aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville/eigenschaften.tex
diff options
context:
space:
mode:
authorhaddoucher <reda.haddouche@ost.ch>2022-08-22 14:43:20 +0200
committerhaddoucher <reda.haddouche@ost.ch>2022-08-22 14:43:20 +0200
commitd80e30b37d3b51fc4d47229fb3e88610fbc7a476 (patch)
tree8c8808681616d4ed3cb9ac5e088c28df4139a761 /buch/papers/sturmliouville/eigenschaften.tex
parentEinleitung (diff)
downloadSeminarSpezielleFunktionen-d80e30b37d3b51fc4d47229fb3e88610fbc7a476.tar.gz
SeminarSpezielleFunktionen-d80e30b37d3b51fc4d47229fb3e88610fbc7a476.zip
neuste Version
Diffstat (limited to '')
-rw-r--r--buch/papers/sturmliouville/eigenschaften.tex105
1 files changed, 86 insertions, 19 deletions
diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex
index fda8be6..4ab5e62 100644
--- a/buch/papers/sturmliouville/eigenschaften.tex
+++ b/buch/papers/sturmliouville/eigenschaften.tex
@@ -1,17 +1,78 @@
%
% eigenschaften.tex -- Eigenschaften der Lösungen
+% Author: Erik Löffler
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+
+% TODO:
+% state goal
+% use only what is necessary
+% make sure it is easy enough to understand (sentences as shot as possible)
+% -> Eigenvalue problem with matrices only
+% -> prepare reader for following examples
+%
+% order:
+% 1. Eigenvalue problems with matrices
+% 2. Sturm-Liouville is an Eigenvalue problem
+% 3. Sturm-Liouville operator (self-adjacent)
+% 4. Spectral theorem (brief)
+% 5. Base of orthonormal functions
+
\section{Eigenschaften von Lösungen
\label{sturmliouville:section:solution-properties}}
\rhead{Eigenschaften von Lösungen}
Im weiteren werden nun die Eigenschaften der Lösungen eines
+Sturm-Liouville-Problems diskutiert.
+Im wesendlichen wird darauf eingegangen, wie die Orthogonalität der Lösungen
+zustande kommt.
+Dazu wird zunächst das Eigenwertproblem für Matrizen wiederholt und angeschaut
+unter welchen Voraussetzungen die Lösungen orthogonal sind.
+Dann wird gezeigt, dass das Sturm-Liouville-Problem auch ein Eigenwertproblem
+dieser Art ist und es wird auf au die Orthogononalität der Lösungsfunktion
+geschlossen.
+
+\subsection{Eigenwertprobleme mit Matrizen}
+
+Das Eigenwertprobelm
+\[
+ A v
+ =
+ \lambda v
+\]
+für die $n \times n$-Matrix $A$, dem Eigenwert $\lambda$ und dem Eigenvektor $v$
+in der linearen Algebra wird häufig im Zusammenhang mit
+Matrixzerlegungen diskutiert.
+
+Mittels Spektralsatzes kann zum Beispiel geschlossen werden, dass wenn
+\[
+ <Av, w>
+ =
+ <v, Aw>
+\]
+gilt, die Matrix A symmetrisch (und somit selbstadjungiert) ist und somit eine
+Orthonormalbasis aus Eigenvektoren besitzt.
+In aneren Worten: durch diese Eigenschaft ist gegeben, dass A diagonalisierbar
+ist und alle Eigenvektoren orthogonal zueinander sind.
+
+\subsection{}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OLD section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\iffalse
+
+\section{OLD: Eigenschaften von Lösungen
+%\label{sturmliouville:section:solution-properties}
+}
+\rhead{Eigenschaften von Lösungen}
+
+Im weiteren werden nun die Eigenschaften der Lösungen eines
Sturm-Liouville-Problems diskutiert und aufgezeigt, wie diese Eigenschaften
zustande kommen.
-Dazu wird der Operator $L_0$ welcher bereits in
+Dazu wird der Operator $L_0$ welcher bereits in
Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet
wurde, noch etwas genauer angeschaut.
Es wird also im Folgenden
@@ -36,43 +97,49 @@ für die Lösungen des Sturm-Liouville-Problems zur Folge hat.
\subsubsection{Exkurs zum Spektralsatz}
-Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $L_0$ in
+Um zu verstehen welche Eigenschaften der selbstadjungierte Operator $L_0$ in
den Lösungen hervorbringt, wird der Spektralsatz benötigt.
Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix
diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert.
-Dazu wird zunächst gezeigt, dass eine gegebene $n\times n$-Matrix $A$ aus einem
-endlichdimensionalem $\mathbb{K}$-Vektorraum selbstadungiert ist, also dass
+
+Im Fall einer gegebenen $n\times n$-Matrix $A$ mit reellen Einträgen wird dazu
+zunächst gezeigt, dass $A$ selbstadjungiert ist, also dass
\[
\langle Av, w \rangle
=
\langle v, Aw \rangle
\]
-für $ v, w \in \mathbb{K}^n$ gilt.
-Ist dies der Fall, folgt direkt, dass $A$ auch normal ist.
-Dann wird die Aussage des Spektralsatzes
-\cite{sturmliouville:spektralsatz-wiki} verwended, welche besagt, dass für
-Endomorphismen genau dann eine Orthonormalbasis aus Eigenvektoren existiert,
-wenn sie normal sind und nur Eigenwerte aus $\mathbb{K}$ besitzten.
+für $ v, w \in \mathbb{R}^n$ gilt.
+Ist dies der Fall, kann die Aussage des Spektralsatzes
+\cite{sturmliouville:spektralsatz-wiki} verwended werden.
+Daraus folgt dann, dass eine Orthonormalbasis aus Eigenvektoren existiert,
+wenn $A$ nur Eigenwerte aus $\mathbb{R}$ besitzt.
Dies ist allerdings nicht die Einzige Version des Spektralsatzes.
-Unter anderen gibt es den Spektralsatz für kompakte Operatoren
-\cite{sturmliouville:spektralsatz-wiki}.
-Dieser besagt, dass wenn ein linearer kompakter Operator in
-$\mathbb{R}$ selbstadjungiert ist, ein (eventuell endliches)
-Orthonormalsystem existiert.
+Unter anderen gibt es den Spektralsatz für kompakte Operatoren
+\cite{sturmliouville:spektralsatz-wiki}, welcher für das
+Sturm-Liouville-Problem von Bedeutung ist.
+Welche Voraussetzungen erfüllt sein müssen, um diese Version des
+Satzes verwenden zu können, wird hier aber nicht diskutiert und kann bei den
+Beispielen in diesem Kapitel als gegeben betrachtet werden.
+Grundsätzlich ist die Aussage in dieser Version dieselbe, wie bei den Matrizen,
+also dass für ein Operator eine Orthonormalbasis aus Eigenvektoren existiert,
+falls er selbstadjungiert ist.
\subsubsection{Anwendung des Spektralsatzes auf $L_0$}
Der Spektralsatz besagt also, dass, weil $L_0$ selbstadjungiert ist, eine
Orthonormalbasis aus Eigenvektoren existiert.
Genauer bedeutet dies, dass alle Eigenvektoren, beziehungsweise alle Lösungen
-des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich dem
-Skalarprodukt, in dem $L_0$ selbstadjungiert ist.
+des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich des
+Skalarprodukts, in dem $L_0$ selbstadjungiert ist.
Erfüllt also eine Differenzialgleichung die in
-Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und
+Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und
erfüllen die Randbedingungen der Differentialgleichung die Randbedingungen
des Sturm-Liouville-Problems, kann bereits geschlossen werden, dass die
Lösungsfunktion des Problems eine Linearkombination aus orthogonalen
-Basisfunktionen ist. \ No newline at end of file
+Basisfunktionen ist.
+
+\fi