} - \caption{Das parabolische Koordinatensystem. Die roten Parabeln haben ein - konstantes $\sigma$ und die grünen ein konstantes $\tau$.} + \includegraphics[scale=0.32]{papers/parzyl/img/coordinates.png} + \caption{Das parabolische Koordinatensystem. Die grünen Parabeln haben ein + konstantes $\sigma$ und die roten ein konstantes $\tau$.} \label{parzyl:fig:cordinates} \end{figure} - -Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem. +Abbildung \ref{parzyl:fig:cordinates} zeigt das parabolische Koordinatensystem. Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der Ebene gezogen werden. +Die Flächen mit $\tau = 0$ oder $\sigma = 0$ stellen somit Halbebenen entlang der $z$-Achse dar. Um in diesem Koordinatensystem integrieren und differenzieren zu -können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$. +können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$ \cite{parzyl:scalefac}. -\dots - -Wird eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten betrachtet -kann dies im kartesischen Koordinatensystem mit +Eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten +kann im kartesischen Koordinatensystem mit \begin{equation} \left(ds\right)^2 = \left(dx\right)^2 + \left(dy\right)^2 + \left(dz\right)^2 \label{parzyl:eq:ds} \end{equation} ausgedrückt werden. -Das Skalierungsfaktoren werden so bestimmt, dass +Die Skalierungsfaktoren werden in einem orthogonalen Koordinatensystem so bestimmt, dass \begin{equation} \left(ds\right)^2 = \left(h_{\sigma}d\sigma\right)^2 + \left(h_{\tau}d\tau\right)^2 + \left(h_z dz\right)^2 @@ -98,15 +124,15 @@ von \eqref{parzyl:coordRelationsa} - \eqref{parzyl:coordRelationse} als dx &= \frac{\partial x }{\partial \sigma} d\sigma + \frac{\partial x }{\partial \tau} d\tau + \frac{\partial x }{\partial \tilde{z}} d \tilde{z} - = \tau d\sigma + \sigma d \tau \\ + = \tau d\tau - \sigma d \sigma \\ dy &= \frac{\partial y }{\partial \sigma} d\sigma + \frac{\partial y }{\partial \tau} d\tau + \frac{\partial y }{\partial \tilde{z}} d \tilde{z} - = \tau d\tau - \sigma d \sigma \\ + = \tau d\sigma + \sigma d \tau \\ dz &= \frac{\partial \tilde{z} }{\partial \sigma} d\sigma + \frac{\partial \tilde{z} }{\partial \tau} d\tau + \frac{\partial \tilde{z} }{\partial \tilde{z}} d \tilde{z} - = d \tilde{z} \\ + = d \tilde{z} \end{align} substituiert. Wird diese Gleichung in der Form von \eqref{parzyl:eq:dspara} @@ -120,21 +146,21 @@ geschrieben, resultiert Daraus ergeben sich die Skalierungsfaktoren \begin{align} h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ - h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ + h_{\tau} &= \sqrt{\sigma^2 + \tau^2}\\ h_{z} &= 1. \end{align} \subsection{Differentialgleichung} Möchte man eine Differentialgleichung im parabolischen -Zylinderkoordinatensystem aufstellen müssen die Skalierungsfaktoren +Zylinderkoordinatensystem aufstellen, müssen die Skalierungsfaktoren mitgerechnet werden. -Der Laplace Operator ist dadurch gegeben als +Der Laplace Operator wird dadurch zu \begin{equation} \Delta f = \frac{1}{\sigma^2 + \tau^2} \left( \frac{\partial^2 f}{\partial \sigma ^2} + \frac{\partial^2 f}{\partial \tau ^2} \right) - + \frac{\partial^2 f}{\partial z}. + + \frac{\partial^2 f}{\partial z^2}. \label{parzyl:eq:laplaceInParZylCor} \end{equation} \subsubsection{Lösung der Helmholtz-Gleichung im parabolischen Zylinderfunktion} @@ -181,8 +207,7 @@ Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werd \begin{equation} f(\sigma,\tau,z) = g(\sigma)h(\tau)i(z) \end{equation} -gesetzt. -Was dann schlussendlich zu den Differentialgleichungen +gesetzt, was dann schlussendlich zu den Differentialgleichungen \begin{equation}\label{parzyl:sep_dgl_1} g''(\sigma) - @@ -216,26 +241,12 @@ und + \mu \right ) - i(\tau) + i(z) = 0 \end{equation} führt. -Wobei die Lösung von \eqref{parzyl:sep_dgl_3} -\begin{equation} - i(z) - = - A\cos{ - \left ( - \sqrt{\lambda + \mu}z - \right )} - + - B\sin{ - \left ( - \sqrt{\lambda + \mu}z - \right )} -\end{equation} -ist und \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. + diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index f297189..0e1ad1b 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -5,24 +5,180 @@ % \section{Lösung \label{parzyl:section:teil1}} -\rhead{Problemstellung} -Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} können mit einer Substitution -in die Whittaker Gleichung gelöst werden. +\rhead{Lösung} + +\eqref{parzyl:sep_dgl_3} beschriebt einen ungedämpften harmonischen Oszillator. +Die Lösung ist somit +\begin{equation} + i(z) + = + A\cos{ + \left ( z + \sqrt{\lambda + \mu} + \right )} + + + B\sin{ + \left ( z + \sqrt{\lambda + \mu} + \right )}. +\end{equation} +Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} werden in \cite{parzyl:whittaker} +mit Hilfe der Whittaker Gleichung gelöst. \begin{definition} - Die Funktion + Die Funktionen + \begin{equation*} + M_{k,m}(x) = + e^{-x/2} x^{m+1/2} \, + {}_{1} F_{1} + ( + {\textstyle \frac{1}{2}} + + m - k, 1 + 2m; x) \qquad x \in \mathbb{C} + \end{equation*} + und \begin{equation*} - W_{k,m}(z) = - e^{-z/2} z^{m+1/2} \, - {}_{1} F_{1}(\frac{1}{2} + m - k, 1 + 2m; z) + W_{k,m}(x) = \frac{ + \Gamma \left( -2m\right) + }{ + \Gamma \left( {\textstyle \frac{1}{2}} - m - k\right) + } + M_{-k, m} \left(x\right) + + + \frac{ + \Gamma \left( 2m\right) + }{ + \Gamma \left( {\textstyle \frac{1}{2}} + m - k\right) + } + M_{k, -m} \left(x\right) \end{equation*} - heisst Whittaker Funktion und ist eine Lösung - von + gehören zu den Whittaker Funktionen und sind Lösungen + der Whittaker Differentialgleichung \begin{equation} - \frac{d^2W}{d z^2} + - \left(-\frac{1}{4} + \frac{k}{z} + \frac{\frac{1}{4} - m^2}{z^2} \right) W = 0. + \frac{d^2W}{d x^2} + + \biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0. + \label{parzyl:eq:whitDiffEq} \end{equation} -\end{definition} - -Lösung Folgt\dots - +\end{definition} +Es wird nun die Differentialgleichung bestimmt, welche +\begin{equation} + w = x^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} x^2\right) +\end{equation} +als Lösung hat. +Dafür wird $w$ in \eqref{parzyl:eq:whitDiffEq} eingesetzt, woraus +\begin{equation} + \frac{d^2 w}{dx^2} - \left(\frac{1}{4} x^2 - 2k\right) w = 0 +\label{parzyl:eq:weberDiffEq} +\end{equation} +resultiert. Diese Differentialgleichung ist dieselbe wie +\eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2}, welche somit +$w$ als Lösung haben. +%Da es sich um eine Differentialgleichung zweiter Ordnung handelt, hat sie nicht nur +%eine sondern zwei Lösungen. +%Die zweite Lösung der Whittaker-Gleichung ist $W_{k,-m} (z)$. +%Somit hat \eqref{parzyl:eq:weberDiffEq} +%\begin{align} +% w_1(k, z) & = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right)\\ +% w_2(k, z) & = z^{-1/2} W_{k,1/4} \left({\textstyle \frac{1}{2}} z^2\right) +%\end{align} +%als Lösungen. +%Mit der Hypergeometrischen Funktion ausgeschrieben ergeben sich die Lösungen +%\begin{align} +% \label{parzyl:eq:solution_dgl} +% w_1(k,z) &= e^{-z^2/4} \, +% {}_{1} F_{1} +% ( +% {\textstyle \frac{1}{4}} +% - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) \\ +% w_2(k,z) & = z e^{-z^2/4} \, +% {}_{1} F_{1} +% ({\textstyle \frac{3}{4}} +% - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2). +%\end{align} +\subsection{Standardlösungen} +In der Literatur gibt es verschiedene Standardlösungen für +\eqref{parzyl:eq:weberDiffEq}, wobei die Differentialgleichung jeweils +unterschiedlich geschrieben wird. +Whittaker und Watson zeigen in \cite{parzyl:whittaker} die Lösung +\begin{equation} + D_n(x) = 2^{\frac{1}{2}n + \frac{1}{2}} x^{-\frac{1}{2}} W_{n/2 + 1/4, -1/4}\left(\frac{1}{2}x^2\right), +\end{equation} +welche die Differentialgleichung +\begin{equation} + \frac{d^2D_n(x)}{dx^2} + \left(n + \frac{1}{2} - \frac{1}{4} x^2\right)D_n(x) = 0 +\end{equation} +löst. +Mit $M_{k,m}(x)$ geschrieben resultiert +\begin{equation} + D_n(x) = \frac{ + \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} x^{-\frac{1}{2}} + }{ + \Gamma \left( {\textstyle \frac{1}{2}} - {\textstyle \frac{1}{2}} n \right) + } + M_{\frac{1}{2} n + \frac{1}{4}, - \frac{1}{4}} \left(\frac{1}{2}x^2\right) + + + \frac{ + \Gamma\left(-{\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} x^{-\frac{1}{2}} + }{ + \Gamma\left(- {\textstyle \frac{1}{2}} n\right) + } + M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}x^2\right). +\end{equation} +In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, x)$ und $V(a,x)$ +\begin{align} + U(a,x) &= + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 + \label{parzyl:eq:Uaz} + \\ + V(a,x) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ + \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 + \right\} + \label{parzyl:eq:Vaz} +\end{align} +mit +\begin{align} + Y_1 &= \frac{1}{\sqrt{\pi}} + \frac{\Gamma\left({\textstyle \frac{1}{4} - + {\textstyle \frac{1}{2}}a}\right)} + {2^{\frac{1}{2} a + \frac{1}{4}}} + e^{-x^2/4} + {}_{1} F_{1} + \left({\textstyle \frac{1}{2}}a + {\textstyle \frac{1}{4}}, + {\textstyle \frac{1}{2}} ; + {\textstyle \frac{1}{2}}x^2\right)\\ + Y_2 &= \frac{1}{\sqrt{\pi}} + \frac{\Gamma\left({\textstyle \frac{3}{4} - + {\textstyle \frac{1}{2}}a}\right)} + {2^{\frac{1}{2} a - \frac{1}{4}}} + x e^{-x^2/4} + {}_{1} F_{1} + \left({\textstyle \frac{1}{2}}a + {\textstyle \frac{3}{4}}, + {\textstyle \frac{3}{2}} ; + {\textstyle \frac{1}{2}}x^2\right) +\end{align} +der Differentialgleichung +\begin{equation} + \frac{d^2 y}{d x^2} - \left(\frac{1}{4} x^2 + a\right) y = 0 +\end{equation} +beschrieben. Die Lösungen $U(a,z)$ und $V(a, z)$ können auch mit $D_n(z)$ +ausgedrückt werden +\begin{align} + U(a,x) &= D_{-a-1/2}(x) \\ + V(a,x) &= \frac{\Gamma \left({\textstyle \frac{1}{2}} + a\right)}{\pi} + \left[\sin\left(\pi a\right) D_{-a-1/2}(x) + D_{-a-1/2}(-x)\right]. +\end{align} +In den Abbildungen \ref{parzyl:fig:dnz} und \ref{parzyl:fig:Vnz} sind +die Funktionen $D_n(x)$ und $V(a,x)$ mit verschiedenen Werten für $a$ abgebildet. +\begin{figure} + \centering + \includegraphics[scale=0.35]{papers/parzyl/img/D_plot.png} + \caption{$D_n(x)$ mit unterschiedlichen Werten für $n$.} + \label{parzyl:fig:dnz} +\end{figure} +\begin{figure} + \centering + \includegraphics[scale=0.35]{papers/parzyl/img/v_plot.png} + \caption{$V(a,x)$ mit unterschiedlichen Werten für $a$.} + \label{parzyl:fig:Vnz} +\end{figure}
\ No newline at end of file diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index 3f890d0..0cf4283 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -5,18 +5,33 @@ % \section{Anwendung in der Physik \label{parzyl:section:teil2}} -\rhead{Teil 2} +\rhead{Anwendung in der Physik} + +Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte, wie in Abbildung \ref{parzyl:fig:leiterplatte} gezeigt, finden will. +\begin{figure} + \centering + \begin{minipage}{.7\textwidth} + \centering + \includegraphics[width=\textwidth]{papers/parzyl/images/halfplane.pdf} + \caption{Semi-infinite Leiterplatte} + \label{parzyl:fig:leiterplatte} + \end{minipage}% + \begin{minipage}{.25\textwidth} + \centering + \includegraphics[width=\textwidth]{papers/parzyl/img/Plane_2D.png} + \caption{Semi-infinite Leiterplatte dargestellt in 2D} + \label{parzyl:fig:leiterplatte_2d} + \end{minipage} +\end{figure} +Die Äquipotentiallinien sind dabei in rot ,die des elektrischen Feldes in grün und semi-infinite Platte ist in blau dargestellt. +Das dies so ist kann im Zweidimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Halbgerade, was man in Abbildung \ref{parzyl:fig:leiterplatte_2d} sieht. -\subsection{Elektrisches Feld einer semi-infiniten Platte -\label{parzyl:subsection:bonorum}} -Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte finden will. -Das dies so ist kann im zwei Dimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Wobei die Platte dann nur eine Linie ist. Jede komplexe Funktion $F(z)$ kann geschrieben werden als \begin{equation} - F(z) = U(x,y) + iV(x,y) \qquad z \in \mathbb{C}; x,y \in \mathbb{R}. + F(s) = U(x,y) + iV(x,y) \quad s = x + iy \qquad s \in \mathbb{C}; x,y \in \mathbb{R}. \end{equation} -Dabei muss gelten, falls die Funktion differenzierbar ist, dass +Dabei müssen, falls die Funktion differenzierbar ist, die Cauchy-Riemann Differentialgleichungen \begin{equation} \frac{\partial U(x,y)}{\partial x} = @@ -24,8 +39,9 @@ Dabei muss gelten, falls die Funktion differenzierbar ist, dass \qquad \frac{\partial V(x,y)}{\partial x} = - -\frac{\partial U(x,y)}{\partial y}. + -\frac{\partial U(x,y)}{\partial y} \end{equation} +gelten. Aus dieser Bedingung folgt \begin{equation} \label{parzyl_e_feld_zweite_ab} @@ -35,7 +51,7 @@ Aus dieser Bedingung folgt \frac{\partial^2 U(x,y)}{\partial y^2} = 0 - }_{\nabla^2U(x,y)=0} + }_{\displaystyle{\nabla^2U(x,y)=0}} \qquad \underbrace{ \frac{\partial^2 V(x,y)}{\partial x^2} @@ -43,49 +59,78 @@ Aus dieser Bedingung folgt \frac{\partial^2 V(x,y)}{\partial y^2} = 0 - }_{\nabla^2V(x,y) = 0}. + }_{\displaystyle{\nabla^2V(x,y) = 0}}. \end{equation} -Zusätzlich zeigen diese Bedingungen auch, dass die zwei Funktionen $U(x,y)$ und $V(x,y)$ orthogonal zueinander sind. +Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist. + + Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt gegeben ist als \begin{equation} \nabla^2\phi(x,y) = 0. \end{equation} -Da dies bei komplexen differenzierbaren Funktionen gilt, wie Gleichung \ref{parzyl_e_feld_zweite_ab} zeigt, kann entweder $U(x,y)$ oder $V(x,y)$ von einer solchen Funktion als das Potential angesehen werden. Im weiteren wird für das Potential $U(x,y)$ verwendet. -Da die Funktion, welche nicht das Potential beschreibt, in weiteren angenommen als $V(x,y)$, orthogonal zum Potential ist, zeigt dies das Verhalten des elektrischen Feldes. -Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete komplexe Funktion $F(z)$ gefunden werden, welche eine semi-infinite Platte beschreiben kann. Man könnte natürlich auch nach anderen Funktionen suchen, welche andere Bedingungen erfüllen und würde dann auf andere Koordinatensysteme stossen. Die gesuchte Funktion in diesem Fall ist +Dies ist eine Bedingung, welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. + + +Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden +\begin{equation} + \phi(x,y) = U(x,y). +\end{equation} +Orthogonal zu den Äquipotenzialfläche sind die Feldlinien des elektrische Feld +\begin{equation} + E(x,y) = V(x,y). +\end{equation} + + +Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete +komplexe Funktion $F(s)$ gefunden werden, +welche eine semi-infinite Platte beschreiben kann. + + +Die gesuchte Funktion in diesem Fall ist \begin{equation} - F(z) + F(s) = - \sqrt{z} + \sqrt{s} = \sqrt{x + iy}. \end{equation} Dies kann umgeformt werden zu \begin{equation} - F(z) + F(s) = \underbrace{\sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}}_{U(x,y)} + i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)} . \end{equation} -Die Äquipotentialflächen können nun betrachtet werden, indem man die Funktion welche das Potential beschreibt gleich eine Konstante setzt, -\begin{equation} - \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}, -\end{equation} -und die Flächen mit der gleichen elektrischen Feldstärke können als -\begin{equation} - \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}} -\end{equation} -beschrieben werden. Diese zwei Gleichungen zeigen nun wie man vom kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. Werden diese Formeln nun nach x und y aufgelöst so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann + + +Die Äquipotentialflächen können nun betrachtet werden, +indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt, \begin{equation} - x = \sigma \tau, +% \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}. + c_1 = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}. \end{equation} +Die Flächen mit der gleichen elektrischen Feldstärke können als \begin{equation} - y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ) +% \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}} + c_2 = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}} \end{equation} - - - - +beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom +kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. +%Werden diese Formeln nun nach $x$ und $y$ aufgelöst +%\begin{equation} +% x = \sigma \tau, +%\end{equation} +%\begin{equation} +% y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ), +%\end{equation} +%so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann. +Werden diese Formeln nun nach $x$ und $y$ aufgelöst +\begin{align} + x &= c_1^2 - c_2^2 ,\\ + y &= 2c_1 c_2, +\end{align} +so beschreiben sie mit $\tau = c_1 \sqrt{2}$ und $\sigma = c_2 \sqrt{2}$ die Beziehung +zwischen dem parabolischen Zylinderkoordinatensystem und dem kartesischen Koordinatensystem. diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 4e44bd6..1b59ed9 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -3,6 +3,102 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 3 -\label{parzyl:section:teil3}} -\rhead{Teil 3} +\section{Eigenschaften +\label{parzyl:section:Eigenschaften}} +\rhead{Eigenschaften} + +\subsection{Potenzreihenentwicklung + \label{parzyl:potenz}} +%Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, +%können auch als Potenzreihen geschrieben werden +Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. +Parabolische Zylinderfunktionen sind Linearkombinationen +$A(\alpha)w_1(\alpha, x) + B(\alpha)w_2(\alpha, x)$ aus einem geraden Teil $w_1(\alpha, x)$ +und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihen +\begin{align} + w_1(\alpha,x) + &= + e^{-x^2/4} \, + {}_{1} F_{1} + ( + \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}x^2) + = + e^{-\frac{x^2}{4}} + \sum^{\infty}_{n=0} + \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} + \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ + &= + e^{-\frac{x^2}{4}} + \left ( + 1 + + + \left ( 2\alpha \right )\frac{x^2}{2!} + + + \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{x^4}{4!} + + + \dots + \right ) +\end{align} +und +\begin{align} + w_2(\alpha,x) + &= + xe^{-x^2/4} \, + {}_{1} F_{1} + ( + {\textstyle \frac{1}{2}} + + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}x^2) + = + xe^{-\frac{x^2}{4}} + \sum^{\infty}_{n=0} + \frac{\left ( \frac{1}{2} + \alpha \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} + \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ + &= + e^{-\frac{x^2}{4}} + \left ( + x + + + \left ( 1 + 2\alpha \right )\frac{x^3}{3!} + + + \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{x^5}{5!} + + + \dots + \right ) +\end{align} +sind. +Die Potenzreihen sind in der regel unendliche Reihen. +Es gibt allerdings die Möglichkeit, dass für bestimmte $\alpha$ die Terme in der Klammer gleich null werden +und die Reihe somit eine endliche Anzahl $n$ Summanden hat. +Dies geschieht bei $w_1(\alpha,x)$, falls +\begin{equation} + \alpha = -n \qquad n \in \mathbb{N}_0 +\end{equation} +und bei $w_2(\alpha,x)$ falls +\begin{equation} + \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. +\end{equation} +Der Wert von $\alpha$ ist abhängig, ob man $D_n(x)$, $U(a,x)$ oder $V(a,x)$ verwendet. +Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt +$\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$. +\subsection{Ableitung} +Die Ableitungen $\frac{\partial w_1(\alpha, x)}{\partial x}$ und $\frac{\partial w_2(\alpha, x)}{\partial x}$ +können mit den Eigenschaften der hypergeometrischen Funktionen in Abschnitt +\ref{buch:rekursion:hypergeometrisch:stammableitung} berechnet werden. +Zusammen mit der Produktregel ergeben sich die Ableitungen +\begin{equation} + \frac{\partial w_1(\alpha,x)}{\partial x} = 2\alpha w_2(\alpha + \frac{1}{2}, x) - \frac{1}{2} x w_1(\alpha, x), +\end{equation} +und +%\begin{equation} +% \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k). +%\end{equation} +\begin{equation} + \frac{\partial w_2(\alpha,x)}{\partial x} = e^{-x^2/4} \left( + x^{-1} w_2(\alpha, x) - \frac{x}{2} w_2(\alpha, x) + 2 x^2 \left(\frac{\alpha + 1}{3}\right) + {}_{1} F_{1} ( + {\textstyle \frac{3}{2}} + + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}x^2) + \right) +\end{equation} +Nach dem selben Vorgehen können weitere Ableitungen berechnet werden. + |