diff options
author | runterer <r.unterer@gmx.ch> | 2022-05-14 18:21:13 +0200 |
---|---|---|
committer | runterer <r.unterer@gmx.ch> | 2022-05-14 18:21:13 +0200 |
commit | a28b0e8a16564e78aaecc299526fa8bb96964e0e (patch) | |
tree | 588896b97a08e79a5d8dca300bb7f736a01c2f33 /buch/papers/zeta | |
parent | minor fix (diff) | |
download | SeminarSpezielleFunktionen-a28b0e8a16564e78aaecc299526fa8bb96964e0e.tar.gz SeminarSpezielleFunktionen-a28b0e8a16564e78aaecc299526fa8bb96964e0e.zip |
corrections to zeta_gamma
Diffstat (limited to 'buch/papers/zeta')
-rw-r--r-- | buch/papers/zeta/zeta_gamma.tex | 53 |
1 files changed, 31 insertions, 22 deletions
diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex index 59c8744..bed4262 100644 --- a/buch/papers/zeta/zeta_gamma.tex +++ b/buch/papers/zeta/zeta_gamma.tex @@ -1,38 +1,47 @@ -\section{Zusammenhang mit Gammafunktion} \label{zeta:section:zusammenhang_mit_gammafunktion} -\rhead{Zusammenhang mit Gammafunktion} +\section{Zusammenhang mit der Gammafunktion} \label{zeta:section:zusammenhang_mit_gammafunktion} +\rhead{Zusammenhang mit der Gammafunktion} -Dieser Abschnitt stellt die Verbindung zwischen der Gamma- und der Zetafunktion her. +In diesem Abschnitt wird gezeigt, wie sich die Zetafunktion durch die Gammafunktion $\Gamma(s)$ ausdrücken lässt. +Dieser Zusammenhang der Art $\zeta(s) = f(\Gamma(s))$ wird später für die Herleitung der analytischen Fortsetzung gebraucht. %TODO ref Gamma -Wenn in der Gammafunkion die Integrationsvariable $t$ substituieren mit $t = nu$ und $dt = n du$, dann können wir die Gleichung umstellen und erhalten den Zusammenhang mit der Zetafunktion -\begin{align} +Wir erinnern uns an die Definition der Gammafunktion in \ref{buch:rekursion:gamma:integralbeweis} +\begin{equation*} + \Gamma(s) + = + \int_0^{\infty} t^{s-1} e^{-t} \,dt, +\end{equation*} +wobei die Notation an die Zetafunktion angepasst ist. +Durch die Substitution von $t$ mit $t = nu$ und $dt = n\,du$ wird daraus +\begin{align*} \Gamma(s) &= - \int_0^{\infty} t^{s-1} e^{-t} dt - \\ + \int_0^{\infty} n^{s-1}u^{s-1} e^{-nu} n \,du \\ &= - \int_0^{\infty} n^{s\cancel{-1}}u^{s-1} e^{-nu} \cancel{n}du - && - \text{Division durch }n^s - \\ + \int_0^{\infty} n^s u^{s-1} e^{-nu} \,du. +\end{align*} +Durch Division mit durch $n^s$ ergibt sich die Quotienten +\begin{equation*} \frac{\Gamma(s)}{n^s} - &= - \int_0^{\infty} u^{s-1} e^{-nu}du - && - \text{Zeta durch Summenbildung } \sum_{n=1}^{\infty} - \\ + = + \int_0^{\infty} u^{s-1} e^{-nu} \,du, +\end{equation*} +welche sich zur Zetafunktion summieren +\begin{equation} + \sum_{n=1}^{\infty} \frac{\Gamma(s)}{n^s} + = \Gamma(s) \zeta(s) - &= + = \int_0^{\infty} u^{s-1} \sum_{n=1}^{\infty}e^{-nu} - du. + \,du. \label{zeta:equation:zeta_gamma1} -\end{align} +\end{equation} Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhalten \begin{align} - \sum_{n=1}^{\infty}e^{-u^n} + \sum_{n=1}^{\infty}\left(e^{-u}\right)^n &= - \sum_{n=0}^{\infty}e^{-u^n} + \sum_{n=0}^{\infty}\left(e^{-u}\right)^n - 1 \\ @@ -42,7 +51,7 @@ Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhal &= \frac{1}{e^u - 1}. \end{align} -Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir +Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir %TODO formulieren als Satz \begin{equation}\label{zeta:equation:zeta_gamma_final} \zeta(s) = |