diff options
author | Erik Löffler <erik.loeffler@ost.ch> | 2022-08-15 09:51:21 +0200 |
---|---|---|
committer | Erik Löffler <erik.loeffler@ost.ch> | 2022-08-15 09:51:21 +0200 |
commit | d80f928a8c5248d4fb92d04ed81cdaeec61bc10a (patch) | |
tree | fa5df9c8fdd45307cd3a0ed03539bf6131a57b4a /buch/papers/sturmliouville | |
parent | Corrected some errors. (diff) | |
download | SeminarSpezielleFunktionen-d80f928a8c5248d4fb92d04ed81cdaeec61bc10a.tar.gz SeminarSpezielleFunktionen-d80f928a8c5248d4fb92d04ed81cdaeec61bc10a.zip |
Added comments to source.
Diffstat (limited to '')
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 20 |
1 files changed, 18 insertions, 2 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 5d178c2..14c0d9a 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -71,7 +71,9 @@ Somit folgen \end{equation} als Randbedingungen. -%%%%%%%%%%% Lösung der Differenzialgleichung %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% Lösung der Differenzialgleichung mittels Separation +% \subsubsection{Lösung der Differenzialgleichung} @@ -118,6 +120,10 @@ Differenzialgleichungen aufgeteilt werden: 0 \end{equation} +% +% Überprüfung Orthogonalität der Lösungen +% + Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in Sturm-Liouville-Form ist. Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des @@ -173,6 +179,10 @@ Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und somit auch zu orthogonalen Lösungen führen. +% +% Lösung von X(x), Teil mu +% + \subsubsection{Lösund der Differentialgleichung in x} Als erstes wird auf die erste erste Gleichung eingegangen. Aufgrund der Struktur der Gleichung @@ -338,7 +348,9 @@ wie auch mit isolierten Enden -\frac{n^{2}\pi^{2}}{l^{2}}. \end{equation} -%%%% Koeffizienten a_n und b_n mittels skalarprodukt. %%%%%%%%%%%%%%%%%%%%%%%%%% +% +% Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt. +% Bisher wurde über die Koeffizienten $A$ und $B$ noch nicht viel ausgesagt. Zunächst ist wegen vorhergehender Rechnung ersichtlich, dass es sich bei @@ -589,6 +601,10 @@ Es bleibt also noch \end{aligned} \] +% +% Lösung von T(t) +% + \subsubsection{Lösund der Differentialgleichung in t} Zuletzt wird die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t} betrachtet. |