diff options
author | enezerdem <105669082+enezerdem@users.noreply.github.com> | 2022-05-19 18:19:46 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-05-19 18:19:46 +0200 |
commit | 41d03e92c28cf6a62721868817b95f1474e363f5 (patch) | |
tree | 444c99dadd5c08ec762cc02e4f722c10dee1e55e /buch/papers | |
parent | update korrektur (diff) | |
parent | fixes (diff) | |
download | SeminarSpezielleFunktionen-41d03e92c28cf6a62721868817b95f1474e363f5.tar.gz SeminarSpezielleFunktionen-41d03e92c28cf6a62721868817b95f1474e363f5.zip |
Merge pull request #2 from AndreasFMueller/master
synch
Diffstat (limited to 'buch/papers')
25 files changed, 591 insertions, 28 deletions
diff --git a/buch/papers/fresnel/Makefile b/buch/papers/fresnel/Makefile index 11af3a7..ed74861 100644 --- a/buch/papers/fresnel/Makefile +++ b/buch/papers/fresnel/Makefile @@ -3,20 +3,6 @@ # # (c) 2022 Prof Dr Andreas Mueller # -all: fresnelgraph.pdf eulerspirale.pdf pfad.pdf - images: @echo "no images to be created in fresnel" -eulerpath.tex: eulerspirale.m - octave eulerspirale.m - -fresnelgraph.pdf: fresnelgraph.tex eulerpath.tex - pdflatex fresnelgraph.tex - -eulerspirale.pdf: eulerspirale.tex eulerpath.tex - pdflatex eulerspirale.tex - -pfad.pdf: pfad.tex - pdflatex pfad.tex - diff --git a/buch/papers/fresnel/images/Makefile b/buch/papers/fresnel/images/Makefile new file mode 100644 index 0000000..eb7dc57 --- /dev/null +++ b/buch/papers/fresnel/images/Makefile @@ -0,0 +1,38 @@ +# +# Makefile +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +all: schale.pdf \ + fresnelgraph.pdf \ + eulerspirale.pdf \ + pfad.pdf \ + apfel.pdf \ + kruemmung.pdf + +schale.png: schale.pov + povray +A0.1 -W1920 -H1080 -Oschale.png schale.pov + +schale.jpg: schale.png Makefile + convert -extract 1240x1080+340 schale.png -density 300 -units PixelsPerInch schale.jpg + +schale.pdf: schale.tex schale.jpg + pdflatex schale.tex + +eulerpath.tex: eulerspirale.m + octave eulerspirale.m + +fresnelgraph.pdf: fresnelgraph.tex eulerpath.tex + pdflatex fresnelgraph.tex + +eulerspirale.pdf: eulerspirale.tex eulerpath.tex + pdflatex eulerspirale.tex + +pfad.pdf: pfad.tex + pdflatex pfad.tex + +apfel.pdf: apfel.tex apfel.jpg eulerpath.tex + pdflatex apfel.tex + +kruemmung.pdf: kruemmung.tex + pdflatex kruemmung.tex diff --git a/buch/papers/fresnel/images/apfel.jpg b/buch/papers/fresnel/images/apfel.jpg Binary files differnew file mode 100644 index 0000000..76e48e7 --- /dev/null +++ b/buch/papers/fresnel/images/apfel.jpg diff --git a/buch/papers/fresnel/images/apfel.pdf b/buch/papers/fresnel/images/apfel.pdf Binary files differnew file mode 100644 index 0000000..69e5092 --- /dev/null +++ b/buch/papers/fresnel/images/apfel.pdf diff --git a/buch/papers/fresnel/images/apfel.tex b/buch/papers/fresnel/images/apfel.tex new file mode 100644 index 0000000..754886b --- /dev/null +++ b/buch/papers/fresnel/images/apfel.tex @@ -0,0 +1,49 @@ +% +% apfel.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{7} +\def\hoehe{4} + +\input{eulerpath.tex} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\begin{scope} +\clip(-0.6,-0.6) rectangle (7,6); +\node at (3.1,2.2) [rotate=-3] {\includegraphics[width=9.4cm]{apfel.jpg}}; +\end{scope} + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\draw[color=gray!50] (0,0) rectangle (4,4); +\draw[->] (-0.5,0) -- (7.5,0) coordinate[label={$C(t)$}]; +\draw[->] (0,-0.5) -- (0,6.0) coordinate[label={left:$S(t)$}]; +\begin{scope}[scale=8] +\draw[color=red,opacity=0.5,line width=1.4pt] \fresnela; +\end{scope} + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/fresnel/eulerspirale.m b/buch/papers/fresnel/images/eulerspirale.m index 84e3696..84e3696 100644 --- a/buch/papers/fresnel/eulerspirale.m +++ b/buch/papers/fresnel/images/eulerspirale.m diff --git a/buch/papers/fresnel/eulerspirale.pdf b/buch/papers/fresnel/images/eulerspirale.pdf Binary files differindex 4a85a50..db74e4b 100644 --- a/buch/papers/fresnel/eulerspirale.pdf +++ b/buch/papers/fresnel/images/eulerspirale.pdf diff --git a/buch/papers/fresnel/eulerspirale.tex b/buch/papers/fresnel/images/eulerspirale.tex index 38ef756..38ef756 100644 --- a/buch/papers/fresnel/eulerspirale.tex +++ b/buch/papers/fresnel/images/eulerspirale.tex diff --git a/buch/papers/fresnel/fresnelgraph.pdf b/buch/papers/fresnel/images/fresnelgraph.pdf Binary files differindex 9ccad56..c658901 100644 --- a/buch/papers/fresnel/fresnelgraph.pdf +++ b/buch/papers/fresnel/images/fresnelgraph.pdf diff --git a/buch/papers/fresnel/fresnelgraph.tex b/buch/papers/fresnel/images/fresnelgraph.tex index 20df951..20df951 100644 --- a/buch/papers/fresnel/fresnelgraph.tex +++ b/buch/papers/fresnel/images/fresnelgraph.tex diff --git a/buch/papers/fresnel/images/kruemmung.pdf b/buch/papers/fresnel/images/kruemmung.pdf Binary files differnew file mode 100644 index 0000000..1180116 --- /dev/null +++ b/buch/papers/fresnel/images/kruemmung.pdf diff --git a/buch/papers/fresnel/images/kruemmung.tex b/buch/papers/fresnel/images/kruemmung.tex new file mode 100644 index 0000000..af0a1a9 --- /dev/null +++ b/buch/papers/fresnel/images/kruemmung.tex @@ -0,0 +1,51 @@ +% +% kruemmung.tex -- Krümmung einer ebenen Kurve +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\begin{scope} +\clip (-1,-1) rectangle (4,4); + +\def\r{3} +\def\winkel{30} + +\fill[color=blue!20] (0,0) -- (0:{0.6*\r}) arc (0:\winkel:{0.6*\r}) -- cycle; +\fill[color=blue!20] (\winkel:\r) + -- ($(\winkel:\r)+(0,{0.6*\r})$) arc (90:{90+\winkel}:{0.6*\r}) -- cycle; +\node[color=blue] at ({0.5*\winkel}:{0.45*\r}) {$\Delta\varphi$}; + +\node[color=blue] at ($(\winkel:\r)+({90+0.5*\winkel}:{0.45*\r})$) + {$\Delta\varphi$}; + +\draw[line width=0.3pt] (0,0) circle[radius=\r]; + +\draw[->] (0,0) -- (0:\r); +\draw[->] (0,0) -- (\winkel:\r); + +\draw[->] (0:\r) -- ($(0:\r)+(90:0.7*\r)$); +\draw[->] (\winkel:\r) -- ($(\winkel:\r)+({90+\winkel}:0.7*\r)$); +\draw[->,color=gray] (\winkel:\r) -- ($(\winkel:\r)+(0,0.7*\r)$); + +\draw[color=red,line width=1.4pt] (0:\r) arc (0:\winkel:\r); +\node[color=red] at ({0.5*\winkel}:\r) [left] {$\Delta s$}; +\fill[color=red] (0:\r) circle[radius=0.05]; +\fill[color=red] (\winkel:\r) circle[radius=0.05]; + +\node at (\winkel:{0.5*\r}) [above] {$r$}; +\node at (0:{0.5*\r}) [below] {$r$}; +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/fresnel/pfad.pdf b/buch/papers/fresnel/images/pfad.pdf Binary files differindex ff514cc..df3c7af 100644 --- a/buch/papers/fresnel/pfad.pdf +++ b/buch/papers/fresnel/images/pfad.pdf diff --git a/buch/papers/fresnel/pfad.tex b/buch/papers/fresnel/images/pfad.tex index 5439a71..680cd78 100644 --- a/buch/papers/fresnel/pfad.tex +++ b/buch/papers/fresnel/images/pfad.tex @@ -15,6 +15,9 @@ \definecolor{darkgreen}{rgb}{0,0.6,0} \begin{tikzpicture}[>=latex,thick,scale=\skala] +\fill[color=gray!40] (0,0) -- (2,0) arc (0:45:2) -- cycle; +\node at (22.5:1.4) {$\displaystyle\frac{\pi}4$}; + \draw[->] (-1,0) -- (9,0) coordinate[label={$\operatorname{Re}$}]; \draw[->] (0,-1) -- (0,6) coordinate[label={left:$\operatorname{Im}$}]; diff --git a/buch/papers/fresnel/images/schale.pdf b/buch/papers/fresnel/images/schale.pdf Binary files differnew file mode 100644 index 0000000..9c21951 --- /dev/null +++ b/buch/papers/fresnel/images/schale.pdf diff --git a/buch/papers/fresnel/images/schale.pov b/buch/papers/fresnel/images/schale.pov new file mode 100644 index 0000000..085a6a4 --- /dev/null +++ b/buch/papers/fresnel/images/schale.pov @@ -0,0 +1,191 @@ +// +// schale.pov -- +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#version 3.7; +#include "colors.inc" + +#declare O = <0,0,0>; + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.036; + +camera { + location <40, 20, -20> + look_at <0, 0.5, 0> + right 16/9 * x * imagescale + up y * imagescale +} + +light_source { + <10, 10, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + +sphere { + <0, 0, 0>, 1 + pigment { + color rgb<0.8,0.8,0.8> + } + finish { + specular 0.95 + metallic + } +} + +#declare stripcolor = rgb<0.2,0.2,0.8>; + +#declare R = 1.002; + +#macro punkt(phi,theta) +R * < cos(phi) * cos(theta), sin(theta), sin(phi) * cos(theta) > +#end + +#declare N = 24; +#declare thetaphi = 0.01; +#declare thetawidth = pi * 0.008; +#declare theta = function(phi) { phi * thetaphi } + +#declare axisdiameter = 0.007; + +cylinder { + < 0, -2, 0>, < 0, 2, 0>, axisdiameter + pigment { + color White + } + finish { + specular 0.95 + metallic + } +} + +#declare curvaturecircle = 0.008; +#declare curvaturecirclecolor = rgb<0.4,0.8,0.4>; + +#declare phit = 12.8 * 2 * pi; +#declare P = punkt(phit, theta(phit)); +#declare Q = <0, R / sin(theta(phit)), 0>; + +#declare e1 = vnormalize(P - Q) / tan(theta(phit)); +#declare e2 = vnormalize(vcross(e1, <0,1,0>)) / tan(theta(phit)); +#declare psimin = -0.1 * pi; +#declare psimax = 0.1 * pi; +#declare psistep = (psimax - psimin) / 30; + +union { + #declare psi = psimin; + #declare K = Q + cos(psi) * e1 + sin(psi) * e2; + #while (psi < psimax - psistep/2) + sphere { K, curvaturecircle } + #declare psi = psi + psistep; + #declare K2 = Q + cos(psi) * e1 + sin(psi) * e2; + cylinder { K, K2, curvaturecircle } + #declare K = K2; + #end + sphere { K, curvaturecircle } + pigment { + color curvaturecirclecolor + } + finish { + specular 0.95 + metallic + } +} + +object { + mesh { + #declare psi = psimin; + #declare K = Q + cos(psi) * e1 + sin(psi) * e2; + #while (psi < psimax - psistep/2) + #declare psi = psi + psistep; + #declare K2 = Q + cos(psi) * e1 + sin(psi) * e2; + triangle { K, K2, Q } + #declare K = K2; + #end + } + pigment { + color rgbt<0.4,0.8,0.4,0.5> + } + finish { + specular 0.95 + metallic + } +} + +union { + sphere { P, 0.02 } + sphere { Q, 0.02 } + cylinder { P, Q, 0.01 } + pigment { + color Red + } + finish { + specular 0.95 + metallic + } +} + +#declare phisteps = 300; +#declare phistep = 2 * pi / phisteps; +#declare phimin = 0; +#declare phimax = N * 2 * pi; + +object { + mesh { + #declare phi = phimin; + #declare Poben = punkt(phi, theta(phi) + thetawidth); + #declare Punten = punkt(phi, theta(phi) - thetawidth); + triangle { O, Punten, Poben } + #while (phi < phimax - phistep/2) + #declare phi = phi + phistep; + #declare Poben2 = punkt(phi, theta(phi) + thetawidth); + #declare Punten2 = punkt(phi, theta(phi) - thetawidth); + triangle { O, Punten, Punten2 } + triangle { O, Poben, Poben2 } + triangle { Punten, Punten2, Poben } + triangle { Punten2, Poben2, Poben } + #declare Poben = Poben2; + #declare Punten = Punten2; + #end + triangle { O, Punten, Poben } + } + pigment { + color stripcolor + } + finish { + specular 0.8 + metallic + } +} + +union { + #declare phi = phimin; + #declare P = punkt(phi, theta(phi)); + #while (phi < phimax - phistep/2) + sphere { P, 0.003 } + #declare phi = phi + phistep; + #declare P2 = punkt(phi, theta(phi)); + cylinder { P, P2, 0.003 } + #declare P = P2; + #end + sphere { P, 0.003 } + pigment { + color stripcolor + } + finish { + specular 0.8 + metallic + } +} diff --git a/buch/papers/fresnel/images/schale.tex b/buch/papers/fresnel/images/schale.tex new file mode 100644 index 0000000..577ede4 --- /dev/null +++ b/buch/papers/fresnel/images/schale.tex @@ -0,0 +1,77 @@ +% +% schlange.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math,calc} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} +\def\a{47} +\def\r{3.3} +\def\skala{0.95} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\begin{scope}[xshift=-7.4cm,yshift=-1.2cm] + \clip (-3.6,-2.2) rectangle (3.6,5.1); + + \fill[color=blue!20] (0,0) + -- ({180-\a}:{0.4*\r}) arc ({180-\a}:180:{0.4*\r}) + -- cycle; + \node[color=blue] at ({180-\a/2}:{0.3*\r}) {$\vartheta$}; + + \fill[color=blue!20] (0,{\r/sin(\a)}) + -- ($(0,{\r/sin(\a)})+({270-\a}:{0.3*\r})$) + arc ({270-\a}:270:{0.3*\r}) + -- cycle; + \node[color=blue] at ($(0,{\r/sin(\a)})+({270-\a/2}:{0.2*\r})$) + {$\vartheta$}; + + + \draw (0,0) circle[radius=\r]; + \draw[->] (0,-3.0) -- (0,5); + \draw ({-\r-0.2},0) -- ({\r+0.2},0); + \fill (0,0) circle[radius=0.06]; + + \draw (0,0) -- ({180-\a}:\r); + \node at ({180-\a+3}:{0.65*\r}) [above right] {$1$}; + + \draw[color=red,line width=1.4pt] + ({180-\a}:\r) -- (0,{\r/cos(90-\a)}); + \fill[color=red] ({180-\a}:\r) circle[radius=0.08]; + \fill[color=red] (0,{\r/cos(90-\a)}) circle[radius=0.08]; + \node[color=red] at (-1.0,3.7) [left] {$r=\cot\vartheta$}; + \node[color=red] at ({180-\a}:\r) [above left] {$P$}; + \node[color=red] at (0,{\r/sin(\a)}) [right] {$Q$}; +\end{scope} + +% Povray Bild +\node at (0,0) {\includegraphics[width=7.6cm]{schale.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node[color=red] at (-1.4,1.4) {$r$}; +\node[color=red] at (-2.2,-0.2) {$P$}; +\node[color=red] at (0,3.3) [right] {$Q$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/fresnel/main.tex b/buch/papers/fresnel/main.tex index e6ee3b5..2050fd4 100644 --- a/buch/papers/fresnel/main.tex +++ b/buch/papers/fresnel/main.tex @@ -8,6 +8,11 @@ \begin{refsection} \chapterauthor{Andreas Müller} +{\parindent0pt Die} Fresnel-Integrale tauchen in der Untersuchung der Beugung +in paraxialer Näherung auf, auch bekannt als die Fresnel-Approximation. +In diesem Kapitel betrachen wir jedoch nur die geometrische +Anwendung der Fresnel-Integrale als Parametrisierung der Euler-Spirale +und zeigen, dass letztere eine Klothoide ist. \input{papers/fresnel/teil0.tex} \input{papers/fresnel/teil1.tex} diff --git a/buch/papers/fresnel/references.bib b/buch/papers/fresnel/references.bib index 58e9242..cf8fb21 100644 --- a/buch/papers/fresnel/references.bib +++ b/buch/papers/fresnel/references.bib @@ -44,3 +44,9 @@ title = { Fresnel Integral }, date = { 2022-05-13 } } + +@online{fresnel:schale, + url = { https://www.youtube.com/watch?v=D3tdW9l1690 }, + title = { A Strange Map Projection (Euler Spiral) - Numberphile }, + date = { 2022-05-14 } +} diff --git a/buch/papers/fresnel/teil0.tex b/buch/papers/fresnel/teil0.tex index 253e2f3..85b8bf7 100644 --- a/buch/papers/fresnel/teil0.tex +++ b/buch/papers/fresnel/teil0.tex @@ -20,7 +20,7 @@ C(x) &= \int_0^x \cos\biggl(\frac{\pi}2 t^2\biggr)\,dt \\ S(x) &= \int_0^x \sin\biggl(\frac{\pi}2 t^2\biggr)\,dt \end{align*} -heissen die Fesnel-Integrale. +heissen die Fresnel-Integrale. \end{definition} Der Faktor $\frac{\pi}2$ ist einigermassen willkürlich, man könnte @@ -39,7 +39,7 @@ C(x) &= C_{\frac{\pi}2}(x), S(x) &= S_{\frac{\pi}2}(x). \end{aligned} \] -Durch eine Substution $t=bs$ erhält man +Durch eine Substitution $t=bs$ erhält man \begin{align*} C_a(x) &= @@ -91,7 +91,7 @@ $C_1(x)$ und $S_1(x)$ betrachten, da in diesem Fall die Formeln einfacher werden. \begin{figure} \centering -\includegraphics{papers/fresnel/fresnelgraph.pdf} +\includegraphics{papers/fresnel/images/fresnelgraph.pdf} \caption{Graph der Funktionen $C(x)$ ({\color{red}rot}) und $S(x)$ ({\color{blue}blau}) \label{fresnel:figure:plot}} diff --git a/buch/papers/fresnel/teil1.tex b/buch/papers/fresnel/teil1.tex index a41ddb7..c716cd7 100644 --- a/buch/papers/fresnel/teil1.tex +++ b/buch/papers/fresnel/teil1.tex @@ -8,7 +8,7 @@ \rhead{Euler-Spirale} \begin{figure} \centering -\includegraphics{papers/fresnel/eulerspirale.pdf} +\includegraphics{papers/fresnel/images/eulerspirale.pdf} \caption{Die Eulerspirale ist die Kurve mit der Parameterdarstellung $x\mapsto (C(x),S(x))$, sie ist rot dargestellt. Sie windet sich unendlich oft um die beiden Punkte $(\pm\frac12,\pm\frac12)$. @@ -25,7 +25,7 @@ $(\pm\frac12,\pm\frac12)$ zu winden. \begin{figure} \centering -\includegraphics{papers/fresnel/pfad.pdf} +\includegraphics{papers/fresnel/images/pfad.pdf} \caption{Pfad zur Berechnung der Grenzwerte $C_1(\infty)$ und $S_1(\infty)$ mit Hilfe des Cauchy-Integralsatzes \label{fresnel:figure:pfad}} @@ -182,7 +182,7 @@ muss, folgt $C_1(\infty)=S_1(\infty)$. Nach Multlikation mit $\sqrt{2}$ folgt aus der Tatsache, dass auch der Realteil verschwinden muss \[ -\frac{\sqrt{\pi}}{\sqrt{2}} = C_1(\infty)+S_1(\infty) +\sqrt{\frac{\pi}{2}} = C_1(\infty)+S_1(\infty) \qquad \Rightarrow \qquad @@ -190,7 +190,10 @@ C_1(\infty) = S_1(\infty) = -\frac{\sqrt{\pi}}{2\sqrt{2}}. +\frac12 +\sqrt{ +\frac{\pi}{2} +}. \] Aus \eqref{fresnel:equation:arg} diff --git a/buch/papers/fresnel/teil2.tex b/buch/papers/fresnel/teil2.tex index 22d2a89..ec8c896 100644 --- a/buch/papers/fresnel/teil2.tex +++ b/buch/papers/fresnel/teil2.tex @@ -15,10 +15,165 @@ Eine ebene Kurve, deren Krümmung proportionale zur Kurvenlänge ist, heisst {\em Klothoide}. \end{definition} -Die Klothoide wird zum Beispiel im Strassenbau bei Autobahnkurven -angewendet. -Fährt man mit konstanter Geschwindigkeit mit entlang einer Klothoide, +Die Klothoide wird zum Beispiel im Strassenbau für Autobahnkurven +verwendet. +Fährt man mit konstanter Geschwindigkeit entlang einer Klothoide, muss man die Krümmung mit konstaner Geschwindigkeit ändern, also das Lenkrad mit konstanter Geschwindigkeit drehen. Dies ermöglicht eine ruhige Fahrweise. +\subsection{Krümmung einer ebenen Kurve} +\begin{figure} +\centering +\includegraphics{papers/fresnel/images/kruemmung.pdf} +\caption{Berechnung der Krümmung einer ebenen Kurve. +\label{fresnel:figure:kruemmung}} +\end{figure} +Abbildung~\ref{fresnel:figure:kruemmung} erinnert daran, dass der +Bogen eines Kreises vom Radius $r$, entlang dem sich die Richtung +der Tangente um $\Delta\varphi$ ändert, die Länge +$\Delta s = r\Delta\varphi$. +Die Krümmung ist der Kehrwert des Krümmungsradius, daraus kann +man ablesen, dass +\[ +\kappa = \frac{1}{r} = \frac{\Delta \varphi}{\Delta s}. +\] +Für eine beliebige ebene Kurve ist daher die Krümmung +\[ +\kappa = \frac{d\varphi}{ds}. +\] + +\subsection{Krümmung der Euler-Spirale} +Wir betrachten jetzt die Euler-Spirale mit der Parametrisierung +$\gamma(s) = (C_1(s),S_1(s))$. +Zunächst stellen wir fest, dass die Länge der Tangente +\[ +\dot{\gamma}(s) += +\frac{d\gamma}{ds} += +\begin{pmatrix} +\dot{C}_1(s)\\ +\dot{S}_1(s) +\end{pmatrix} += +\begin{pmatrix} +\cos s^2\\ +\sin s^2 +\end{pmatrix} +\qquad\Rightarrow\qquad +|\dot{\gamma}(s)| += +\sqrt{\cos^2s^2+\sin^2s^2} += +1. +\] +Insbesondere ist der Parameter $s$ der Kurve $\gamma(s)$ die +Bogenlänge. + +Der zu $\dot{\gamma}(s)$ gehörige Polarwinkel kann aus dem Vergleich +mit einem Vektor mit bekanntem Polarwinkel $\varphi$ abgelesen werden: +\[ +\begin{pmatrix} +\cos \varphi\\ +\sin \varphi +\end{pmatrix} += +\dot{\gamma}(s) += +\begin{pmatrix} +\cos s^2\\\sin s^2 +\end{pmatrix}, +\] +der Polarwinkel +ist daher $\varphi = s^2$. +Die Krümmung ist die Ableitung des Polarwinkels nach $s$, also +\[ +\kappa += +\frac{d\varphi}{ds} += +\frac{ds^2}{ds} += +2s, +\] +sie ist somit proportional zur Bogenlänge $s$. +Damit folgt, dass die Euler-Spirale eine Klothoide ist. + +\subsection{Eine Kugel schälen} +\begin{figure} +\centering +\includegraphics[width=\textwidth]{papers/fresnel/images/schale.pdf} +\caption{Schält man eine einen Streifen konstanter Breite beginnend am +Äquator von einer Kugel ab und breitet ihn in der Ebene aus, entsteht +eine Klothoide. +\label{fresnel:figure:schale}} +\end{figure} +\begin{figure} +\centering +\includegraphics{papers/fresnel/images/apfel.pdf} +\caption{Klothoide erhalten durch Abschälen eines Streifens von einem +Apfel (vgl.~Abbildung~\ref{fresnel:figure:schale}) +\label{fresnel:figure:apfel}} +\end{figure} +Schält man einen Streifen konstanter Breite beginnend parallel zum Äquator +von einer Kugel ab und breitet ihn in die Ebene aus, entsteht eine +Approximation einer Klothoide. +Abbildung~\ref{fresnel:figure:schale} zeigt blau den abgeschälten Streifen, +Abbildung~\ref{fresnel:figure:apfel} zeigt das Resultat dieses Versuches +an einem Apfel, das Youtube-Video \cite{fresnel:schale} des +Numberphile-Kanals illustriert das Problem anhand eines aufblasbaren +Globus. + +Windet sich die Kurve in Abbildung~\ref{fresnel:figure:schale} $n$ +mal um die vertikale Achse, bevor sie den Nordpol erreicht, dann kann +die Kurve mit der Funktion +\[ +\gamma(t) += +\begin{pmatrix} +\cos(t) \cos(t/n) \\ +\sin(t) \cos(t/n) \\ +\sin(t/n) +\end{pmatrix} +\] +parametrisiert werden. +Der Tangentialvektor +\[ +\dot{\gamma}(t) += +\begin{pmatrix} +-\sin(t)\cos(t/n) - \cos(t)\sin(t/n)/n \\ +\cos(t)\cos(t/n) - \sin(t)\sin(t/n)/n \\ +\cos(t/n)/n +\end{pmatrix} +\] +hat die Länge +\[ +| \dot{\gamma}(t) |^2 += +\frac{1}{n^2} ++ +\cos^2\frac{t}{n}. +\] +Die Ableitung der Bogenlänge ist daher +\[ +\dot{s}(t) += +\sqrt{ +\frac{1}{n^2} ++ +\cos^2\frac{t}{n} +}. +\] + + +Der Krümmungsradius des blauen Streifens, der die Kugel im Punkt $P$ bei +geographischer $\vartheta$ berührt, hat die Länge der Tangente, die +die Kugel im Punkt $P$ berührt und im Punkt $Q$ durch die Achse der +Kugel geht (Abbildung~\ref{fresnel:figure:schale}). +Die Krümmung in Abhängigkeit von $\vartheta$ ist daher $\tan\vartheta$. + + + + diff --git a/buch/papers/fresnel/teil3.tex b/buch/papers/fresnel/teil3.tex index 37e6bee..ceddbe0 100644 --- a/buch/papers/fresnel/teil3.tex +++ b/buch/papers/fresnel/teil3.tex @@ -42,8 +42,8 @@ C'(x) = \cos \biggl(\frac{\pi}2 x^2\biggr) \qquad\text{und}\qquad S'(x) = \sin \biggl(\frac{\pi}2 x^2\biggr) \] -erfüllen, kann man eine Methode zur Lösung von Differentialgleichung -verwenden. +erfüllen, kann man eine Methode zur numerischen Lösung von +Differentialgleichung verwenden. Die Abbildungen~\ref{fresnel:figure:plot} und \ref{fresnel:figure:eulerspirale} wurden auf diese Weise erzeugt. diff --git a/buch/papers/nav/Makefile.inc b/buch/papers/nav/Makefile.inc index 24ab4ee..5e86543 100644 --- a/buch/papers/nav/Makefile.inc +++ b/buch/papers/nav/Makefile.inc @@ -8,7 +8,6 @@ dependencies-nav = \ papers/nav/main.tex \ papers/nav/einleitung.tex \ papers/nav/flatearth.tex \ - papers/nav/geschichte.tex \ papers/nav/nautischesdreieck.tex \ papers/nav/sincos.tex \ papers/nav/trigo.tex \ diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index 0a498f0..c1ad38a 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -195,4 +195,4 @@ Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Wink Somit ist \[ \omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}] \]und unsere gesuchte geographische Länge schlussendlich \[\lambda=\lambda_1 - \omega\] -mit $\lambda_1$=Längengrad Bildpunkt $X +mit $\lambda_1$=Längengrad Bildpunkt $X$ |