diff options
author | Erik Löffler <erik.loeffler@ost.ch> | 2022-08-16 14:20:30 +0200 |
---|---|---|
committer | Erik Löffler <erik.loeffler@ost.ch> | 2022-08-16 14:20:30 +0200 |
commit | f7c0dfbd20c97ae0e617aec796f2adc6d81369dc (patch) | |
tree | bd050ea2f8d5407008c26b2fde91eac7c195d588 /buch/papers/sturmliouville | |
parent | Corrected some error to make tschebyscheff example (diff) | |
download | SeminarSpezielleFunktionen-f7c0dfbd20c97ae0e617aec796f2adc6d81369dc.tar.gz SeminarSpezielleFunktionen-f7c0dfbd20c97ae0e617aec796f2adc6d81369dc.zip |
Merged tschebyscheff section.
Diffstat (limited to 'buch/papers/sturmliouville')
-rw-r--r-- | buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 23 |
1 files changed, 19 insertions, 4 deletions
diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index 8561479..a18684f 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -28,10 +28,10 @@ Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. \end{equation}, jedoch ist die Orthogonalität nur auf dem Intervall $[ -1, 1]$ sichergestellt. -Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^-1$ und $w(x)>0$ sein müssen. +Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^{-1}$ und $w(x)>0$ sein müssen. Die Funktion \begin{equation*} - p(x)^-1 = \frac{1}{\sqrt{1-x^2}} + p(x)^{-1} = \frac{1}{\sqrt{1-x^2}} \end{equation*} ist die gleiche wie $w(x)$. @@ -40,10 +40,25 @@ Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man \begin{equation} \begin{aligned} - k_a y(-1) + h_a y'(-1) &= h_a + k_a y(-1) + h_a y'(-1) &= 0 + k_b y(-1) + h_b y'(-1) &= 0 \end{aligned} -\end{equation} +\end{equation}. +Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}). +Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$. +Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}). +Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$. +Somit erhält man +\begin{equation} + \begin{aligned} + k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\ + k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0 +\end{aligned} +\end{equation}. +Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. +Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. + |