aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/zeta/fazit.tex
diff options
context:
space:
mode:
authorrunterer <r.unterer@gmx.ch>2022-08-09 21:59:31 +0200
committerrunterer <r.unterer@gmx.ch>2022-08-09 21:59:31 +0200
commit970e6a8a2b2371834e8a4ff42123da59e3990fe4 (patch)
tree36aac907bb4cbaf56c3feaa31e9525ed42c03e2b /buch/papers/zeta/fazit.tex
parentused matlab to calculate zetapath.tex (diff)
downloadSeminarSpezielleFunktionen-970e6a8a2b2371834e8a4ff42123da59e3990fe4.tar.gz
SeminarSpezielleFunktionen-970e6a8a2b2371834e8a4ff42123da59e3990fe4.zip
Finished
Diffstat (limited to 'buch/papers/zeta/fazit.tex')
-rw-r--r--buch/papers/zeta/fazit.tex17
1 files changed, 8 insertions, 9 deletions
diff --git a/buch/papers/zeta/fazit.tex b/buch/papers/zeta/fazit.tex
index fe2d35d..e33083a 100644
--- a/buch/papers/zeta/fazit.tex
+++ b/buch/papers/zeta/fazit.tex
@@ -1,5 +1,5 @@
-\section{Fazit} \label{zeta:section:fazit}
-\rhead{Fazit}
+\section{Der Wert $\zeta(-1)$} \label{zeta:section:fazit}
+\rhead{Der Wert $\zeta(-1)$}
Ganz zu Beginn dieses Papers wurde die Behauptung erwähnt, dass die Summe aller natürlichen Zahlen $-\frac{1}{12}$ sei.
Diese Summe ist nichts anderes als die Zetafunktion am Wert $s=-1$.
@@ -17,7 +17,7 @@ Da wir die analytische Fortsetzung mit der Funktionalgleichung \eqref{zeta:equat
\zeta(2)
\frac{\pi^{-\frac{1}{2}}}{\Gamma \left( -\frac{1}{2} \right)}.
\end{align*}
-Also fehlen uns drei Werte, $\zeta(2)$, $\Gamma(1)$ und $\Gamma\left(-\frac{1}{2}\right)$.
+Also fehlen uns drei Werte, $\zeta(2)$, $\Gamma(1)$ und $\Gamma(-\frac{1}{2})$.
Zunächst konzentrieren wir uns auf $\zeta(2)$, welches im konvergenten Bereich der Reihe liegt und auch bekannt ist als das Basler Problem.
Wir lösen das Basler Problem \cite{zeta:online:basel} mithilfe der parsevalschen Gleichung \cite{zeta:online:pars}
@@ -44,7 +44,7 @@ Wenn wir dies für $f(x) = x$ auswerten erhalten wir
&=
2\pi \sum_{n=-\infty}^{\infty} |c_n|^2
=
- 4\pi \underbrace{\sum_{n=1}^{\infty} \frac{1}{n^2}}_{\zeta(2)}.
+ 4\pi \underbrace{\sum_{n=1}^{\infty} \frac{1}{n^2}}_{\displaystyle{\zeta(2)}}.
\end{align}
Durch einfaches Umstellen erhalten wir somit die Lösung des Basler Problems als
\begin{equation}
@@ -53,13 +53,13 @@ Durch einfaches Umstellen erhalten wir somit die Lösung des Basler Problems als
= \frac{\pi^2}{6}.
\end{equation}
-Als nächstes berechnen wir $\Gamma(1)$ und $\Gamma\left(-\frac{1}{2}\right)$ mithilfe der Integraldefinition der Gammafunktion \ref{buch:rekursion:def:gamma}.
-Da das Integral für $\Gamma\left(-\frac{1}{2}\right)$ nicht konvergiert, wird die Reflektionsformel aus \ref{buch:funktionentheorie:subsection:gammareflektion} verwendet, welche das konvergierende Integral von $\Gamma\left(\frac{3}{2}\right)$ verwendet.
+Als nächstes berechnen wir $\Gamma(1)$ und $\Gamma(-\frac{1}{2})$ mithilfe der Integraldefinition der Gammafunktion (Definition \ref{buch:rekursion:def:gamma}).
+Da das Integral für $\Gamma(-\frac{1}{2})$ nicht konvergiert, wird die Reflektionsformel aus \ref{buch:funktionentheorie:subsection:gammareflektion} verwendet, welche das konvergierende Integral von $\Gamma\left(\frac{3}{2}\right)$ verwendet.
Es ergeben sich die Werte
\begin{align*}
\Gamma(1)
&= 1\\
- \Gamma\left(-\frac{1}{2}\right)
+ \Gamma\biggl(-\frac{1}{2}\biggr)
&= \frac{\pi}{\sin\left(-\frac{\pi}{2}\right)
\Gamma\left(\frac{3}{2}\right)}
= -\frac{\sqrt{\pi}}{2}.
@@ -85,10 +85,9 @@ Wenn wir diese Werte in die Funktionalgleichung einsetzen, erhalten wir das gewÃ
Weiter wurde zu Beginn dieses Papers auf die Riemannsche Vermutung hingewiesen, wonach alle nichttrivialen Nullstellen der Zetafunktion auf der $\Re(s)=\frac{1}{2}$ Geraden liegen.
Abbildung \ref{zeta:fig:einzweitel} zeigt die Funktionswerte dieser Geraden.
-%TODO colorplot does not work.. Ausserdem zeigt Abbildung \ref{zeta:fig:colorplot} die farbcodierte Zetafunktion für Werte der analytischen Fortsetzung und des originalen Definitionsbereichs.
\begin{figure}
\centering
- \input{papers/zeta/images/zeta_re_0.5_paper.pgf}
+ \input{papers/zeta/images/zetaplot.tex}
\caption{Die komplexen Werte der Zetafunktion für die kritische Gerade $\Re(s)=\frac{1}{2}$ im Bereich $\Im(s) = 0\dots40$.
Klar sichtbar sind die immer wiederkehrenden Nullstellen, wie sie Gegenstand der Riemannschen Vermutung sind.}
\label{zeta:fig:einzweitel}