diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2022-06-21 17:54:12 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2022-06-21 17:54:12 +0200 |
commit | 98e2356f6d690fc6840c3ec5ae8b9eaf21771df2 (patch) | |
tree | 0917429685eff5199d89e667770f0c8cdd99f232 /buch | |
parent | jacobi stuff completed (diff) | |
download | SeminarSpezielleFunktionen-98e2356f6d690fc6840c3ec5ae8b9eaf21771df2.tar.gz SeminarSpezielleFunktionen-98e2356f6d690fc6840c3ec5ae8b9eaf21771df2.zip |
bessel 2nd kind
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/050-differential/bessel.tex | 22 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/legendredgl.tex | 2 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/sturm.tex | 17 | ||||
-rw-r--r-- | buch/chapters/080-funktionentheorie/chapter.tex | 5 | ||||
-rw-r--r-- | buch/chapters/080-funktionentheorie/singularitaeten.tex | 176 | ||||
-rw-r--r-- | buch/chapters/references.bib | 11 |
6 files changed, 209 insertions, 24 deletions
diff --git a/buch/chapters/050-differential/bessel.tex b/buch/chapters/050-differential/bessel.tex index cf271e3..4e1c58c 100644 --- a/buch/chapters/050-differential/bessel.tex +++ b/buch/chapters/050-differential/bessel.tex @@ -129,7 +129,8 @@ ist. % % Bessel-Funktionen erster Art % -\subsection{Bessel-Funktionen erster Art} +\subsection{Bessel-Funktionen erster Art +\label{buch:differentialgleichungen:subsection:bessel1steart}} Für $\alpha \ge 0$ gibt es immer mindestens eine Lösung der Besselgleichung als verallgemeinerte Potenzreihe mit $\varrho=\alpha$. Die Funktion $q(x)=x^2-\alpha^2$ ist ein Polynom, die einzigen @@ -344,6 +345,16 @@ J_{n}(x). Insbesondere unterscheiden sich $J_n(x)$ und $J_{-n}(x)$ nur durch ein Vorzeichen. +Als lineare Differentialgleichung zweiter Ordnung erwarten wir noch +eine zweite, linear unabhängige Lösung. +Diese kann jedoch nicht allein mit der Potenzreihenmethode, +dazu sind die Methoden der Funktionentheorie nötig. +Im Abschnitt~\ref{buch:funktionentheorie:subsection:dglsing} +wird gezeigt, wie dies möglich ist und auf +Seite~\pageref{buch:funktionentheorie:subsubsection:bessel2art} +werden die damit zu findenden Bessel-Funktionen 0-ter Ordnung und +zweiter Art vorgestellt. + % % Erzeugende Funktione % @@ -519,15 +530,6 @@ J_0(x) \] geschrieben werden kann. -Als lineare Differentialgleichung zweiter Ordnung erwarten wir noch -eine zweite, linear unabhängige Lösung. -Diese kann jedoch nicht allein mit der Potenzreihenmethode, -dazu sind die Methoden der Funktionentheorie nötig. -Im Abschnitt~\ref{buch:funktionentheorie:subsection:dglsing} -wird gezeigt, wie dies möglich ist und auf -Seite~\pageref{buch:funktionentheorie:subsubsection:bessel2art} -werden die damit zu findenden Bessel-Funktionen 0-ter Ordnung und -zweiter Art vorgestellt. % % Der Fall \alpha=p, p\in \mathbb{N} diff --git a/buch/chapters/070-orthogonalitaet/legendredgl.tex b/buch/chapters/070-orthogonalitaet/legendredgl.tex index 6401e98..c4eaf97 100644 --- a/buch/chapters/070-orthogonalitaet/legendredgl.tex +++ b/buch/chapters/070-orthogonalitaet/legendredgl.tex @@ -443,7 +443,7 @@ schlägt eine zweite Lösung vor, im vorliegenden Fall mit $b=1$ ist die zweite Lösung jedoch identisch zu ersten, es muss daher ein anderer Weg zu einer zweiten Lösung gesucht werden. -XXX TODO: zweite Lösung der Differentialgleichung. +%XXX TODO: zweite Lösung der Differentialgleichung. % % diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex index 613a491..164cd9a 100644 --- a/buch/chapters/070-orthogonalitaet/sturm.tex +++ b/buch/chapters/070-orthogonalitaet/sturm.tex @@ -694,7 +694,8 @@ des Skalarproduktes mit der Laguerre-Gewichtsfunktion. % \subsubsection{Tschebyscheff-Polynome} Die Tschebyscheff-Polynome sind Lösungen der -Tschebyscheff-Differentialgleichung +bereits in Kapitel~\ref{buch:chapter:potenzen} hergeleiteten +Tschebyscheff-Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl} \[ (1-x^2)y'' -xy' = n^2y \] @@ -737,14 +738,16 @@ bezüglich des Skalarproduktes \subsubsection{Jacobi-Polynome} Die Jacobi-Polynome sind orthogonal bezüglich des Skalarproduktes mit der Gewichtsfunktion -\( +\[ w^{(\alpha,\beta)}(x) = (1-x)^\alpha(1+x)^\beta, -\) +\] definiert in Definition~\ref{buch:orthogonal:def:jacobi-gewichtsfunktion}. %Bei der Herleitung der Rodrigues-Formel für die Jacobi-Polynome wurde erkannt, %dass $B(x)=1-x^2$ und $A(x)=\beta-\alpha-(\alpha+\beta)x$ sein muss. -Man kann zeigen, dass die Jacobi-Polynome Lösungen der -Jacobi-Differentialgleichung +Man kann zeigen, dass sie Lösungen der +{\em Jacobi-Diffe\-ren\-tial\-gleichung} +\index{Jacobi-Differentialgleichung}% +\index{Differentialgleichung!Jacobi}% \begin{equation} (1-x^2)y'' + (\beta-\alpha-(\alpha+\beta + 2)x)y' + n(n+\alpha+\beta+1)y=0 \label{buch:orthogonal:jacobi:dgl} @@ -760,7 +763,7 @@ $p(x)$ so gefunden werden, dass \frac{p'(x)}{w^{(\alpha,\beta)}(x)} &= \beta-\alpha-(\alpha+\beta+2)x \end{align*} gilt. -Der Quotient der ersten beiden Gleichungen ist die logarithmische Ableitung +Der Quotient der beiden Gleichungen ist die logarithmische Ableitung \[ (\log p(x))' = @@ -768,6 +771,7 @@ Der Quotient der ersten beiden Gleichungen ist die logarithmische Ableitung = \frac{1-x^2}{\beta-\alpha-(\alpha+\beta+2)x} \] +von $p(x)$, die sich in geschlossener Form integrieren lässt. Man findet als Stammfunktion \[ @@ -811,6 +815,7 @@ als Sturm-Liouville-Differentialgleichung erkannt. %\url{https://encyclopediaofmath.org/wiki/Hypergeometric_equation} Auch die Eulersche hypergeometrische Differentialgleichung lässt sich in die Form eines Sturm-Liouville-Operators +\index{Eulersche hypergeometrische Differentialgleichung!als Sturm-Liouville-Gleichung}% bringen. Dazu setzt man \begin{align*} diff --git a/buch/chapters/080-funktionentheorie/chapter.tex b/buch/chapters/080-funktionentheorie/chapter.tex index b7b5325..aa1041a 100644 --- a/buch/chapters/080-funktionentheorie/chapter.tex +++ b/buch/chapters/080-funktionentheorie/chapter.tex @@ -37,11 +37,6 @@ auf der rellen Achse hinaus fortsetzen. \input{chapters/080-funktionentheorie/fortsetzung.tex} \input{chapters/080-funktionentheorie/anwendungen.tex} -\section{TODO} -\begin{itemize} -\item Aurgument-Prinzip -\end{itemize} - \section*{Übungsaufgaben} \rhead{Übungsaufgaben} \aufgabetoplevel{chapters/080-funktionentheorie/uebungsaufgaben} diff --git a/buch/chapters/080-funktionentheorie/singularitaeten.tex b/buch/chapters/080-funktionentheorie/singularitaeten.tex index 07204ab..6742865 100644 --- a/buch/chapters/080-funktionentheorie/singularitaeten.tex +++ b/buch/chapters/080-funktionentheorie/singularitaeten.tex @@ -5,6 +5,9 @@ % \newcommand*\sk{\vcenter{\hbox{\includegraphics[scale=0.8]{chapters/080-funktionentheorie/images/operator-1.pdf}}}} +% +% Löesung linearer Differentialgleichunge mit Singularitäten +% \subsection{Lösungen von linearen Differentialgleichungen mit Singularitäten \label{buch:funktionentheorie:subsection:dglsing}} Die Potenzreihenmethode hat ermöglicht, mindestens eine Lösung gewisser @@ -19,6 +22,9 @@ Ziel dieses Abschnitts ist zu zeigen, warum dies nicht möglich war und wie diese Schwierigkeit mit Hilfe der analytischen Fortsetzung überwunden werden kann. +% +% Differentialgleichungen mit Singularitäten +% \subsubsection{Differentialgleichungen mit Singularitäten} Mit der Besselschen Differentialgleichung~\eqref{buch:differentialgleichungen:eqn:bessel} @@ -93,6 +99,9 @@ Klasse von Singularitäten beschreiben, aber es ist nicht klar, welche weiteren Arten von Singularitäten berücksichtigt werden sollten. Dies soll im Folgenden geklärt werden. +% +% Der Lösungsraum einer Differentialgleichung zweiter Ordnung +% \subsubsection{Der Lösungsraum einer Differentialgleichung zweiter Ordnung} Eine Differentialgleichung $n$-ter Ordnung hat lokal einen $n$-dimensionalen Vektorraum als Lösungsraum. @@ -126,6 +135,9 @@ Wenn der Punkt $x_0$ aus dem Kontext klar ist, kann er auch weggelassen werden: $\mathbb{L}_{x_0}=\mathbb{L}$. \end{definition} +% +% Analytische Fortsetzung auf dem Weg um 0 +% \subsubsection{Analytische Fortsetzung auf einem Weg um $0$} Die betrachteten Differentialgleichungen haben holomorphe Koeffizienten, Lösungen der Differentialgleichung lassen sich @@ -186,6 +198,9 @@ e^{2\pi i\varrho} z^\varrho \] schreiben. +% +% Rechenregeln für die analytische Fortsetzung +% \subsubsection{Rechenregeln für die analytische Fortsetzung} Der Operator $\sk$ ist ein Algebrahomomorphismus, d.~h.~für zwei analytische Funktionen $f$ und $g$ gilt @@ -215,7 +230,9 @@ vertauscht, dass also \sk(f^{(n)}). \] - +% +% Analytische Fortsetzung von Lösungen einer Differentialgleichung +% \subsubsection{Analytische Fortsetzung von Lösungen einer Differentialgleichung} Wir untersuchen jetzt die Wirkung des Operators $\sk$ auf den Lösungsraum $\mathbb{L}$ einer Differentialgleichung mit @@ -258,7 +275,9 @@ geeigneten Basis in besonders einfache Form gebracht. Wir führen diese Diskussion im folgenden nur für eine Differentialgleichung zweiter Ordnung $n=2$. - +% +% Fall A diagonalisierbar +% \subsubsection{Fall $A$ diagonalisierbar: verallgemeinerte Potenzreihen} In diesem Fall kann man die Lösungsfunktionen $w_1$ und $w_2$ so wählen, dass die Matrix @@ -326,6 +345,9 @@ Falls der Operator $\sk$ also diagonalisierbar ist, dann gibt es zwei linear unabhängige Lösungen der Differentialgleichung in der Form einer verallgemeinerten Potenzreihe. +% +% Fall $A$ nicht diagonalisierbar +% \subsubsection{Fall $A$ nicht diagonalisierbar: logarithmische Lösungen} Falls die Matrix $A$ nicht diagonalisierbar ist, hat sie nur einen Eigenwert $\lambda$ und kann durch geeignete Wahl einer Basis in @@ -421,8 +443,158 @@ in die ursprüngliche Differentialgleichung ein, verschwindet der $\log(z)$-Term und für die verbleibenden Koeffizienten kann die bekannte Methode des Koeffizientenvergleichs verwendet werden. +% +% Bessel-Funktionen zweiter Art +% \subsubsection{Bessel-Funktionen zweiter Art \label{buch:funktionentheorie:subsubsection:bessel2art}} +Im Abschnitt~\ref{buch:differentialgleichungen:subsection:bessel1steart} +waren wir nicht in der Lage, für ganzahlige $\alpha$ zwei linear unabhängige +Lösungen der Besselschen Differentialgleichung zu finden. +Die vorangegangenen Ausführungen erklären dies: der Ansatz als +verallgemeinerte Potenzreihe konnte die Singularität nicht wiedergeben. +Inzwischen wissen wir, dass wir nach einer Lösung mit einer logarithmischen +Singularität suchen müssen. +Um dies nachzuprüfen, setzen wir den Ansatz +\[ +y(x) = \log(x) J_n(x) + z(x) +\] +in die Besselsche Differentialgleichung ein. +Dazu benötigen wir erst die Ableitungen von $y(x)$: +\begin{align*} +y'(x) +&= +\frac{1}{x} J_n(x) + \log(x)J_n'(x) + z'(x) +\\ +xy'(x) +&= +J_n(x) + x\log(x)J_n'(x) + xz'(x) +\\ +y''(x) +&= +-\frac{1}{x^2} J_n(x) ++\frac2x J_n'(x) ++\log(x) J_n''(x) ++z''(x) +\\ +x^2y''(x) +&= +-J_n(x) + 2xJ'_n(x)+x^2\log(x)J_n''(x) + x^2z''(x). +\end{align*} +Die Wirkung des Bessel-Operators auf $y(x)$ ist +\begin{align*} +By +&= +x^2y''+xy'+x^2y +\\ +&= +\log(x) \bigl( +\underbrace{ +x^2J_n''(x) ++xJ_n'(x) ++x^2J_n(x) +}_{\displaystyle = n^2J_n(x)} +\bigr) +-J_n(x)+2xJ_n'(x) ++J_n(x) ++ +xz'(x) ++ +x^2z''(x) +\\ +&= +n^2 \log(x)J_n(x) ++ +2xJ_n(x) ++ +x^2z(x) ++ +xz'(x) ++ +x^2z''(x) +\end{align*} +Damit $y(x)$ eine Eigenfunktion zum Eigenwert $n^2$ wird, muss +dies mit $n^2y(x)$ übereinstimmen, also +\begin{align*} +n^2 \log(x)J_n(x) ++ +2xJ_n(x) ++ +x^2z(x) ++ +xz'(x) ++ +x^2z''(x) +&= +n^2\log(x)J_n(x) + n^2z(x). +\intertext{Die logarithmischen Terme heben sich weg und es bleibt} +x^2z''(x) ++ +xz'(x) ++ +(x^2-n^2)z(x) +&= +-2xJ_n(x). +\end{align*} +Eine Lösung für $z(x)$ kann mit Hilfe eines Potenzreihenansatzes +gefunden werden. +Sie ist aber nur bis auf einen Faktor festgelegt. +Tatsächlich kann man aber auch eine direkte Definition geben. + +\begin{definition} +Die Bessel-Funktionen zweiter Art der Ordnung $\alpha$ sind die Funktionen +\begin{equation} +Y_\alpha(x) += +\frac{J_\alpha(x) \cos \alpha\pi - J_{-\alpha}(x)}{\sin \alpha\pi }. +\label{buch:funktionentheorie:bessel:2teart} +\end{equation} +Für ganzzahliges $\alpha$ verschwindet der Nenner in +\eqref{buch:funktionentheorie:bessel:2teart}, +daher ist +\[ +Y_n(x) += +\lim_{\alpha\to n} Y_{\alpha}(x) += +\frac{1}{\pi}\biggl( +\frac{d}{d\alpha}J_{\alpha}(x)\bigg|_{\alpha=n} ++ +(-1)^n +\frac{d}{d\alpha}J_{\alpha}(x)\bigg|_{\alpha=-n} +\biggr). +\] +\end{definition} +Die Funktionen $Y_\alpha(x)$ sind Linearkombinationen der Lösungen +$J_\alpha(x)$ und $J_{-\alpha}(x)$ und damit automatisch auch Lösungen +der Besselschen Differentialgleichung. +Dies gilt auch für den Grenzwert im Falle ganzahliger Ordnung $\alpha$. +Da $J_{\alpha}(x)$ durch eine Reihenentwicklung definiert ist, kann man +diese Termweise nach $\alpha$ ableiten und damit auch eine +Reihendarstellung von $Y_n(x)$ finden. +Nach einiger Rechnung findet man: +\begin{align*} +Y_n(x) +&= +\frac{2}{\pi}J_n(x)\log\frac{x}2 +- +\frac1{\pi} +\sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!}\biggl(\frac{x}2\biggr)^{2k-n} +\\ +&\qquad\qquad +- +\frac1{\pi} +\sum_{k=0}^\infty \frac{(-1)^k}{k!\,(n+k)!} +\biggl( +\frac{\Gamma'(n+k+1)}{\Gamma(n+k+1)} ++ +\frac{\Gamma'(k+1)}{\Gamma(k+1)} +\biggr) +\biggl( +\frac{x}2 +\biggr)^{2k+n} +\end{align*} +(siehe auch \cite[p.~200]{buch:specialfunctions}). diff --git a/buch/chapters/references.bib b/buch/chapters/references.bib index 0818f54..571831a 100644 --- a/buch/chapters/references.bib +++ b/buch/chapters/references.bib @@ -126,3 +126,14 @@ volume = 134, pages = {267-280} } + +@book{buch:specialfunctions, + author = { George E. Andrews and Richard Askey and Ranjan Roy }, + title = { Special Functions }, + series = { Encyclopedia of Mathematics and its applications }, + volume = { 71 }, + publisher = { Cambridge University Press }, + ISBN = { 0-521-78988-5 }, + year = 2004 +} + |