aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/zeta
diff options
context:
space:
mode:
authorrunterer <r.unterer@gmx.ch>2022-05-27 23:29:56 +0200
committerrunterer <r.unterer@gmx.ch>2022-05-27 23:29:56 +0200
commit42a5955183a1bc0678158c61fd6189c39d305697 (patch)
treed7236877dbdfe7630a2ed07c850e4a5dd99f88b8 /buch/papers/zeta
parentMinor improvements (diff)
downloadSeminarSpezielleFunktionen-42a5955183a1bc0678158c61fd6189c39d305697.tar.gz
SeminarSpezielleFunktionen-42a5955183a1bc0678158c61fd6189c39d305697.zip
added poissonsche summenformel
Diffstat (limited to 'buch/papers/zeta')
-rw-r--r--buch/papers/zeta/analytic_continuation.tex176
1 files changed, 171 insertions, 5 deletions
diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex
index 40424e0..0ccc116 100644
--- a/buch/papers/zeta/analytic_continuation.tex
+++ b/buch/papers/zeta/analytic_continuation.tex
@@ -106,15 +106,65 @@ und finden Zeta durch die Summenbildung $\sum_{n=1}^{\infty}$
\,dx. \label{zeta:equation:integral1}
\end{equation}
Die Summe kürzen wir ab als $\psi(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$.
-%TODO Wieso folgendes -> aus Fourier Signal
-Es gilt
+Im Abschnitt \ref{zeta:subsec:poisson_summation} wird die poissonsche Summenformel $\sum f(n) = \sum F(n)$ bewiesen.
+In unserem Problem ist $f(n) = e^{-\pi n^2 x}$ und die zugehörige Fouriertransformation $F(n)$ ist
+\begin{equation}
+ F(n)
+ =
+ \mathcal{F}
+ (
+ e^{-\pi n^2 x}
+ )
+ =
+ \frac{1}{\sqrt{x}}
+ e^{\frac{-n^2 \pi}{x}}.
+\end{equation}
+Dadurch ergibt sich
\begin{equation}\label{zeta:equation:psi}
- \psi(x)
+ \sum_{n=-\infty}^{\infty}
+ e^{-\pi n^2 x}
=
+ \frac{1}{\sqrt{x}}
+ \sum_{n=-\infty}^{\infty}
+ e^{\frac{-n^2 \pi}{x}},
+\end{equation}
+wobei wir die Summen so verändern müssen, dass sie bei $n=1$ beginnen und wir $\psi(x)$ erhalten als
+\begin{align}
+ 2
+ \sum_{n=1}^{\infty}
+ e^{-\pi n^2 x}
+ +
+ 1
+ &=
+ \frac{1}{\sqrt{x}}
+ \left(
+ 2
+ \sum_{n=1}^{\infty}
+ e^{\frac{-n^2 \pi}{x}}
+ +
+ 1
+ \right)
+ \\
+ 2
+ \psi(x)
+ +
+ 1
+ &=
+ \frac{1}{\sqrt{x}}
+ \left(
+ 2
+ \psi\left(\frac{1}{x}\right)
+ +
+ 1
+ \right)
+ \\
+ \psi(x)
+ &=
- \frac{1}{2}
+ \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}}
- + \frac{1}{2 \sqrt{x}}.
-\end{equation}
+ + \frac{1}{2 \sqrt{x}}.\label{zeta:equation:psi}
+\end{align}
+Diese Gleichung wird später wichtig werden.
Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf als
\begin{equation}\label{zeta:equation:integral2}
@@ -309,3 +359,119 @@ Somit haben wir die analytische Fortsetzung gefunden als
\zeta(1-s).
\end{equation}
%TODO Definitionen und Gleichungen klarer unterscheiden
+
+\subsection{Poissonsche Summenformel} \label{zeta:subsec:poisson_summation}
+
+Der Beweis für Gleichung \ref{zeta:equation:psi} folgt direkt durch die poissonsche Summenformel.
+Um diese zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion.
+
+\begin{lemma}
+ Die Fourierreihe der periodischen Dirac Delta Funktion $\sum \delta(x - 2\pi k)$ ist
+ \begin{equation} \label{zeta:equation:fourier_dirac}
+ \sum_{k=-\infty}^{\infty}
+ \delta(x - 2\pi k)
+ =
+ \frac{1}{2\pi}
+ \sum_{n=-\infty}^{\infty}
+ e^{i n x}.
+ \end{equation}
+\end{lemma}
+
+\begin{proof}[Beweis]
+ Eine Fourierreihe einer beliebigen periodischen Funktion $f(x)$ berechnet sich als
+ \begin{align}
+ f(x)
+ &=
+ \sum_{n=-\infty}^{\infty}
+ c_n
+ e^{i n x} \\
+ c_n
+ &=
+ \frac{1}{2\pi}
+ \int_{-\pi}^{\pi}
+ f(x)
+ e^{-i n x}
+ \, dx.
+ \end{align}
+ Wenn $f(x)=\delta(x)$ eingesetz wird ergeben sich konstante Koeffizienten
+ \begin{equation}
+ c_n
+ =
+ \frac{1}{2\pi}
+ \int_{-\pi}^{\pi}
+ \delta(x)
+ e^{-i n x}
+ \, dx
+ =
+ \frac{1}{2\pi},
+ \end{equation}
+ womit die sehr einfache Fourierreihe der Dirac Delta Funktion berechnet wäre.
+\end{proof}
+
+\begin{satz}[Poissonsche Summernformel]
+ Die Summe einer Funktion $f(n)$ über alle ganzen Zahlen $n$ ist äquivalent zur Summe ihrer Fouriertransformation $F(k)$ über alle ganzen Zahlen $k$
+ \begin{equation}
+ \sum_{n=-\infty}^{\infty}
+ f(n)
+ =
+ \sum_{k=-\infty}^{\infty}
+ F(k).
+ \end{equation}
+\end{satz}
+
+\begin{proof}[Beweis]
+ Wir schreiben die Summe über die Fouriertransformation aus
+ \begin{align}
+ \sum_{k=-\infty}^{\infty}
+ F(k)
+ &=
+ \sum_{k=-\infty}^{\infty}
+ \int_{-\infty}^{\infty}
+ f(x)
+ e^{-i 2\pi x k}
+ \, dx
+ \\
+ &=
+ \int_{-\infty}^{\infty}
+ f(x)
+ \underbrace{
+ \sum_{k=-\infty}^{\infty}
+ e^{-i 2\pi x k}
+ }_{\text{\eqref{zeta:equation:fourier_dirac}}}
+ \, dx,
+ \end{align}
+ und verwenden die Fouriertransformation der Dirac Funktion aus \eqref{zeta:equation:fourier_dirac}
+ \begin{align}
+ \sum_{k=-\infty}^{\infty}
+ e^{-i 2\pi x k}
+ &=
+ 2 \pi
+ \sum_{k=-\infty}^{\infty}
+ \delta(-2\pi x - 2\pi k)
+ \\
+ &=
+ \frac{2 \pi}{2 \pi}
+ \sum_{k=-\infty}^{\infty}
+ \delta(x + k).
+ \end{align}
+ Wenn wir dies einsetzen und erhalten wir den gesuchten Beweis für die poissonsche Summenformel
+ \begin{equation}
+ \sum_{k=-\infty}^{\infty}
+ F(k)
+ =
+ \int_{-\infty}^{\infty}
+ f(x)
+ \sum_{k=-\infty}^{\infty}
+ \delta(x + k)
+ \, dx
+ =
+ \sum_{k=-\infty}^{\infty}
+ \int_{-\infty}^{\infty}
+ f(x)
+ \delta(x + k)
+ \, dx
+ =
+ \sum_{k=-\infty}^{\infty}
+ f(k).
+ \end{equation}
+\end{proof}