aboutsummaryrefslogtreecommitdiffstats
path: root/buch
diff options
context:
space:
mode:
authorJoshua Baer <joshua.baer@ost.ch>2022-05-20 18:14:40 +0200
committerJoshua Baer <joshua.baer@ost.ch>2022-05-20 18:14:40 +0200
commit5187a5a947c0283e9f3d7fbc2acef96278109939 (patch)
treeefa45889075e5d7e53f7b57d9afd9a730421b67c /buch
parentMerge remote-tracking branch 'origin/master' (diff)
downloadSeminarSpezielleFunktionen-5187a5a947c0283e9f3d7fbc2acef96278109939.tar.gz
SeminarSpezielleFunktionen-5187a5a947c0283e9f3d7fbc2acef96278109939.zip
presentation FM-Bessel
Diffstat (limited to 'buch')
-rw-r--r--buch/papers/fm/.vscode/settings.json3
-rw-r--r--buch/papers/fm/Python animation/Bessel-FM.ipynb164
-rw-r--r--buch/papers/fm/RS presentation/FM_presentation.pdfbin0 -> 357597 bytes
-rw-r--r--buch/papers/fm/RS presentation/FM_presentation.tex125
-rw-r--r--buch/papers/fm/RS presentation/Frequency modulation (FM) and Bessel functions.pdfbin0 -> 159598 bytes
-rw-r--r--buch/papers/fm/RS presentation/README.txt1
-rw-r--r--buch/papers/fm/RS presentation/RS.tex209
-rw-r--r--buch/papers/fm/RS presentation/images/100HZ.pngbin0 -> 8601 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/200HZ.pngbin0 -> 8502 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/300HZ.pngbin0 -> 9059 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/400HZ.pngbin0 -> 9949 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/bessel.pngbin0 -> 40393 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/bessel2.pngbin0 -> 102494 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/bessel_beta1.pngbin0 -> 40696 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/bessel_frequenz.pngbin0 -> 11264 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/beta_0.001.pngbin0 -> 6233 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/beta_0.1.pngbin0 -> 6630 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/beta_0.5.pngbin0 -> 8167 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/beta_1.pngbin0 -> 11303 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/beta_2.pngbin0 -> 14703 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/beta_3.pngbin0 -> 20377 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/fm_10Hz.pngbin0 -> 6781 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/fm_20hz.pngbin0 -> 7834 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/fm_30Hz.pngbin0 -> 8601 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/fm_3Hz.pngbin0 -> 6558 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/fm_40Hz.pngbin0 -> 8795 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/fm_5Hz.pngbin0 -> 5766 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/fm_7Hz.pngbin0 -> 6337 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/fm_frequenz.pngbin0 -> 11042 bytes
-rw-r--r--buch/papers/fm/RS presentation/images/fm_in_time.pngbin0 -> 27400 bytes
-rw-r--r--buch/papers/fm/main.tex4
31 files changed, 318 insertions, 188 deletions
diff --git a/buch/papers/fm/.vscode/settings.json b/buch/papers/fm/.vscode/settings.json
new file mode 100644
index 0000000..5125289
--- /dev/null
+++ b/buch/papers/fm/.vscode/settings.json
@@ -0,0 +1,3 @@
+{
+ "notebook.cellFocusIndicator": "border"
+} \ No newline at end of file
diff --git a/buch/papers/fm/Python animation/Bessel-FM.ipynb b/buch/papers/fm/Python animation/Bessel-FM.ipynb
index 9d0835a..bfbb83d 100644
--- a/buch/papers/fm/Python animation/Bessel-FM.ipynb
+++ b/buch/papers/fm/Python animation/Bessel-FM.ipynb
@@ -2,21 +2,9 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 74,
+ "execution_count": 117,
"metadata": {},
- "outputs": [
- {
- "ename": "ValueError",
- "evalue": "operands could not be broadcast together with shapes (3,) (600,) ",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
- "\u001b[1;32m/home/joshua/Documents/SeminarSpezielleFunktionen/buch/papers/fm/Python animation/Bessel-FM.ipynb Cell 1'\u001b[0m in \u001b[0;36m<cell line: 15>\u001b[0;34m()\u001b[0m\n\u001b[1;32m <a href='vscode-notebook-cell:/home/joshua/Documents/SeminarSpezielleFunktionen/buch/papers/fm/Python%20animation/Bessel-FM.ipynb#ch0000000?line=12'>13</a>\u001b[0m x \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mlinspace(\u001b[39m0.01\u001b[39m, N\u001b[39m*\u001b[39mT, N)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/joshua/Documents/SeminarSpezielleFunktionen/buch/papers/fm/Python%20animation/Bessel-FM.ipynb#ch0000000?line=13'>14</a>\u001b[0m beta \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mlinspace(\u001b[39m0.1\u001b[39m,\u001b[39m10\u001b[39m, \u001b[39m3\u001b[39m)\n\u001b[0;32m---> <a href='vscode-notebook-cell:/home/joshua/Documents/SeminarSpezielleFunktionen/buch/papers/fm/Python%20animation/Bessel-FM.ipynb#ch0000000?line=14'>15</a>\u001b[0m y_old \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39msin(\u001b[39m100.0\u001b[39m \u001b[39m*\u001b[39m \u001b[39m2.0\u001b[39m\u001b[39m*\u001b[39mnp\u001b[39m.\u001b[39mpi\u001b[39m*\u001b[39mx\u001b[39m+\u001b[39mbeta\u001b[39m*\u001b[39;49mnp\u001b[39m.\u001b[39;49msin(\u001b[39m50.0\u001b[39;49m \u001b[39m*\u001b[39;49m \u001b[39m2.0\u001b[39;49m\u001b[39m*\u001b[39;49mnp\u001b[39m.\u001b[39;49mpi\u001b[39m*\u001b[39;49mx))\n\u001b[1;32m <a href='vscode-notebook-cell:/home/joshua/Documents/SeminarSpezielleFunktionen/buch/papers/fm/Python%20animation/Bessel-FM.ipynb#ch0000000?line=15'>16</a>\u001b[0m y \u001b[39m=\u001b[39m \u001b[39m0\u001b[39m\u001b[39m*\u001b[39mx;\n\u001b[1;32m <a href='vscode-notebook-cell:/home/joshua/Documents/SeminarSpezielleFunktionen/buch/papers/fm/Python%20animation/Bessel-FM.ipynb#ch0000000?line=16'>17</a>\u001b[0m xf \u001b[39m=\u001b[39m fftfreq(N, \u001b[39m1\u001b[39m \u001b[39m/\u001b[39m \u001b[39m400\u001b[39m)\n",
- "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (3,) (600,) "
- ]
- }
- ],
+ "outputs": [],
"source": [
"import numpy as np\n",
"from scipy import signal\n",
@@ -25,45 +13,71 @@
"import scipy.fftpack\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.widgets import Slider\n",
- "\n",
+ "def fm(beta):\n",
+ " # Number of samplepoints\n",
+ " N = 600\n",
+ " # sample spacing\n",
+ " T = 1.0 / 1000.0\n",
+ " fc = 100.0\n",
+ " fm = 30.0\n",
+ " x = np.linspace(0.01, N*T, N)\n",
+ " #beta = 1.0\n",
+ " y_old = np.sin(fc * 2.0*np.pi*x+beta*np.sin(fm * 2.0*np.pi*x))\n",
+ " y = 0*x;\n",
+ " xf = fftfreq(N, 1 / 400)\n",
+ " for k in range (-4, 4):\n",
+ " y = sc.jv(k,beta)*np.sin((fc+k*fm) * 2.0*np.pi*x)\n",
+ " yf = fft(y)/(fc*np.pi)\n",
+ " plt.plot(xf, np.abs(yf))\n",
+ " plt.xlim(-150, 150)\n",
+ " plt.show()\n",
+ " #yf_old = fft(y_old)\n",
+ " #plt.plot(xf, np.abs(yf_old))\n",
+ " #plt.show()\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 114,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD6CAYAAACxrrxPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcIUlEQVR4nO3de5Bc5Xnn8e+jGd01uqEBZI2EBAgbOQ4LjLmEmFDYiQV2oVR8KXA5xolj1a6N1y6zu8bxFuslySZA7TqbMjHROk5CYlsW9m6sxYpl7OBy1gZZEheBJCCDBLoije7SzGiuz/7Rp3vO9PT0nJFOd59++/epmuo+F/W8b2vm1+885z3nmLsjIiL1b1KtGyAiIulQoIuIBEKBLiISCAW6iEggFOgiIoFQoIuIBGLcQDezb5jZYTN7aYztZmZ/YWYdZrbNzK5Jv5kiIjKe5gT7/C3wVeCxMbbfBiyPvq4HvhY9lrVgwQJfunRpokaKiEjO1q1bj7h7a6lt4wa6u//MzJaW2WUV8JjnzlB6xszmmtlCdz9Y7nWXLl3Kli1bxvv2IiISY2ZvjLUtjRr6ImBvbHlftE5ERKqoqgdFzWy1mW0xsy2dnZ3V/NYiIsFLI9D3A4tjy23RulHcfY27t7t7e2tryRKQiIicozQCfT3wsWi2yw3AyfHq5yIikr5xD4qa2beBW4AFZrYP+C/AZAB3fxTYANwOdADdwO9VqrEiIjK2JLNc7hpnuwOfTq1FIiJyTnSmqIhIIBTokknuzne37uNs/2Ctm1I1P95xiEOnzta6GVLHFOiSST/ZeZj/8PgL/PcfvVLrplTNHzy2hd/5y1/UuhlSxxTokkmnzvYDcORMX41bUl37T/TUuglSxxToIiKBUKCLZIBu1i5pUKCLiARCgS6SARqgSxoU6CIigVCgi2SABuiSBgW6iEggFOgiGaBZLpIGBbqISCAU6CIZoPG5pEGBLpmmUoRIcgp0kQzQ55akQYEumWZmtW5CVbiKLpICBbqISCAU6CIZoJKLpEGBLiISCAW6iEggFOgiIoFQoItkgGrokgYFuohIIBToIhmgeeiSBgW6iEggFOgiGaAauqRBgS4iEggFukgGaIAuaVCgi2SALhMsaVCgi4gEQoEukgEan0saEgW6ma00s1fMrMPM7iuxfYmZPWVmz5nZNjO7Pf2miohIOeMGupk1AY8AtwErgLvMbEXRbv8ZWOfuVwN3An+ZdkNFQqYSuqQhyQj9OqDD3Xe5ex+wFlhVtI8Ds6Pnc4AD6TVRRESSaE6wzyJgb2x5H3B90T5fBn5kZp8BZgLvSaV1Io1CI3RJQVoHRe8C/tbd24Dbgb83s1GvbWarzWyLmW3p7OxM6VuLiAgkC/T9wOLYclu0Lu4TwDoAd38amAYsKH4hd1/j7u3u3t7a2npuLRYJkC7OJWlIEuibgeVmtszMppA76Lm+aJ89wLsBzOxKcoGuIbiISBWNG+juPgDcA2wEdpKbzbLdzB4wszui3e4FPmlmLwDfBj7uOvVNJDH9tkgakhwUxd03ABuK1t0fe74DuCndpok0DuW5pEFnioqIBEKBLpIBqlBKGhToIiKBUKCLZIDG55IGBbpkmkoRIskp0EUyQJ9bkgYFumSamdW6CSJ1Q4EukgE69V/SoEAXEQmEAl0kCzRAlxQo0EUyQHkuaVCgi4gEQoEukgGatihpUKCLiARCgS6SAZq2KGlQoEum6dR/keQU6CIZoM8tSYMCXTJNp/6LJKdAF8kADdAlDQp0EZFAKNBFMkAHfyUNCnSRDFCeSxoU6CIigVCgi4gEQoEumabaskhyCnSRDNDnlqRBgS4iEggFukgG6OJckgYFumSaTv0XSU6BLpIBqqFLGhToIiKBUKCLZIAG6JKGRIFuZivN7BUz6zCz+8bY58NmtsPMtpvZt9JtpoiIjKd5vB3MrAl4BPhNYB+w2czWu/uO2D7LgS8CN7n7cTO7sFINFgmRTqCSNCQZoV8HdLj7LnfvA9YCq4r2+STwiLsfB3D3w+k2UyRsinNJQ5JAXwTsjS3vi9bFXQFcYWY/N7NnzGxlWg2UxqaRq0hy45ZcJvA6y4FbgDbgZ2b2Dnc/Ed/JzFYDqwGWLFmS0rcWqX/63JI0JBmh7wcWx5bbonVx+4D17t7v7ruBV8kF/Ajuvsbd2929vbW19VzbLA1EJxaJJJck0DcDy81smZlNAe4E1hft84/kRueY2QJyJZhd6TVTJHQaosv5GzfQ3X0AuAfYCOwE1rn7djN7wMzuiHbbCBw1sx3AU8B/dPejlWq0iIiMlqiG7u4bgA1F6+6PPXfg89GXiEyQauiSBp0pKiISCAW6SAZogC5pUKCLiARCgS6Z4O4NfRJRqa43+nsiE6dAl0y4/r/9hBv+9Ce1bkbNlLpj0df/ZTfLvriBk939NWiR1KO0zhQVOS+HT/eWXN/II9S1m/cA0HnmLHNmTK5xa6QeaIQumdRoOd5o/ZXKUKBLJuXzrZFP/VfGy0Qp0EUyQCN0SYMCXTKpkWvneY37t4mcKwW6SAaUmuUiMlEKdMkkxZvIxCnQRTJAFSZJgwJdsqlEwH1n8x7uXfdC9dtSAd9/fj+f/taztW6GBEaBLpkWPzj6he+9yPee3VfD1qTns2uf5wfbDta6GRIYBbpkUqMdJCx5LZfqN0PqnAJdJPM0gVGSUaBLJjXaQcJG+4tEKkOBLpmkU/9FJk6BLpIB5f8i0ehdklGgSyY1WsmlFP1tIhOlQBfJAH1+SRoU6JJJOkgoMnEKdJEMKHV1SX2kyUQp0CWTVEMXmTgFumRao1wXvXwvdXhUklGgSyY1RowPf2A1yOeWVJgCXbKpQRJuKFE3G+O9kPOnQBepoeGS0tih3SCfbZICBbpkUqOc+p8kq5XnkpQCXaSGhhLU0DVCl6QU6JJJjRJiSfqpk6wkqUSBbmYrzewVM+sws/vK7PcBM3Mza0+viSLhU2RLGsYNdDNrAh4BbgNWAHeZ2YoS+7UAnwU2pd1IaTyNMv98KEE/G+StkBQkGaFfB3S4+y537wPWAqtK7PdHwIPA2RTbJxK0fFirhi5pSBLoi4C9seV90boCM7sGWOzuP0ixbdLAGiXDEo3QG+bdkPN13gdFzWwS8D+AexPsu9rMtpjZls7OzvP91tIAQi+9FGahl+ln4G+BpChJoO8HFseW26J1eS3ArwA/NbPXgRuA9aUOjLr7Gndvd/f21tbWc2+1BK9RQqxR+inVkSTQNwPLzWyZmU0B7gTW5ze6+0l3X+DuS919KfAMcIe7b6lIi6UhlDuxKKRRe+FaLmX3qU5bpP6NG+juPgDcA2wEdgLr3H27mT1gZndUuoEixUIKuEQHRVVDl4Sak+zk7huADUXr7h9j31vOv1nS6MrWlKvYjkrTvaElTTpTVOpOkpkh9aJw6r8uziUpUKBL3Qkp4JKd+i+SjAJd6k5INeVCaalUl6xoH5FxKNAlkxrlzEldPlfSpECXTAt9dFpugF68j8h4FOiSSY1ykDDZAd6AOiwVpUCXuhNUDT3/2CAlJqksBbpkUrkQS3Zj5fpQtqQUUD+lOhTokkmNc+p/9FiuxFSltkj9U6BL3Qkp4HQ9dEmTAl0yqVECLtkdiwLqsFSUAl3qT0D55kWP5fYRGY8CXTKpfE05nIhLMvrWAF2SUqBL3Qkp4IYKNfQSncqf+h/QB5hUlgJdMqn8tMWQAk5X55L0KNAl00qNXEPKt8IIvdTGkDoqVaFAl7oT0gBdl8+VNCnQpe6EVFMu9KVBpmlKZSnQJZMa5ZT4oaHx9wnpA0wqS4EumZTP85Kn/le5LZWUD+tGubqkVJYCXepOSAGX6NT/6jRFAqBAl0wqF2IhTVtMdFA0oP5KZSnQpe6EFG+FkotG6JICBbpkUvmLc4UTceWu7e6jnoiUp0CXTCt5YlFAAZfvX0BdkhpSoEsmNcpUvXK9tMI+jfFeyPlToEvdCXKEXqZTIfVXKkuBLplU/iBhOAmXbJZL5dshYVCgS90J6ibRRY/l9hEZjwJdMqlswAU0ZB1K8OkUUn+lshTokk1lZn+EFG+FEbrmoUsKFOhSd0IasA6f9aqDonL+EgW6ma00s1fMrMPM7iux/fNmtsPMtpnZT8zskvSbKo2k/Mg1oITTyFxSNG6gm1kT8AhwG7ACuMvMVhTt9hzQ7u6/CnwXeCjthorkhTRiTVJyUbRLUklG6NcBHe6+y937gLXAqvgO7v6Uu3dHi88Abek2UxrF8LzsaLnUPtVrTsUludBYSB9gUllJAn0RsDe2vC9aN5ZPAP90Po0SySs1wyPEqy1q2qKkoTnNFzOzjwLtwG+MsX01sBpgyZIlaX5rqWPx0HYHs8a54UOiU/8D6q9UVpIR+n5gcWy5LVo3gpm9B/gScIe795Z6IXdf4+7t7t7e2tp6Lu2VAMUDqzi7SpZcAgq4oaISUykhnRkrlZUk0DcDy81smZlNAe4E1sd3MLOrgb8iF+aH02+mhCweV8U19NL7BxRwOvVfUjRuoLv7AHAPsBHYCaxz9+1m9oCZ3RHt9jAwC3jczJ43s/VjvJzIKCNKLkWPpQIvpIArjNDLlZiq1Ripe4lq6O6+AdhQtO7+2PP3pNwuaVAhhXUSOkNU0qQzRaXmRpRcim7JVmrkGtQsl/xjg9yhSSpLgS41N+KgaIPVlEP6cJLaU6BLzZUahZe7eXJIEZhoHnpIHZaKUqBLzSUZoY+cqx5Owg0OJbhjUVAfYVJJCnTJlEJ45R+ix/7B0TNhQjAwNDTuPgF9fkmFKdCl5pLMOY8HX0gBF/+gGktI/ZXKUqBL1bk7e452Dy8TL6fk143UPzByLkwo+gfHHqEXTv2PrTt6ppczvQMVbZPULwW6VN0/bNrDzQ8/xfN7T4zaNurU/3zJJTZCD+Geohal9UAU6EkP/l77xz/mlod/WrF2SX1ToEvVbXn9GAC7j5wBig+Klj5IGB/JhlCCaJ6US/S+RCWXkfscOVPyUkkiCnSpvVLFlOLSy0D8oGgAid48KferVxih69R/SYECXWqu+PK5pYwYoVe6QVWQH6EPJKkfhdBhqQoFulSdFS17iYXikfqIaYsBBFxTU1RyGRi7hp6neeiSlAJdqs5sZKSPvB566fAaOUIf3mfrG8c4fbY/3QZWwC9eO1II7zjNQ5c0KdCl6kbdiafEmaLDIZZ7MmJ6X7Tt1Nl+PvC1p/nMt5+rUEvTsePAKT7yvzbxJz/YUVhX/JeHrrooaVCgS82NmIdevC1aEa8155929w4CucDMsvxfEDsODrczf1Gu/sJB0bFphC5JKdCl5kpNWyy+CmH/wOiSS09/LtAnN2X7x3hyc659I0ouhRH62CWXwhROjdEloWz/JkiYoppLuZFn78DIkWt/iRF6V3TG5NTmbP8YN0XHDHoH4idHRZc0KJRcxg/toRDOqJKKyvZvgjSEUvPQe6PRd+9A7nEgNpI9G23r7ss9Tsl4oOcPfBbKK+6cHcivy/W4t8QB0/zB41JlJ5FSsv2bIEEbnpo4ekri2SjIu6I6ebw00dOX35YboWc90Pui69D0RX3oGxwqXDY336/uvuHrsxSP1vNLgwp0GUe2fxMkSBbVXPIlhFK3oDvbPzLo4vPQu6J1+ces19DzoZ2voecP5sLw6L0rtm7UaD1fnkkwxVEaW7Z/EyRoA4WbO8RWRs97JzJCz3ig54O4EOj9w+GdH73HR+jFgV7q8gcipWT7N0GCNjg0+jom+WfFI/T4JWO7+0aGfb2UXPJ/ZfTEwvtMb25KY1dfbIQeC3xQDV2Sy/ZvggQpf6JooYxS4sSi/IHPfNAdPdMHQNMkKwR6d72WXKL2N08yjnflAr079oGV/zDLy9fUVUOX8TTXugHSuAbL1tBzodc3MET/4BDHu/uYO2My7sMj3DPRCN2KLw6TMYWSy+DIQF80bzpHu3IfVPERev6A8PA89Jxyc9ZFQCN0qYF8/pYqIXihhj4cXt29gxzt6mP+jCnMmNI0aoSe9aAbebel4WMAbfOmc7y7D3cfWUPvL90fjdBlPAp0qZlSd+uJ19BnTc39AXno9FmOnull/swptExr5mRPrkyRr6tnPdD7itqXb/+S+TMZHHJOdPfz5smztET9zY/Q84Zr6Nnup9SeAl2qrjBro1ByGX3zip6+Aa5c2ALA7iNddBw+w7IFM1k4ZzoHTvYAw9P/ktxouZbiJ0UNDjn7T+Taf9PlFwDw8pun2XushysXzgaGZ+/kFb9fImNRoEvV5eefD5aYtuieu5hVV98g71w6H4CfvdrJkTN9XLlwNovmTefAibPA8Dz0rI/Q4x84Pf2DHDjRw7wZk7n2knkAPLHtAH2DQ7xzWW758KmRt5jzossEiIxFgS5Vlx9p9hemLY508GQusN96cQtXtc3hm5v2AHDzFa20zZvOsa4+Tvb0F0ayWQ/0eMmlq3eAN4520zZvBhfPnsZbL2op9O+D1y4GKPwFUkwjdBmPAl2qLj8yH+vCVPmSxFvmTudzv3kFLdOaufvGS7j8wln8m7a5QO7GFnuO9Yx4nayKt29XZxfP7TnOVYvnYGZ84ba30jK1mY//2lKWLZhJa8tUDkT9H3Utl4x/cEntadqiVNwvdx9j4ZxpLJ4/Axg+uHc8mrIXz/OTPf1s23sSM7jiwhbmzJjMi19+b2H71Uvm0TK1mT/5wU6OnMmVJrr7Rh5EzJru/uGa+Jf+8UW6+ga5eXkrALe+7SJe/K/D/XvrRS1s23cSGL6Oev4Yw7Ho/YJc2WrSJGNgcIgNL73J+9+xkEmTMj5/UypOI3SpuA//1dP8xsNPFZbzI9b8SDxu58FTPLnzTVYsnM2cGZNHbZ8+pYnVN1/Ka51dzJjSxO9cs4gDJ3oKZZdXD53m4Bgli2rpGxjiFx1HCst7j3Vz6YKZ/PrlC9jV2cXb3zKbW992Ycl/e+NlF/Dym6d5af9JjpwZ+YGXL0XBcBnnr//fbv79t5/j/247UKHeSD1JFOhmttLMXjGzDjO7r8T2qWb2nWj7JjNbmnpLpS7l51zHy7+vH+0CSgf6/d/fzkv7T3H3jUvHfM17br2cx37/Otbf8+v82mULGBhy9h7rBuC3vvIzbvzTf67pnO17H3+Bj3x9Ey/tz420d3V2sWzBTL720Wt49KPX8K1P3kDzGGe3fujaNqZPbuJDjz49atuB2Pu1J+pv/jEf/tLYxg10M2sCHgFuA1YAd5nZiqLdPgEcd/fLga8AD6bdUKlPxQf4jnX1setIF9MmT2Lf8R46Dp/h8Olc6eQj1y/hyoUtfPbdy/lQe9uYr2lm3HxFa66mvngOABu3H+JU7GbR+Q+NWvjR9jeB3K3xdh/p4pVDp7lq8Vxapk1m5a8sZM700X955F04exprPnYtb3/LbFbffClTmifRebqXoSHnX/71SOFmHlvfOA4MH4+IXx9GGleSGvp1QIe77wIws7XAKmBHbJ9VwJej598Fvmpm5kluwyJ1zd3pHRiiu2+Qnv5BDp06y67OLtovmceBkz08se1gYd/vP7+f72zeC8DXP/ZOPvXNrXz8b37JZa2zAPjMrZezcM70CX3/yy9s4eYrWnlo48s8vnVvYf1TLx+mbd50DOPnrx3hxksvYNrkphR6PJK7s/WN47TNm0Fry1T2HOsunOX64A9fZsidWVOay35AFXvX8lbeFdXYN+0+xhPbDrL3eDc7Dp7ioQ/8Kt/4+W4e+uHLTG6axHN7TgCw4cU3uXLhbJbMn8G+Ez0MDDpXLZ7DrKnNNE0ymidNYpINH2iVMNl4mWtmHwRWuvsfRMu/C1zv7vfE9nkp2mdftPxatM+RUq8J0N7e7lu2bJlwg5/fe4LffuTnE/53ki2XXDCDN452j1i3ZP6Mc7ouy+mzAyMOGGbRJRfMOKd/V+o9ypdZpH798HPv4m0Xzz6nf2tmW929vdS2qs5yMbPVwGqAJUuWnNNrzJ8xJc0mScom2XC9vLVlKpe1zuTi2dPYfuAUB070cONlFxRO6b968Vz6B52ndx3l6sVzaZmWzo/jmd4BfrzzcCqvdS7esWgOl7XOTOW1rmqby6bdR7n8wlm0zpoKwDVL5jLk8Oye4xzv6uPWKy+ip2+QVw+dZt/xbjRdPfvKld3OR5LfoP3A4thyW7Su1D77zKwZmAMcLX4hd18DrIHcCP1cGrzkghm8/mfvO5d/KiIStCSzXDYDy81smZlNAe4E1hftsx64O3r+QeCfVT8XEamucUfo7j5gZvcAG4Em4Bvuvt3MHgC2uPt64K+BvzezDuAYudAXEZEqSlS0dPcNwIaidffHnp8FPpRu00REZCJ0pqiISCAU6CIigVCgi4gEQoEuIhIIBbqISCDGPfW/Yt/YrBN4oybf/PwsAMa8pEGg1OfGoD7Xh0vcvbXUhpoFer0ysy1jXUchVOpzY1Cf659KLiIigVCgi4gEQoE+cWtq3YAaUJ8bg/pc51RDFxEJhEboIiKBUKCPw8zuNTM3swXRspnZX0Q3xN5mZtfE9r3bzP41+rp77FfNJjN72Mxejvr1f8xsbmzbF6M+v2Jm742tL3sD8XoTWn/yzGyxmT1lZjvMbLuZfTZaP9/Mnox+Zp80s3nR+jF/zuuNmTWZ2XNm9kS0vCy6mX1HdHP7KdH6+r/Zvbvra4wvcjft2EhuvvyCaN3twD8BBtwAbIrWzwd2RY/zoufzat2HCfb3t4Dm6PmDwIPR8xXAC8BUYBnwGrlLKTdFzy8FpkT7rKh1P86j/0H1p6hvC4FrouctwKvR/+tDwH3R+vti/+clf87r8Qv4PPAt4IloeR1wZ/T8UeDfRc8/BTwaPb8T+E6t2z7RL43Qy/sK8J+A+IGGVcBjnvMMMNfMFgLvBZ5092Pufhx4ElhZ9RafB3f/kbvnbx//DLm7U0Guz2vdvdfddwMd5G4eXriBuLv3AfkbiNer0PpT4O4H3f3Z6PlpYCewiFz//i7a7e+A346ej/VzXlfMrA14H/D1aNmAW8ndzB5G9zn/XnwXeLfV2V21FehjMLNVwH53f6Fo0yJgb2x5X7RurPX16vfJjdCgcfocWn9KikoJVwObgIvc/WC06U3gouh5KO/Fn5MblA1FyxcAJ2IDl3i/Cn2Otp+M9q8bVb1JdNaY2Y+Bi0ts+hLwh+RKEEEp12d3/360z5eAAeCb1WybVJ6ZzQK+B3zO3U/FB6Du7mYWzLQ3M3s/cNjdt5rZLTVuTlU0dKC7+3tKrTezd5CrFb8Q/cC3Ac+a2XWMfdPs/cAtRet/mnqjz9NYfc4zs48D7wfe7VExkfI3Ch/vBuL1JMkN0euWmU0mF+bfdPf/Ha0+ZGYL3f1gVFI5HK0P4b24CbjDzG4HpgGzgf9JrnzUHI3C4/1KdLP7TKt1Eb8evoDXGT4o+j5GHiz6ZbR+PrCb3AHRedHz+bVu+wT7uRLYAbQWrX87Iw+K7iJ3ALE5er6M4YOIb691P86j/0H1p6hvBjwG/HnR+ocZeVD0oeh5yZ/zev0iN9jKHxR9nJEHRT8VPf80Iw+Krqt1uyf61dAj9HO0gdwMgA6gG/g9AHc/ZmZ/BGyO9nvA3Y/Vponn7KvkQvvJ6C+TZ9z933rupuDryIX9APBpdx8EKHUD8do0/fz5GDdEr3Gz0nIT8LvAi2b2fLTuD4E/A9aZ2SfIzeb6cLSt5M95IL4ArDWzPwaeI3eTewjgZvc6U1REJBCa5SIiEggFuohIIBToIiKBUKCLiARCgS4iEggFuohIIBToIiKBUKCLiATi/wO3Cq7Lzsky6gAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "<Figure size 432x288 with 1 Axes>"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
"# Number of samplepoints\n",
- "N = 600\n",
+ "N = 800\n",
"# sample spacing\n",
- "T = 1.0 / 800.0\n",
+ "T = 1.0 / 1000.0\n",
"x = np.linspace(0.01, N*T, N)\n",
- "beta = 1.0\n",
- "y_old = np.sin(100.0 * 2.0*np.pi*x+beta*np.sin(50.0 * 2.0*np.pi*x))\n",
- "y = 0*x;\n",
- "xf = fftfreq(N, 1 / 400)\n",
- "for k in range (-5, 5):\n",
- " y = sc.jv(k,beta)*np.sin((100.0+k*50) * 2.0*np.pi*x)\n",
- " yf = fft(y)\n",
- " plt.plot(xf, np.abs(yf))\n",
"\n",
- "axamp = plt.axes(np.linspace(0.1, 3, 10))\n",
- "beta_slider = Slider(\n",
- "ax=axamp,\n",
- "label=\"Amplitude\",\n",
- "valmin=0,\n",
- "valmax=10,\n",
- "valinit=beta,\n",
- "orientation=\"vertical\"\n",
- ")\n",
- "plt.show()\n",
- "\n",
- "yf_old = fft(y_old)\n",
+ "y_old = np.sin(100* 2.0*np.pi*x+1*np.sin(15* 2.0*np.pi*x))\n",
+ "yf_old = fft(y_old)/(100*np.pi)\n",
+ "xf = fftfreq(N, 1 / 1000)\n",
"plt.plot(xf, np.abs(yf_old))\n",
- "plt.show()\n"
+ "#plt.xlim(-150, 150)\n",
+ "plt.show()"
]
},
{
"cell_type": "code",
- "execution_count": 72,
+ "execution_count": 118,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbqklEQVR4nO3df3Bd5X3n8ff3/tKVZP1CFsbYBhkwEJEOODEOkHSbhKYxSQZ3d6Gxp23YlB0mOzCl2+50oDPNbpkys8zsliQtyZYEF0q7MQ7JJlrWA00Du0m6YJBjfvhHvBXG4F9gWdiyJVs/7r3f/eMcSddClq5t3XN17v28ZjT3nOc85+jR5XA/fs5z7nPM3RERETmTRKUbICIi85uCQkREZqSgEBGRGSkoRERkRgoKERGZUarSDTgbCxcu9M7Ozko3Q0QkNrZu3XrE3TvO5xixCorOzk56enoq3QwRkdgws7fP9xi69CQiIjNSUIiIyIwUFCIiMiMFhYiIzEhBISIiM1JQiIjIjBQUIiIyo1gFxchYodJNEBGpObEKilO5fKWbICJSc2IVFIWCHrIkIhK1WAVFXkEhIhK5eAWFHtsqIhK5WAWFLj2JiEQvVkGhHoWISPRiFRTqUYiIRC9WQZHX1yhERCIXs6BQj0JEJGrxCgqNUYiIRC5WQaExChGR6JUUFGa2xsx2m1mvmd03zfY6M3sq3L7FzDqLtt0flu82s89O2S9pZtvM7JlS2pF3x9WrEBGJ1KxBYWZJ4BHgFqALWG9mXVOq3QkcdfcrgIeBh8J9u4B1wDXAGuCb4fHG3QvsOpsGD41qvicRkSiV0qNYDfS6+x53HwU2Amun1FkLPBEuPw3cbGYWlm909xF3fwvoDY+HmS0FPg9852wafGJ47Gyqi4jIeSolKJYA+4rW94dl09Zx9xwwALTPsu/XgD8GZrzp1czuMrMeM+sBODGcK6HJIiIyVyoymG1mXwAOu/vW2eq6+6PuvsrdV4F6FCIiUSslKA4Ay4rWl4Zl09YxsxTQAvTPsO/HgVvNbC/BpaxPm9nfldLg4+pRiIhEqpSgeAVYYWbLzSxDMDjdPaVON3BHuHwb8LwHtyd1A+vCu6KWAyuAl939fndf6u6d4fGed/ffKaXBuvQkIhKt1GwV3D1nZvcAzwFJYIO77zCzB4Aed+8GHgOeNLNe4H2CD3/CepuAnUAOuNvdz+u2peOndOlJRCRKFqfvJdQtXuFf++6z/LtPXl7ppoiIxIKZbR0f4z1XsfpmNmgwW0QkarEKimTCNEYhIhKxeAWFmXoUIiIRi1VQJNSjEBGJXKyCIuhRKChERKIUr6BIGMd16UlEJFKxCopEQl+4ExGJWqyCQoPZIiLRi1dQJIzBkZyedCciEqFYBUUiYRQchkZ1+UlEJCqxCoqkGaBxChGRKMUrKBIKChGRqMUqKBITPQoNaIuIRCVWQaEehYhI9GIZFPrSnYhIdGIVFAkNZouIRC5WQaFLTyIi0YtVUCQMUgl9O1tEJEqxCgqApmxKPQoRkQjFMCjSGswWEYlQDINCPQoRkSjFNCjUoxARiUoMgyKtHoWISIRiGBS69CQiEqXYBUWzBrNFRCIVu6Boyqb08CIRkQjFLiias2lcDy8SEYlM7IKiKZsCNI2HiEhUYhgUaUBBISISlRgGRdCj0IC2iEg0YhsU+tKdiEg0YhgUuvQkIhKl2AVF88SlJwWFiEgUYhcUkz0KXXoSEYlC7IIim06EDy9Sj0JEJAqxCwozo7k+rR6FiEhEYhcUoIkBRUSiVFJQmNkaM9ttZr1mdt802+vM7Klw+xYz6yzadn9YvtvMPhuWZc3sZTN7zcx2mNmfnU2jFRQiItGZNSjMLAk8AtwCdAHrzaxrSrU7gaPufgXwMPBQuG8XsA64BlgDfDM83gjwaXe/FrgOWGNmN5Ta6KY6XXoSEYlKKT2K1UCvu+9x91FgI7B2Sp21wBPh8tPAzWZmYflGdx9x97eAXmC1BwbD+unwp+TpYNWjEBGJTilBsQTYV7S+Pyybto6754ABoH2mfc0saWavAoeBH7v7lul+uZndZWY9ZtbT19cHBLfIHj+lHoWISBQqNpjt7nl3vw5YCqw2sw+fod6j7r7K3Vd1dHQA6lGIiESplKA4ACwrWl8alk1bx8xSQAvQX8q+7n4MeIFgDKMkzdkUg6N6eJGISBRKCYpXgBVmttzMMgSD091T6nQDd4TLtwHPu7uH5evCu6KWAyuAl82sw8xaAcysHvgM8MtSG90UPrxoUA8vEhEpu9RsFdw9Z2b3AM8BSWCDu+8wsweAHnfvBh4DnjSzXuB9gjAhrLcJ2AnkgLvdPW9mi4EnwjugEsAmd3+m1EYXP7yoOZzSQ0REymPWoABw983A5illXy1aHgZuP8O+DwIPTil7HVh5to0d11xfPN9T/bkeRkREShDbb2aDphoXEYlCTINCM8iKiEQlpkGhHoWISFRiHRR6eJGISPnFMijG73TSt7NFRMovlkFRl0qQTurhRSIiUYhlUJgZTVnNICsiEoVYBgVovicRkajEPCjUoxARKbfYBkVzNq0ehYhIBGIdFAO660lEpOxiGxRtjWmOnlRQiIiUW2yDorUhw7GTowSzmYuISLnENijaGtLkCs7giMYpRETKKbZB0dqQAeCYLj+JiJRVbIOiLQyKoydHK9wSEZHqFuOgCOZ70oC2iEh5xTYoJi89qUchIlJOsQ2KiR7FkIJCRKScYhsULfW69CQiEoXYBkUqmaA5m9KlJxGRMottUAC0NWbUoxARKbNYB0VrQ4Zjmu9JRKSsYh0UbQ1pXXoSESmzmAdFRl+4ExEps1gHRUt9mmNDuvQkIlJOsQ6KtoYMJ0ZyjOULlW6KiEjVindQNAbfpdDEgCIi5RProNA0HiIi5RfroNDEgCIi5RfzoNBU4yIi5RbroGhtGB+jUFCIiJRLrINiskehS08iIuUS66BoyCTJJBO69CQiUkaxDgozo7VBX7oTESmnWAcFaBoPEZFyi31QtDak9YU7EZEyKikozGyNme02s14zu2+a7XVm9lS4fYuZdRZtuz8s321mnw3LlpnZC2a208x2mNm95/oHqEchIlJeswaFmSWBR4BbgC5gvZl1Tal2J3DU3a8AHgYeCvftAtYB1wBrgG+Gx8sBf+TuXcANwN3THLMkbY1p3fUkIlJGpfQoVgO97r7H3UeBjcDaKXXWAk+Ey08DN5uZheUb3X3E3d8CeoHV7n7I3X8B4O4ngF3AknP5A1obMhw7OYq7n8vuIiIyi1KCYgmwr2h9Px/8UJ+o4+45YABoL2Xf8DLVSmDLdL/czO4ysx4z6+nr6/vA9raGNLmCMziSK+FPERGRs1XRwWwzWwB8H/gDdz8+XR13f9TdV7n7qo6Ojg9sn5wYUJefRETKoZSgOAAsK1pfGpZNW8fMUkAL0D/TvmaWJgiJv3f3H5xL40HzPYmIlFspQfEKsMLMlptZhmBwuntKnW7gjnD5NuB5DwYNuoF14V1Ry4EVwMvh+MVjwC53/4vz+QM0g6yISHmlZqvg7jkzuwd4DkgCG9x9h5k9APS4ezfBh/6TZtYLvE8QJoT1NgE7Ce50utvd82b2CeB3gTfM7NXwV/2Ju28+2z9Az6QQESmvWYMCIPwA3zyl7KtFy8PA7WfY90HgwSllPwfsbBs7nYkexZCCQkSkHGL/zeyWel16EhEpp9gHRSqZoDmb0qUnEZEyiX1QALQ1ZtSjEBEpk6oIilbN9yQiUjZVERRtmkFWRKRsqiQo1KMQESmXqggKPZNCRKR8qiIo2hoyDI7kGM0VKt0UEZGqUyVBEXyX4tgpXX4SEZlrVREUmkFWRKR8qiIoJmaQ1TQeIiJzriqColUzyIqIlE1VBEVbo2aQFREpl+oICvUoRETKpiqCoj6dJJNKqEchIlIGVREUZkZbQ1rfzhYRKYOqCAoYn8ZDl55EROZa1QRFMI2HehQiInOtaoJCPQoRkfKomqBobcioRyEiUgZVExTjz6Rw90o3RUSkqlRRUGTIFZwTI7lKN0VEpKpUTVCMT+NxbEjjFCIic6lqgmJiYkCNU4iIzKmqCYoLFgRB0XdipMItERGpLlUTFFcuaiJh8MaBgUo3RUSkqlRNUCyoS3Hloia27TtW6aaIiFSVqgkKgJWXtPHqO0cpFHSLrIjIXKmyoGjl+HCOPUeGKt0UEZGqUVVB8ZFLWgHY9s7RyjZERKSKVFVQXLZwAU3ZlMYpRETmUFUFRSJhXLeslW3vHKt0U0REqkZVBQXAymWt7H73OEOaykNEZE5UX1Bc0kbB4fX9+j6FiMhcqLqguG5ZKwDb9mlAW0RkLlRdULQ1Zli+sFHjFCIic6TqggKCcYpt7xzTsylEROZASUFhZmvMbLeZ9ZrZfdNsrzOzp8LtW8yss2jb/WH5bjP7bFH5BjM7bGbb5+QvKbLyklaODI6w/+ipuT60iEjNmTUozCwJPALcAnQB682sa0q1O4Gj7n4F8DDwULhvF7AOuAZYA3wzPB7A42HZnFt5SRuAvk8hIjIHSulRrAZ63X2Pu48CG4G1U+qsBZ4Il58GbjYzC8s3uvuIu78F9IbHw91/Crw/B3/DB1x1URPZdIJXNU4hInLeSgmKJcC+ovX9Ydm0ddw9BwwA7SXuOyMzu8vMesysp6+vr6R90skEv7KkRXc+iYjMgXk/mO3uj7r7Kndf1dHRUfJ+Ky9pY8eB44zk8mVsnYhI9SslKA4Ay4rWl4Zl09YxsxTQAvSXuG9ZrFzWymi+wM6Dx6P4dSIiVauUoHgFWGFmy80sQzA43T2lTjdwR7h8G/C8B/emdgPrwruilgMrgJfnpukzmxjQ1jiFiMh5mTUowjGHe4DngF3AJnffYWYPmNmtYbXHgHYz6wX+ELgv3HcHsAnYCTwL3O3ueQAz+y7wInCVme03szvn8g+7qCXL4pYsv9CU4yIi5yVVSiV33wxsnlL21aLlYeD2M+z7IPDgNOXrz6ql5+ATVyzkf71xiIFTY7TUp8v960REqtK8H8w+H3fc1MnJ0Tzf69k3e2UREZlWVQfFh5e0cH1nG4//373k9RxtEZFzUtVBAfDljy9n/9FT/OOu9yrdFBGRWKr6oPiNrkUsaa3nb/7prUo3RUQklqo+KFLJBL9746W8tOd9dhzUw4xERM5W1QcFwLrrl5FNJ3j8n/ZWuikiIrFTE0HR2pDhX31kKT967SD9gyOVbo6ISKzURFAAfPmmTkZzBf77lncq3RQRkVipmaBYsaiJX12xkCdfepvRXKHSzRERiY2aCQqA3/vEcg6fGOGv/8+blW6KiEhs1FRQfPLKDm699mK+9pN/ZuvbmgNKRKQUNRUUZsaf/8sPs7gly70bt3F8eKzSTRIRmfdqKigAmrNpvr7uOg4NDPOnP9xOMBu6iIicSc0FBcBHL72Ae29ewY9ePcj/2BbJc5RERGKrJoMC4O5PXcHqzgv40x9u5+3+oUo3R0Rk3qrZoEgmjIfXXUcyYfze469waOBUpZskIjIv1WxQACxprefbX1rFe8dHuO1bL7Knb7DSTRIRmXdqOigAPnZZOxvvuoHhsTy3/7cX2X5AEweKiBSr+aCA4AFH3/vKjWTTSdY/+hJb9vRXukkiIvOGgiJ0WccCvveVG7mwuY4vbXiZDT9/i4KeiicioqAodnFrPd/7yk3cdHk7Dzyzk9/6a41biIgoKKa4oDHDhn9zPf/19mv5f++d4Jav/4xv/3SPnrktIjVLQTENM+Nff3QpP/7DX+NXVyzkwc27+Pw3fsaz2w/pcpSI1BwFxQwWNWf59pdW8ZfrVzKSK/CVv/sFn/vGz9j8hgJDRGqHxWmuo1WrVnlPT09FfncuX+B/vn6Qv/xJL3uODHHlogX89scu5TevW0JLQ7oibRIRmY2ZbXX3Ved1DAXF2ckXnGdeP8ijP93DjoPHyaQSrLnmIr54/TJuvKydRMIq2j4RkWIKigrbfmCATT37+OG2AxwfznFhUx2/3rWIz3Qt4qbL26lLJSvdRBGpcQqKeWJ4LM8/7HyPZ7cf4n/v7uPkaJ7GTJJfu6qDmy5fyA2XtXN5RyNm6m2ISLTmIihSc9WYWpZNJ7n12ou59dqLGR7L8+Kb/fzDzvd44ZeH2fzGuwBc2FTHDZe1c31nG9cua+Xqi5rJpHQvgYjMfwqKOZZNJ/nU1RfyqasvxN3Z23+Sl/b08+Kb/by4p5/u1w4CkEkm+NDFzVy7tIUPLW7m6ouauHJRE411+k8iIvOLPpXKyMxYvrCR5QsbWb/6EtydgwPDvLbvGK/tO8ar+47x/a37GRrNT+xzaXsDl3csoLO9kc6FDcFreyNL2upJaqBcRCpAQREhM2NJaz1LWuv53K8sBqBQcA4cO8WuQ8f55bsn2P3uCd7sG+TFN/s5NTYZIOmksaytgc6FjVza3sDStgYWt2S5qCXL4pYsHQvqSCV1KUtE5p6CosISCWPZBQ0su6CB37jmoolyd+fwiRH2Hhlib/8Qe/tPhsvBpayTRb0QgITBhU1ZFrVkWdwcBEhHUx0LF2Rob6yjfUGGhQuC14aM/rOLSOn0iTFPmRmLmrMsas7yscvaT9vm7gycGuPQwDDvDgyHr6eC1+PD9PYN8vPeIwyO5KY9dn06SfuCDO0L6mitT9My3U/DB8saMknduSVSgxQUMWRmtDZkaG3I8KHFzWesNzyWp39olCMnRugfGuHI4Cj9g6P0D44E5YMjHD05yt7+IQZOjXH81BgzzUySShgt9Wmasika64KfBROvSRozp5c11iWLtqfIppPUZ5LUp4OfulRCX1AUiQEFRRXLppMTYyKlKBScwdEcAyfHJoJjYJqf48M5hkaCn8Mnhhk6kmcwXJ96SWz2NiaCAAl/isPktG1hWV0YMHWpBJlUgkwyfE0lqEslTyurS53+Wlw3k0yodyRSIgWFTEgkjOZsmuZsmmXneIx8wTk5mmNoZDI8hkZyDI7kGM4VGB7Nc2os/BnNM5zLF5UVODWaZyQXbDt6cpRTY5Pbh8cKpw3wn69MKkFdUXikkwlSSSOdCF5TyQSZpJEK19PJBKmETdRLJRKkkzZlOThOOjG+bKROWz7zsVJJI2FB/WQiXJ5SdtqPGYnElG1hmchcKikozGwN8HUgCXzH3f/zlO11wN8CHwX6gS+6+95w2/3AnUAe+H13f66UY0o8JRNGUzZNU7Y8EyW6O6P5AqO58CdfYGSsMFE2kht/zU9sLy6f3CfPSNFxRnIFcvkCYwUPXvPOWL5ALu/kCgVOjQWvufHygp+2PF53fL2SzCBpp4dHMmmnl00Jl1LLzIyEQSLcbuFywoJ/aIwvB9sm607+nF4vEQZb4gzHmbqfWRiG0+xr4e8drz9RN1G0XLwtMb4MMFmeMDCC41m4nEiEr+NlZhjT1x9vy3h9xss4fZslOK0sEfZwbbr6Fe79zhoUZpYEHgE+A+wHXjGzbnffWVTtTuCou19hZuuAh4AvmlkXsA64BrgY+EczuzLcZ7ZjinyAmVGXSs7rebTcfTJIwnCZGkJTQ2csX6BQgFyhQMGDfQvhcfIF/0BZoTC5LV9w8j5ZNrHNnXw+fJ1ynOKy/JTjFK+P5goTZQV3CgWCV3cKHiy7M7G9eLngwXsx3jYP6+eLtxV8xnExmRQEzOnhcXr4hGFjHwyf81VKj2I10Ovue4LG2kZgLVD8ob4W+E/h8tPAX1kQgWuBje4+ArxlZr3h8SjhmCKxZGakk0Y6CfXM30CbTzwMj+LAGQ8VLxQHTNG2ovAZ39eLAiw/JZwmthXG18N9wt8/8epMBFkQYkVlTIach+vF9f20OpPLFIVjcJzp6xfCufcm6o2H8Rnqj7e7MPF3TB5j/L3aNgf/fUoJiiXAvqL1/cDHzlTH3XNmNgC0h+UvTdl3Sbg82zFFpEYEl4bQ7ANl8OdzcIx5/1VeM7vLzHrMrKevr6/SzRERqTmlBMUBOO0mmKVh2bR1zCwFtBAMap9p31KOCYC7P+ruq9x9VUdHRwnNFRGRuVRKULwCrDCz5WaWIRic7p5Spxu4I1y+DXjegwdddAPrzKzOzJYDK4CXSzymiIjMA7OOUYRjDvcAzxHcyrrB3XeY2QNAj7t3A48BT4aD1e8TfPAT1ttEMEidA+529zzAdMec+z9PRETOl55wJyJSxebiCXfzfjBbREQqS0EhIiIzUlCIiMiMFBQiIjKjWA1mm9kJYHel2zFPLASOVLoR84Deh0l6LybpvZh0lbs3nc8B4jbN+O7zHb2vFmbWo/dC70MxvReT9F5MMrPzvlVUl55ERGRGCgoREZlR3ILi0Uo3YB7RexHQ+zBJ78UkvReTzvu9iNVgtoiIRC9uPQoREYmYgkJERGYUi6AwszVmttvMes3svkq3J0pmtszMXjCznWa2w8zuDcsvMLMfm9k/h69tlW5rVMwsaWbbzOyZcH25mW0Jz4+nwqnrq56ZtZrZ02b2SzPbZWY31up5YWb/Pvz/Y7uZfdfMsrVyXpjZBjM7bGbbi8qmPQ8s8I3wPXndzD5Syu+Y90FhZkngEeAWoAtYb2ZdlW1VpHLAH7l7F3ADcHf4998H/MTdVwA/Cddrxb3ArqL1h4CH3f0K4ChwZ0VaFb2vA8+6+9XAtQTvSc2dF2a2BPh9YJW7f5jg0QXrqJ3z4nFgzZSyM50HtxA8F2gFcBfwrVJ+wbwPCmA10Ovue9x9FNgIrK1wmyLj7ofc/Rfh8gmCD4MlBO/BE2G1J4DfrEgDI2ZmS4HPA98J1w34NPB0WKUm3gszawH+BcGzYHD3UXc/Ro2eFwRfHq4Pn7DZAByiRs4Ld/8pwXOAip3pPFgL/K0HXgJazWzxbL8jDkGxBNhXtL4/LKs5ZtYJrAS2AIvc/VC46V1gUaXaFbGvAX8MFML1duCYu+fC9Vo5P5YDfcDfhJfhvmNmjdTgeeHuB4D/ArxDEBADwFZq87wYd6bz4Jw+T+MQFAKY2QLg+8AfuPvx4m3hY2er/j5nM/sCcNjdt1a6LfNACvgI8C13XwkMMeUyUw2dF20E/1JeDlwMNPLBSzE1ay7OgzgExQFgWdH60rCsZphZmiAk/t7dfxAWvzfeZQxfD1eqfRH6OHCrme0luAT5aYLr9K3hJQeonfNjP7Df3beE608TBEctnhe/Drzl7n3uPgb8gOBcqcXzYtyZzoNz+jyNQ1C8AqwI72DIEAxSdVe4TZEJr8E/Buxy978o2tQN3BEu3wH8KOq2Rc3d73f3pe7eSXAePO/uvw28ANwWVquV9+JdYJ+ZXRUW3UzwbPqaOy8ILjndYGYN4f8v4+9FzZ0XRc50HnQDXwrvfroBGCi6RHVGsfhmtpl9juDadBLY4O4PVrZF0TGzTwA/A95g8rr8nxCMU2wCLgHeBn7L3acOaFUtM/sk8B/c/QtmdhlBD+MCYBvwO+4+UsHmRcLMriMY1M8Ae4AvE/zjr+bOCzP7M+CLBHcJbgP+LcG196o/L8zsu8AnCaZWfw/4j8APmeY8CIP0rwguzZ0Evuzus84uG4ugEBGRyonDpScREakgBYWIiMxIQSEiIjNSUIiIyIwUFCIiMiMFhYiIzEhBISIiM/r/lXwoXNBP92cAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAArlElEQVR4nO3de3hcd33n8fd3LhpdLcmSbCeyHduxA3EgQFCTQIGyBdqk3SYhhTZ5nrbwbLcuC25Z2rINS0lz6e62tKWFNg2kTbZQSFNKC2uIwdwSaAsmdi7EcRI7iuNYdnyRbV0sS5rb+e4fc0Y+UiTN7xxrJI3O9/U8tmfOnDPnMtZnfvqe3/kdUVWMMcbEQ2KhN8AYY8z8sdA3xpgYsdA3xpgYsdA3xpgYsdA3xpgYSS3Uijs7O3XdunULtXpjjKlJjz766ElV7Yq6/IKF/rp169i9e/dCrd4YY2qSiLx4PstbeccYY2LEQt8YY2LEQt8YY2LEQt8YY2LEQt8YY2LEQt8YY2LEQt8YY2LEQt9Ulary7A+PUsgXF3pTlqTceIH9jxxb6M0wNcRC31TVi0+d4juffYadXz6w0JuyJD38+Wf51n1P03/ozEJviqkRFvqmqnLjBQBGh7MLvCVL08hg6bjms/ablHHjFPoico2I7BORXhG5ZZrX/0JEnvD/7BeRwTnfUmOMMeet4tg7IpIE7gLeARwGdonINlV9ujyPqn4oMP9vAa+rwraaWmR345wndqCNG5eW/pVAr6oeUNUc8ABw/Szz3wz841xsnDHGmLnlEvrdQF/g+WF/2suIyEXAeuC7M7y+RUR2i8ju/v7+sNtqapEs9AbEhR1o42auT+TeBHxJVac9q6Sq96hqj6r2dHVFHg7aGGNMRC6hfwRYE3i+2p82nZuw0o4xxixaLqG/C9gkIutFpI5SsG+bOpOIvBJoB344t5tojDFmrlQMfVUtAFuBHcAzwBdVda+I3CEi1wVmvQl4QFWtG4ExxixSTrdLVNXtwPYp026d8vy2udssY4wx1WBX5BpjTIxY6BtjTIxY6BtjTIxY6BtjTIxY6Jvqsr5c88QOtHFjoW/mh9gwAcYsBhb6xhgTIxb6xhgTIxb6xhgTIxb6Zn7Y6BzGLAoW+qa67PztPLEDbdxY6BtjTIxY6BtjTIxY6BtjTIxY6BtjTIxY6BtjTIxY6BtjTIxY6Jvqsu7588QOtHFjoW/mhw24VlV27Ztx5RT6InKNiOwTkV4RuWWGeX5JRJ4Wkb0icv/cbqYxZlYW+sZRxRuji0gSuAt4B3AY2CUi21T16cA8m4CPAD+pqgMisqJaG2yMeTnLfOPKpaV/JdCrqgdUNQc8AFw/ZZ7fAO5S1QEAVT0xt5tpjJmV1XeMI5fQ7wb6As8P+9OCLgEuEZH/EJGdInLNdG8kIltEZLeI7O7v74+2xcaYl7HIN67m6kRuCtgEvBW4GfhbEWmbOpOq3qOqPara09XVNUerNsZY6htXLqF/BFgTeL7anxZ0GNimqnlVfQHYT+lLwBgzHyz0jSOX0N8FbBKR9SJSB9wEbJsyz1cotfIRkU5K5Z4Dc7eZxpjZqKW+cVQx9FW1AGwFdgDPAF9U1b0icoeIXOfPtgM4JSJPAw8BH1bVU9XaaFOD7ERjddnhNY4qdtkEUNXtwPYp024NPFbgd/w/xpxj12TNC8t848quyDVmKbDUN44s9E11WRjNC7XymXFkoW/mh429U12W+caRhb6pKmuAzg87zMaVhb4xS4F9uxpHFvqmuiyM5oUdZuPKQt9UlWWRMYuLhb6pLkv9+WHH2Tiy0DdVZWWH+WHDMBhXFvqmyiyM5oUdZuPIQt9UlbX054cdZ+PKQt8YY2LEQt9Ul7VA54UNw2BcWeibqrIwMmZxsdA3VWWZPz/sy9W4stA3poZJeSA7y3zjyELfVJe1QOeFHWbjykLfVJWFkTGLi1Poi8g1IrJPRHpF5JZpXn+viPSLyBP+n/8695tqjJmRfbsaRxXvkSsiSeAu4B3AYWCXiGxT1aenzPpPqrq1Cttoaphl0fyww2xcubT0rwR6VfWAquaAB4Drq7tZZumwOKqmiV47dpiNI5fQ7wb6As8P+9Om+kUReVJEviQia6Z7IxHZIiK7RWR3f39/hM01tcZa+vPDjrNxNVcncr8KrFPVy4FvAZ+dbiZVvUdVe1S1p6ura45WbRY1C6N5YgfauHEJ/SNAsOW+2p82QVVPqWrWf/p3wOvnZvOMMS6spW9cuYT+LmCTiKwXkTrgJmBbcAYRuSDw9DrgmbnbRFPL7EpRYxaXir13VLUgIluBHUASuE9V94rIHcBuVd0G/LaIXAcUgNPAe6u4zcaYqey71TiqGPoAqrod2D5l2q2Bxx8BPjK3m2aWAmvozw/7jcq4sityTVVZGFVXeewdO8zGlYW+qS4LI2MWFQt9Y5YCa+obRxb6pqqsvDM/7DAbVxb6xhgTIxb6pqqsBTo/7DgbVxb6prosjOaJHWjjxkLfVJmF0Xywlr5xZaFvqsrCaJ7YcTaOLPSNMSZGLPRNVVlLf35Y11jjykLfVJeFUVVZ2JuwLPRNVU1kkoVTVam30FtgaoWFvpkXFvnVMTHgmh1h48hC31SV3bh7ntjxNY4s9E11lTPfQsmYRcFC31SVTvPIzD07oWtcWeib6tIp/xpjFpSFvqkyDfxtqsUa+saVU+iLyDUisk9EekXkllnm+0URURHpmbtNNLVMraU/P+z4GkcVQ19EksBdwLXAZuBmEdk8zXwtwAeBH831RpoaNnEi11Kpuuz4GjcuLf0rgV5VPaCqOeAB4Ppp5rsT+BNgfA63zywiTz38bb78J7eHWsauzZofYY/vF2//CPt3/nt1NsYsai6h3w30BZ4f9qdNEJErgDWq+uBsbyQiW0Rkt4js7u/vD72xZmHtuPsvOfDYrnALWdovSn1P7+Grf/HHC70ZZgGc94lcEUkAnwB+t9K8qnqPqvaoak9XV9f5rtrUgInIt/CvqjCH10pt8eYS+keANYHnq/1pZS3Aq4CHReQgcDWwzU7mGuBcTX9ht2LpCxHkagP1xJpL6O8CNonIehGpA24CtpVfVNUhVe1U1XWqug7YCVynqrurssWmptgwDNVVPr6hWvqefRhxVjH0VbUAbAV2AM8AX1TVvSJyh4hcV+0NNDXOhmFYdNSzln6cpVxmUtXtwPYp026dYd63nv9mmaXChmGosghdYq28E292Ra6pLrs4q6qiXPxmJ3LjzULfhBYqNMo15yptiwl/fK2mH28W+ia8MKWECMsYd9Fa+lbeiTMLfROaF+ZEoJ3IrapzxzXEF7GdyI01C30TWqiThlXcDsO58pnV9I0jC30TWqjyQIRQMhGE6qdvLf04s9A34YU4EWhdNqsryrVv1tKPNwt9E1q4lv6Uf011WD9948hC34QWqcumhX5VaIQusdZlM94s9E1oYXrvWNjPkzC/fFlNP9Ys9E1oYULj3E1ULP2r4VxNP0x5xz6LOLPQN+FFKO+ErennDh0if+RI5RmXkNyhQ+QOh9xnuzjLhOQ04JoxQeFq+uVlwq3j+Z/5WQAuffaZcAvWsKN/+IckMvWs+fTdIZaymr4Jx0LfhBalvGPddyrzzo5CvhBqGRuGwYRl5R0Tmg3DUCXFIloIF/oTwnTZtBO5sWYtfRNeqGEYLO1dqedBPh9uGbs4y4RkoW9Ci3JxluWMg2IxfCs8QupbSz/eLPRNaGFOBJ6rOVvqV6JeMfKpD2vpG1dONX0RuUZE9olIr4jcMs3r7xORPSLyhIj8u4hsnvtNNYuFnQisEk/RiOWdSN1oTSxVDH0RSQJ3AdcCm4Gbpwn1+1X11ar6WuDjwCfmekPN4mHDMFRJsYgWwoV+Wbgum/alHWcuLf0rgV5VPaCqOeAB4PrgDKo6HHjahPXPW9Kiddk0lZRO5IbssumFr+mH6n1llhyXmn430Bd4fhi4aupMIvIB4HeAOuCnp3sjEdkCbAFYu3Zt2G01i0SoluLEiVyL/4qKxfDlnYkHNgyDcTNn/fRV9S5VvRj4feAPZpjnHlXtUdWerq6uuVq1mWeh7pxlAeNMPS98P/1Id86yln6cuYT+EWBN4Plqf9pMHgBuOI9tMotctYdhiO0XxXlcnBXqiNkwDLHmEvq7gE0isl5E6oCbgG3BGURkU+DpzwPPzd0mmsUmUk0/TM5EvSq1xqnnzUvvHWvpx1vFmr6qFkRkK7ADSAL3qepeEbkD2K2q24CtIvJ2IA8MAO+p5kabhRWlph8m9SMPRVDrisWJC7Qk4Vh5jTD2jp3IjTeni7NUdTuwfcq0WwOPPzjH22UWsSg1/VDlnZiG/sSxKhSQujq3ZaKMshnX8pkBbMA1E0GU8oCFvoNisfRvmBJPlHsQW0s/1iz0TWjVHoYhbF17qSiXzaJ86dmds4wrC30TWtVPBMa8pR/mSy/aePoW+nFmoW9Cq/YwDHEt70Rq6Vs/fROShb4JrdrDMMQ19Cda+iH2P8rxtd478Wahb0ILdY/VCMMwaMjxZ5YCVZ04waq5KCdyw/TZtPJOnFnom9DClAci1ZwjjjRZ0wKhHWb/o3TesfJOvFnom9Ai1fTDrCCO5Z1yd00It//l4xvmejk7kRtrFvomtFAt/XMLuS8Tw9APnieJ1mXVboxu3Fjom9DCDcMQvlUZx5p+sKUf6kRulPKZhX6sWeib0KJcnBW1y2ZcShGTW/phyjuT/nFbJCbH1EzPQt+EFulEYNQTuXFplQZb+qEuzgqf+hPLiLgvZJYMC30TWrgB1/x/w6RSsLwRPMG5hE1q6UfovRTqM4nLF6mZloW+CS1UP/0I9YdJ5Z24BFTEE7lRKjVW3ok3C30TWqjyTpRQysewpX++XTZtGAbjyELfhBZqGIbzPZEbx5Z+lYdhiM0xNdOy0DehRSkPhKo5B2vaMWnpRz2RG2UYhnJ5TrATuXFkoW9CC9fSj9Cn0Lpsui835V+nZay8E2sW+ia0SC39MPPGsKYf9eIszqPLZqgeVWbJcAp9EblGRPaJSK+I3DLN678jIk+LyJMi8h0RuWjuN9UsFpFO5EYchkGL8WiVRh6GIco5ExtlM9Yqhr6IJIG7gGuBzcDNIrJ5ymyPAz2qejnwJeDjc72hZvGIVN4J8/7Blq4Xk5Z+xH76kcY2issxNdNyaelfCfSq6gFVzQEPANcHZ1DVh1R11H+6E1g9t5tpFlowvKs/DMO50ItNSz+4n6HKO5P+cVskJudJzPRcQr8b6As8P+xPm8mvA1+f7gUR2SIiu0Vkd39/v/tWmoUXDP1IVwSFmDeWLf2IwzBEqO+UPz/rvRNPc3oiV0R+BegB/nS611X1HlXtUdWerq6uuVy1qbJJLf0IN1EJc9Jw0oncmPQpD7b0Iw24ZqNsGkcph3mOAGsCz1f70yYRkbcDHwV+SlWzc7N5ZrEIBn242yXaMAxOvKi9d8Kvyso78ebS0t8FbBKR9SJSB9wEbAvOICKvAz4DXKeqJ+Z+M81CmxT0Ve7nPam8EZMumxp1lM3yvzYMg3FUMfRVtQBsBXYAzwBfVNW9InKHiFznz/anQDPwzyLyhIhsm+HtTI0KBoVX7WEYAqEXn5Z+xFE2I9xFJTbH1EzLpbyDqm4Htk+Zdmvg8dvneLvMIqPnfSLXhmGYjUa9c9bLHjgsYxdnxZpdkWucBMs7Ufrph7siN35dNgmWz+br4ixVq+/HkIW+cTLpRG6Vu2xOqmnHssumW0s/amBPqulb6MeOhb5xMilgIt05K8S6YljTn9xl07GlP+kjCd9PP+xyZmmw0DdOguHrhWl9Rxl7Jx/De+RG6LIZNa4njfNjPXlix0LfuIk8DEP4OzuRDw64Fo/yzkRLP5FwP5E76TMJsS4v4jUXZkmw0DdOzr/3TohZY9zSl0zGubyjszybdbmIV1ebpcFC3ziZVFuv+jAMeaS+vvQ4Zi39RCbj3k8/2mmW8z8pb2qahb5xErmlH2UYhnyeRCZTehKXlr4fxJLJTCpvzb5M1FVFK9WZpcFC3ziZPPZOhCAOGfoSs9Av/0YTrrwT/CIOsS4r78Sahb5xEmwRRhqGIcy6CoWJ0I/PxVnl8k5diBO5wcfRbqJi5Z34sdA3TuZ1GIZ8nkR9uaUfl5q+39Kvy1S/y+akXj8x+VI1Eyz0jZPJV3FWfxgGyZRP5MYklPz9lPr6iBdnua9q8oip1tKPGwt94yTyyb/wg0D6vXdi1tL39zNMeWcuhmGw8k78WOgbJ1GDIkqklHrvxLSlXxeiy2ZApB5VWHknjiz0jRuNdiI3yr11gydy49LSn9RlMxe+vBOG51lLP84s9I2TqBdnTX4Tx9nyeSRT9/L1LmHl32gkTHkn+DjiPXKty2b8WOgbJ5N7fITpHhh47LqeQHmHuJR3Jmr6YU7kRh351C7OijMLfeMk6gU9GraLiR945RO5GpPyzrmWfogum5GHYbChlePMKfRF5BoR2ScivSJyyzSvv0VEHhORgoi8a+430yw0jVoH1mkfzjy7H/pxbelLpg48r7pjDll5J9Yqhr6IJIG7gGuBzcDNIrJ5ymyHgPcC98/1BprFYU6G43VYrNzKnRhwLWYt/YleSw6t/ckt9hDrst47sebS0r8S6FXVA6qaAx4Arg/OoKoHVfVJwP4HLVGTg8I9iCeFkUvol8s7/onc+LX0/bKWy6BrEc/kejaefqy5hH430Bd4ftifFpqIbBGR3SKyu7+/P8pbmAUS+YKekPXjc+Udv8tmTMoP5Rb3xJedQ1/9qOX4yZ9lPI6vOWdeT+Sq6j2q2qOqPV1dXfO5anOeJl2RG/HirDA1/dgOw1Dnd1V17cHjC/UFYCdyY80l9I8AawLPV/vTTIxEHlo5YnkndgOueUUQIVEO/ZA1/XDrOs9hsk1Ncwn9XcAmEVkvInXATcC26m6WWWyidvObXHZ2KO/4YZdobgbAGxt3Wk+2mGXrd7by/ODzzttWTXtP7eVDD32IgufY/XI8W6rnp1Kl567DK5eXj9pP31r6sVMx9FW1AGwFdgDPAF9U1b0icoeIXAcgIj8hIoeBdwOfEZG91dxoM/8mD7gWbRgGp9lz5fJOhkRzM8XhIaflnux/ku8d/h537rwz1Pqq5fce/j2+fejbHBlx+6W4ODREsq0NSacBx/JO2NqZb9IwGhb6sZNymUlVtwPbp0y7NfB4F6Wyj6kRXq6IpBJIQpzmD5Z3CrlstJWG6b2TriPZ2oo35Bb66UQpLHPFXLRtm2Pl7XBtSReHhki2tiKpcui7lHcCj0NsWyF37hiF+QLXogeeIulkiLWZxcauyI2pl279AacfeNZ5/nJ4JdNpsqOjzssV8oH6sct6JkI/TbK1lcLgoNt6/DJKthjxC2mOZb3SdowVxpzmLw4OlkI/XS7vuJzIPXdEi3n38M6NniVZ/o0iREv/5P/dy5GP/cB5frM4WejHULlUM/bkSfeF/BZhfXML2dGzbosUPfLjReoa/F8oXWr646WQTNRnSLa14Q26tfTL4brYWvrjRbdzEsWhwVJ5p9xPf6zyl0X5cNY1pMiOuvf2yY6OUt/c4r+H+5dFtnfQeV6zeFnox5DmwveIKbcI65uanUM/N1b0l/Fbrw6NysLJUwAkOzpJtrVSdCzvlMN10bT0/e0Yyzu29P3yTqqzE4DCqdPO66pvSlHIeRQLbgGeHT1LfVPpRLnrxVk2SNvSYaEfQ5o9F/reeLi7NGWamp3LO+N+6zPTmHbetoJ/0V6qs4NEq3vol1v6iyX0Pb8F7VLeUVW8wSGSbYHQd7h4ceIz8Y9vdtThPIDnkRsfI1MOfceWfnE4cB4gH49utEuVhX4MeYHQzx93C/ByONQ3NZEfH8Nz6D9fDqGGllLfc5eWaOHkSRItLSTq60m2tVEcGnI62VhuUeeL4e86VU2jhcrHV0dH0XyeZFsbyfZ2SCYpnKwc+l6hFPoNLeXQr7zv2bFRUKW+qam0bseafuHYud/ugo0GU3ss9GMo+ENbHHJrGZe7+ZXLArnRyi3YnB/6bSsbABgfqRxKhZMnSflXaydbW8Hz8EZGKi63mFr6wSB1qemXf5tJtrYiiQSpjg4KJyufbxnzj2fbykbAraWf839Lm6jpO/beCbb0PQv9mmahH0PBH1pvzK28M37mDADLVqwCIDtaOYjL5Z12P5RGhyufZC2c7J8ocSRb2wCcSjxjRf9ErpebKK0slGBJx6WmX96/RGsrAKnOTor9DqHvH8/2EKFfPh+zrGtl6T38z7WS4P8Ta+nXNgv9GAqeyHUN/bMDpROLy7tLl2O41PWzEy39UiiNnXEI/f5A6Le3laa5tHoDQXsm5xZk1TKYHZx47FLTL5+8TrW3A5Ds6nSq6Y/6x3OipT/mUN7xQ7/D/xzPDrqdMA7+P7GWfm2z0I8hjdDSHxk4TX1zC43LSq1Rlx48ubFy6Jfqxy4t/WL/SVJdpdDPbNhQep/nKw+tEGxRB0N3IQxkByYeu5R3ss/3AlDn72+qs9Pti25q6J91aemXvqxbV64ikUwxMhA+9K2lX9ss9GMo2FJTh5IAlFqEze3LJ2r6bi39PImU0NRWRyIpjJ2ZvSVaOHkSb3SU1AUXAJBevRppbGR83/6K6wq2qE+Nnao4fzUF1+/S0s/u20+ys5PU8uUApC+8kEJ/P8WR2b9YR4dzZJpSNDSXTpSHKe/UNzXT1N4+8RtcJV7gJHGULr9m8bDQj6FySy3ZlsFzKAlAqaXf1L6cusZyq9Klpl8g05hGRGhoqZsoR8xk7Mk9ADS8+tUASCJBZuNGsvtDhv54jYX+/v3UX7Jp4nnDq18Nqow/PfsQVmNncjS21JFMJ0ilE269d/zQzzQ20dy2PFRLP9lWunDMyju1zUI/hrxsqUWYbM2EKu80ty+f6PUx6jAQ2thwjvqmUnfChpZ0xZr+2J4nIZmk/tJLJ6bVv+ISss8+W7GXyXhxnBWNK4BF0NL3v3RWNKyoGPqay5Ht7SWz6ZKJafX+l974nj2zLjs6nJvoDlvfnHYqn40ND4EIdY1NNLUvd2/pB0Lfyju1zUI/hjRbROqSJBpTeI4X9IwODtDU1k5DcwvNyzvoP3ig4nL9h87QubpUDmpcVsfoUIXQf/wJMhs3kvB/mwBovOpqikNDjD3++OzLFsa4sOlCBFkULf3GVCPt9e0VQ//sD3+IZrM0vuHqiWmp9nbSa9Yw+tjs+zw6lKNxWSn0O1c303+o8gnsEwcPsPyCblLpdPjQb7WW/lJgoR9DXraIZJIkGlJOLf2BYy/hFYu0rix111y5YRPHDvTOuszZwSwjA1lWrlsGQEd3M6eOjJCfoR6cP36C0Uceofk/vXXS9Oa3/hSSTjP8jR2zrm8sP0ZTXRPt9e2LoqXf0dBBQ6qhYugP7/gmieZmmt74xknTm9/6Vs5+//szdlcdH8kz1D9GR3fpS3XFumUMHB8lW+HzPP78c6y8uFRKalu5ivGzI5w5XfmksTdaINGYQuoS1tKvcRb6MaS5IokQof/ik6UW59pXvRaAlRsuZuClw7P24Dn+wnBp3vWl0L9wUxteUTl+YPoQG/zSP4Pn0XbDDZOmJ5ubaXnH2xn6l3+hcHrmVulYYYyGZAPL65cveOifHjtNR30H9an6WUM/f/Qow1/9KsuuvXbijlllrTdcj+bzDH75y9Mu+5I/+NmFl7QBlL5cFU68ODzj+kYGTjMycJpVGzYCsPZVrwHg0J4fz7o/6ik6XiDRmEYySQv9GmehH0PFoRyJxhSJxjSaLaIVhuU9+OPHaF25ija/pb/m0lLNuXfXzhmX2ffIMTJNKTrXlFqiF25sQwT6nnl5cOePHOHUvffR/Pa3Ubdu3cte7/zAB/DGxzn+v/73jMMGnMmdoTHdSEdDx8KXd/yWflO6ieHs9CGsnsexO0o3fOl832++7PX6zZtpfMPVnLz709P22e97+jTJdIKVF5W+VFdtaCWVSbJ/57EZt2v/zv8AoPvSVwHQtXYdDctaeeGJR2fdH280DwqJhtL/mYLjVdxmcbLQXwLGxsYYGBioPCOlAdZyfWfIbGgl7dfbxw8Mzjj/yb4XOfD4bl5x9ZsmpnVfehkdq9fy6INfwSu+vNV38vAILzzRz2Vv6ibl33CjriHFuss72ftvL0303wconDpF3/s/gCQSrPz93592GzIXX0zXb/8Www8+yPE7/wgvN/ncQN9wHyfGTnBZx2WsalzFi8Mvkvccx+DZ/j/gax+afZ5/3QLfvs3p7cYL4xwZOcLKxpVc1nEZB4cPcnJscvnEGxvj6B98jJGHHmLFhz9Murv7Ze8jIqz66EfRbJa+D2ylGLivwNhIjmd3HmXjFStIpks/wnUNKV559Sr27z7O4DTjKRXyeR7/xjYu2PgKVq6/uLSORIJXvOFNPPej/2Dw+MxfFtnnS7+d1a1uJrO+ldwLQ6jjiJ6nTp0im7UvicXEQn8JuPfee/nkJz/pNHhWtncQPCWzqZ36i9uQTJKxPdPXdLOjo3z9rz9BpqGRnl+4cWK6iPCGd91M/4sv8PA//N2k9Q6fHOPrn9lDQ0sdr337mknv1/Nz68iOFXj4/n14+QJDX/0aL7zzRnIvvkj3J/+SujWT5w/q+M3fZPl73sPA/ffzwjtvZHjHNyfuI/uDl0o39njjhW/kp9f+NIPZQX5wxPFmH498BnbfN/PrqvDkP8G//4XT23330HcZK4zxtrVv443dpTr9zqOl34g0l2Poaw9y4PobGPrXf6Xz/f+N9l/9lRnfK7NxI91//mdkn3mGAze8k+Fv7KCYL/Ddzz1LsaBccc1Fk+Z//TUXkc4k+fpn9jAycO6iMM8r8p17/4bBY0d5w7tunrTMlTe8m0Qyxdfv+gT58ekvJBvbe5JEc5q6tcuov6QdzXtkX6jce6tYLPJXf/VXfP7zn684r5k/TrdLNIuX53mc9K/eHBgYYLl/gc+0844XGPrmQZKtGTIXLUNSCRov7+Lso8dp6llJZl3pattiocCBxx7h3+7/ewaPH+OGD3+MhpZlk97rFW94M0f2Pc3jX/8qxw88zxXX/hKnj7Wy53svkUgI/3nraya6E5Z1dia54nVpHtt1nNPf28nFe++nY3U7q+/+Gxouu2zW/RQRVn7kFpp+8o0cu+NOjnzwgyTb26m/+iqea3iMN61cyepEB92ru+mo7+BTj3+KK1ZeQUtdy8xvGhwXJzsCmeaXzzNyInAAPUjM3E4aGB/g7h/fTXdzNz2reigOD3NVfxtP3/uXvGbkW4zt/BHFoSHq1q9n7d//PU1XXzXrPgO0vO1tXPSFz3P0Y7fy7B/8Gb3/eJSBhrVcdVUdbcsn//g2t9dzzW+8igfv3sMXbvsRr33bapZ1nOSxBx/g2PPPcdU7f5n1r+uZ/P7LO7nm/f+dr33y43z+f36IN938a2x8/VWIv5/j+wcY23OS5p/sRhJCZmMbiaY0Q984SN1Fy0jUzXzrxBMnSseur68PVUXE7dacprrEpXUoItcAnwSSwN+p6h9PeT0DfA54PXAK+GVVPTjbe/b09Oju3bsjbrYp6+vr49577wXgxhtv5PLLL3/ZPMXhLOPPDXLmoT4Kp8fofO+rqL+kNM5L/sw4J/76cbwzBcZXZOnLPcdzvTsZGTpF28oL+Jn3/TZrNpdq+IVckbNDOc4OZTk7mGWof5TeRx7m6L5v4BXPgjTT0r6WjRtX0dWUoaFQJDN4Bj18mPyhQ+QOHgTP40j3Wziw8QbykmHluhbWXtbBinXL6FzdTFNrpuJ9e7VYZPihhzjwlS+Q/9FuWs6cKxeluroYb2/kSa+P8WX1dK9+Jd0rNtLZsYaGZe0kmpqQ+noklUbO9CFf/S1IKHLjp5ELLkOzWbxcjmRra+k3ib7d6Nd+F1TQG++Fxi688XG80VG80VHGzwxy8lQfL504QN/hvTQO53hNYi3pgRGKgaEUzrSmqbv6Sjbc+Ku0vPnNE6E64z56ypnT45x+6SzHDw7z4lMn6T80QkpzbNr/RS44+kNIJqlbs4b0xRvQCy8k29TIeCZN/0iW5w8c48zAIdCzJFItdG/+eTb+xJtpWV5PS0c9Ta0ZMo0p0pkkIsLBHz/Gd+67m8FjR2lp7eTSV76JVbKO+hMZksvr6Hzf5dS1lEZLHXvqJKe+8AypzgZa3rKa+s0dJJtefs+EXbt28eCDDwLw/ve/nxUrVsy6z8aNiDyqqj2V55xh+UqhLyJJYD/wDuAwsAu4WVWfDszzfuByVX2fiNwEvFNVf3m2933Npa/SHZ/7Z7QYuCMPpTrhpEESJy7K0Yk7L5WH+Z1001VVVLU0qTyjAnjnnvp3/Jl04wgt/ZmYpqDBN1bPfxudWJ9y7rE3aV3lTQncF9bzSuUP9VBP8TxFPQ+v4JVe87RUFy9qab88LW2nV3quXukYlObzKKqHh1JQj3GvwPMyyKjkKYqyvFjPhlwbzZqh3svQKA00SROZROmHdaQwxFPDj3Bi/BDFYpaCl8PzstQlGri8/S1c1HwZqUQaTz2yXp5xL8GYQs4T8gh5hYJCEcVT8AApZKkbO46M95LzjnM2WSSbSvjHUP1j5ZEkQTqdItXUSLqlBdJpxkeU8REo5AQlgUoSIYWkEyTqFElJ6XfRlOIlPArJHOOaY1xHGSwMkSVLOp3iJ1o2c6HXiDc0gA6cRs+OkD8zQPHMGdL5AqIeUCThKfj/x2RSSbr04QlKPpnESybJ5PL+FED8V8V/iOBJAiSBJhJ4kgRJkk8nSbYsI9XcijQ2Ia1tJFrbOSLDPD6yj0KxSD0NtCbbaZRG6rSOtKYQT5AiaB40qxTzxdL/gdKHDyjpjNLQDHWNimbHyQ0PUxgfxysUKaqCJBESiCRIiJApKE35BKnkSqjfwHjDKjSZJgEkBVIipUMrkBalTjzqE0K9eNQn0ogkyHtZDp55ij0D3yevOZKJDKlkPclEHSsbLuLSltfTkmoD4Kx3ljE9yyjj5BIFzibGeS59msFEloQKLdSxgXYaJEVShGQiQTKRKH3BJ4SECCQTJCQBidL5BkkIiaSApJCkkEgIkhS/UXDudREgkQQREH8+EUgkONd8SIBAIpGY+DxLs5eWkfK0hJQ+cAGRRHnWifcq/7Yi4r+Pv6yU11R+r0T5f0pp2sT/HPG3rbxh/jacm4+J95l4/+A0oPPVG6oe+m8AblPVn/WffwRAVf9PYJ4d/jw/FJEUcAzo0lne/MILL9QtW7ZE3W5jjIml22+//bxC36Wm3w30BZ4fBqYWIyfmUdWCiAwBHcCkM4QisgXYAnCBP6iWia7eS9NWbCClgqKMS56hZJZCYmHHkzcm7SVoLdZTr2kQoSAeA4lRsgm3YT9M9czriVxVvQe4B0o1/dtuu20+V2+MMTXv9ttvP6/lXbpsHgGCfelW+9Omnccv77RSOqFrjDFmEXEJ/V3AJhFZLyJ1wE3AtinzbAPe4z9+F/Dd2er5xhhjFkbF8o5fo98K7KDUZfM+Vd0rIncAu1V1G3Av8A8i0gucpvTFYIwxZpFxqumr6nZg+5RptwYejwPvnttNM8YYM9dsGAZjjIkRC31jjIkRC31jjIkRC31jjIkRpwHXqrJikTPAvgVZ+fzoZMoVyUvMUt6/pbxvYPtX616hqrMMHzu7hRxaed/5jB+x2InIbtu/2rSU9w1s/2qdiJzX8MRW3jHGmBix0DfGmBhZyNC/ZwHXPR9s/2rXUt43sP2rdee1fwt2ItcYY8z8s/KOMcbEiIW+McbESNVDX0TeLSJ7RcQTkZ7A9HUiMiYiT/h/Ph147fUiskdEekXkUyLBm0cuLjPtn//aR/x92CciPxuYfo0/rVdEbpn/rY5GRG4TkSOBz+znAq9Nu6+1plY/m9mIyEH/5+mJcnc/EVkuIt8Skef8f9sXejtdich9InJCRJ4KTJt2f6TkU/7n+aSIXLFwW17ZDPs2tz93Wr6heJX+AJcCrwAeBnoC09cBT82wzCPA1ZRuDfx14Npqb2cV9m8z8GMgA6wHnqc0NHXSf7wBqPPn2bzQ++G4r7cBvzfN9Gn3daG3N8L+1exnU2G/DgKdU6Z9HLjFf3wL8CcLvZ0h9uctwBXB/Jhpf4Cf8zNE/Ez50UJvf4R9m9Ofu6q39FX1GVV1vvJWRC4AlqnqTi3t2eeAG6q1fedrlv27HnhAVbOq+gLQC1zp/+lV1QOqmgMe8OetZTPta61Zip/NTK4HPus//iyL+GdsKlX9PqX7dgTNtD/XA5/Tkp1Am58xi9IM+zaTSD93C13TXy8ij4vI90Tkzf60bko3Xy877E+rNdPdUL57lum1Yqv/a/J9gZJAre9T2VLZj6kU+KaIPCoiW/xpK1X1qP/4GLByYTZtzsy0P0vlM52zn7s5GYZBRL4NrJrmpY+q6v+bYbGjwFpVPSUirwe+IiKXzcX2zLWI+1eTZttX4G7gTkohcifw58B/mb+tMxG9SVWPiMgK4Fsi8mzwRVVVEVkyfbeX2v4wxz93cxL6qvr2CMtkgaz/+FEReR64hNJN1lcHZp3uRuzzKsr+MfsN5SvdaH7BuO6riPwt8DX/6Wz7WkuWyn5MoqpH/H9PiMiXKZUAjovIBap61C93nFjQjTx/M+1PzX+mqnq8/Hgufu4WrLwjIl0ikvQfbwA2AQf8X9GGReRqv9fOrwG12JreBtwkIhkRWU9p/x7B7Ubzi9KUWug7gXIPg5n2tdbU7GczExFpEpGW8mPgZyh9btuA9/izvYfa/BkLmml/tgG/5vfiuRoYCpSBasKc/9zNw9nod1KqNWWB48AOf/ovAnuBJ4DHgF8ILNPj79jzwF/jXzm8GP/MtH/+ax/192EfgR5IlHoU7Pdf++hC70OIff0HYA/wpP8f7oJK+1prf2r1s5llfzZQ6uHxY//n7aP+9A7gO8BzwLeB5Qu9rSH26R8plYfz/s/er8+0P5R67dzlf557CPSwW4x/Zti3Of25s2EYjDEmRha6944xxph5ZKFvjDExYqFvjDExYqFvjDExYqFvjDExYqFvjDExYqFvjDEx8v8BZQ3srbL1gbMAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
@@ -75,32 +89,17 @@
}
],
"source": [
- "\n",
- "# Number of samplepoints\n",
- "N = 600\n",
- "# sample spacing\n",
- "T = 1.0 / 800.0\n",
- "x = np.linspace(0.0, N*T, N)\n",
- "y = sc.jv(3,x)#np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)\n",
- "yf = scipy.fftpack.fft(y)\n",
- "xf = np.linspace(0.0, 1.0/(2.0*T), N//2)\n",
- "\n",
- "fig, ax = plt.subplots()\n",
- "ax.plot(xf, 2.0/N * np.abs(yf[:N//2]))\n",
- "ax.set(\n",
- " xlim=(0, 100)\n",
- ")\n",
- "plt.show()\n"
+ "fm(1)"
]
},
{
"cell_type": "code",
- "execution_count": 73,
+ "execution_count": 122,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACB7klEQVR4nO2dZ3hURReA30nvCekhlUBCaKH3XgQE6SKgYqOJIKioiPjZBQVRAQUFFBBQVKR36b2GTgiEkJDee93NzvdjQSkpm+yGet/nyZPde+fOObvJnp175hQhpURBQUFB4dHH6H4roKCgoKBwb1AMvoKCgsJjgmLwFRQUFB4TFIOvoKCg8JigGHwFBQWFxwST+61AaTg7O0s/P7/7rYaCgoLCQ8XJkydTpJQuJZ17YA2+n58fJ06cuN9qKCgoKDxUCCGiSjunuHQUFBQUHhMUg6+goKDwmKAYfAUFBYXHBMXgKygoKDwmKAZfQUFB4THBIAZfCPGLECJJCHG+lPNCCDFHCBEuhDgrhGhiCLkKCgoKCrpjqBX+EqBnGeefBAJu/IwG5htIroKCgoKCjhgkDl9KuU8I4VfGkH7Ar1Jbi/mIEMJBCOEhpYw3hPxbURVrmLX9Mm525gR72dPYuxpGRsLQYhQUFBQeOu5V4pUnEH3L85gbx24z+EKI0WjvAPDx8amUoLTcIn4+EIGqWFvn39vRkje7BTKgsSdCKIZfQUHh8eWB2rSVUi6QUjaTUjZzcSkxM7hc3OwsCPvsSY5N7crsoY1wsDTjrT/PMHrZSTLzVQbWWEFBQeHh4V4Z/FjA+5bnXjeOVQlGRgJXWwv6NfJk3bi2/O+puuy+lMSwBUdIySmsKrEKCgoKDzT3yuCvB164Ea3TCsisCv99SRgZCUa0q8GiF5sRkZLDy4uPk1ekvheiFRQUFB4oDBWW+TtwGKgthIgRQowQQrwqhHj1xpDNQAQQDiwEXjOE3IrQqbYrPzzbhAtxmUz4/TQajdLLV0FB4fHCUFE6w8o5L4FxhpClD13ruPG/p+ryyYaL/HLwGiPb+99vlRQUFBTuGQ/Upu294KU2fjxR140ZW8O4GJd1v9VRUFBQuGc8dgZfCMFXg4KxtzJl8t9nKVZcOwoKCo8Jj53BB3C0NuN/T9XlXGwmvx27fr/VUVBQULgnPJYGH6BPsAdtazkxY+sl0nOL7rc6CgoKClXOY2vwhRB83KceuYVq5u+9er/VUVBQUKhyHluDDxDgZsuAxl4sPRRJQmbB/VZHQUFBoUp5rA0+wBvdAtBIyeydV+63KgoKCgpVymNv8L0drRjWwodVJ6OJz8y/3+ooKCgoVBmPvcEHGNXeH42ExQcj77cqCgoKClWGYvDRrvKfCvbgt6PXlYqaCgoKjyyKwb/B6A7+5BSqWXE06n6roqCgoFAlKAb/BvWq29OuljPLDkehLtbcb3UUFBQUDI5i8G/h+Va+xGcWsOtS0v1WRUFBQcHgKAb/FrrVccXdzoLlR5VyCwoKCo8eisG/BRNjI4a28Gbf5WSup+bdb3UUFBQUDIpi8O9gaHMfjI0EK44pm7cKCgqPForBvwN3ewu61XFl1YkYVMrmrYKCwiOEYvBLYHBTb1Jzi9h3Ofl+q6KgoKBgMBSDXwIda7vgaG3G6pDY+62KgoKCgsEwVBPznkKIMCFEuBDivRLO+wghdgshTgkhzgohehlCblVhamxE34bV+Sc0Ucm8VVBQeGTQ2+ALIYyBH4AngbrAMCFE3TuGfQD8KaVsDAwF5ukrt6oZ1MSLIrWGzefi77cqCgoKCgbBECv8FkC4lDJCSlkErAT63TFGAnY3HtsDcQaQW6XU97QjwNWG1SEx91sVBQUFBYNgCIPvCUTf8jzmxrFb+Rh4XggRA2wGXi9pIiHEaCHECSHEieTk+7thKoSgf2NPjkemE5OuxOQrKCg8/NyrTdthwBIppRfQC1gmhLhLtpRygZSymZSymYuLyz1SrXSeCvYAYMu5hPusiYKCgoL+GMLgxwLetzz3unHsVkYAfwJIKQ8DFoCzAWRXKb5O1tT3tGOT4sdXUFB4BDCEwT8OBAghagghzNBuyq6/Y8x1oCuAEKIOWoP/UAS592rgwenoDMWto6Cg8NCjt8GXUqqB8cA2IBRtNM4FIcSnQoi+N4ZNAkYJIc4AvwMvSSmlvrLvBb0bKG4dBQWFRwMTQ0wipdyMdjP21mMf3vL4ItDWELLuNbe6dUZ18L/f6igoKChUGiXTVgcUt46CgsKjgGLwdeCmW2frecWto6Cg8PCiGHwd8HWyJsjdln8uJt5vVRQUFBQqjWLwdaRbHTdORKWTnlt0v1VRUFBQqBSKwdeRbnXdKNZI9lxW+t0qKCg8nCgGX0eCPe1xtTVnx0XF4CsoKDycKAZfR4yMBF3ruLH3cjKF6uL7rY6CgoJChVEMfgV4oq4rOYVqjkSk3W9VFBQUFCqMYvArQJuazliaGrNDidZRUFB4CFEMfgWwMDWmfYAzO0ITeUgqQygoKCj8i2LwK0i3um7EZxZwMT7rfquioKCgUCEUg19BOgVq6/TvCXsoin0qKCgo/Iti8CuIq50FdT3s2HtZMfgKCgoPF4rBrwQda7sQEpVOVoHqfquioKCgoDOKwa8EnQJdUGskh8JT7rcqCgoKCjqjGPxK0MS3GrbmJopbR0FB4aFCMfiVwNTYiLa1nNkTlqyEZyooKDw0KAa/knSs7UJ8ZgFXknLutyoKCgoKOqEY/ErS8UZ45l4lPFNBQeEhwSAGXwjRUwgRJoQIF0K8V8qYZ4QQF4UQF4QQvxlC7v2kuoMlgW42SrlkBQWFhwa9Db4Qwhj4AXgSqAsME0LUvWNMADAFaCulrAe8oa/cB4GOgS4cv5ZObqH6fquioKCgUC6GWOG3AMKllBFSyiJgJdDvjjGjgB+klOkAUspHYlncMdCVomINRyJS77cqCgoKCuViCIPvCUTf8jzmxrFbCQQChRAHhRBHhBA9DSD3vtPMrxrmJkYcDFcMvoKCwoOPyT2UEwB0AryAfUKIBlLKjFsHCSFGA6MBfHx87pFqlcfC1Jjmfo4cuqokYCkoKDz4GMLgxwLetzz3unHsVmKAo1JKFXBNCHEZ7RfA8VsHSSkXAAsAmjVr9lAEuLep5cSMrWEkZRfgamtx94Dky3BtL6RHap/be4NfO3Cvf0/1VFBQUDCEwT8OBAghaqA19EOBZ+8YsxYYBiwWQjijdfFEGED2faddLWdmEMbhq6n0a3SLJ+vaftj1OUQf0T43sQAEqPO1zz0aQuepENAdhLjneisoKDx+6G3wpZRqIcR4YBtgDPwipbwghPgUOCGlXH/jXHchxEWgGHhHSvlIOL7rVbfH3tKUA1dStAZfVQBb34OTi7Wr+R7TIOgpcPDRGvbMGAjbAkfmwW/PQL2B0Gc2WNjd75eioKDwiCMe1NIAzZo1kydOnLjfaujE2OUnOROdwcEJDRErn4Xoo9Dmdej0PphZlXyRuggOzYbd08GxBgxfo/1SUFBQUNADIcRJKWWzks4pmbYGoG0tZ3IzU1D98hTEn4HBS6H756UbewATM+jwDry4AXKT4ZcnIfXqvVNaQUHhsUMx+AagvZ81i81mYJwWDsNWQr3+ul/s1xZe3Kj17S8bADmPRIqCgoLCA4hi8A2Az5EPaWIUzkLXqVCzc8Un8AiGZ//SGvvfhmj3ARQUFBQMjGLw9SVkGeL0Cna6vMi8xLoUayq5J+LVFAYtgrgQ+Od/htVRQUFBAcXg60fqVdj8Dvh3IrftO2QVqDkfm1n5+eo8Ba3GwbEFcHG94fRUUFBQQDH4lUejgfUTwNgM+v9Im1quABzUN+u228dQvQlsmAA5SullBQUFw6EY/MoSsgSiDkCPz8HOA2cbc4LcbTlwRU+Db2IGA36EolxtPL+CgoKCgVAMfmXIS4MdH4Nfe2g8/N/DbWs5czIqnQJVsX7zu9TWhmyeXwWXt+k3l4KCgsINFINfGfZ+BYXZ8OSM28oitPZ3olCt4XR0hv4y2r4BLnVgy7ugLtR/PgUFhccexeBXlJQrcHwRNHkR3G7r80LzGo4YCQxTH9/EDHpO0xZdO7agzKFSSjILM4nOjiYlPwW1RmnIoqCgcDf3qjzyo8POT8HEUlv47A7sLU2pV92ew1dTeaObAWTV7KItrrZ3JjR8Fqyd/j2Vp8rjn6h/2BG1g9PJp8kozPj3nIWxBXWc6tDZuzO9/XvjauVqAGUUFBQedhSDXxESzkPoeug4GWxcShzSyt+RpYejKFAVY2FqrL/MJz6D+W20bqReM8hT5fH7pd9ZfGExmYWZeNp40tm7MzUdamJnZke+Op/o7GhCkkL45uQ3zD01l0EBgxjbaCyOFo7666OgoPDQohj8irBvBpjbQauxpQ5pXdOJhfuvEXI9nTY1nfWX6RoETV6AE79wPLAj/zszl9icWNp7tmdEgxE0cW2CKKW8clRWFEsuLGHV5VVsjdzK+y3f58kaT+qvk4KCwkOJ4sPXlcSLcHEdtBwDltVKHdbM74Yf/6rhqj9r2r/FHAdbXjn4HsbCmF96/MK8bvNo6ta0VGMP4Gvny0etP+KvPn/hY+vDu/ve5atjX6HSqAymm4KCwsODYvB1Zf/XYGYDrV4rc5idhSkNPO05EpFmELF5qjwmhsxkob0NA7Pz+KvDdzR3b16hOWpVq8WSJ5fwfJ3nWR66nNd3vU6BWqnXo6DwuKEYfF3IuA4X1kCzl8GqfD94K38nTkWnk1+kXzx+TlEOY3eMZV/MPqYEj+XjtEysjsyr1FymRqZMbjGZj1p/xKHYQ4zfOZ48VZ5e+ikoKDxcKAZfF47+BAho+apOw1vVdEJVLAm5nl5pkVlFWYz5Zwxnk88yo8MMnm38GqLJcAhZBlnxlZ736cCn+aLdFxxPPM5be95S3DsKCo8RyqZteRRmQ8iv2hr39l46XdLczxFjI8Hhq6m0rVXxjdui4iIm7prIxbSLzOo0iy4+XbQn2rwOJxZr4/K7fVTheW/Sp2YfioqL+Pjwx3x+5HM+bv3xXXsBqthYcg4epDDsMkWRkWjy8kCjwdjZGTMvLywbN8aqZQtMqpW+n6GgoPBgoRj88ji1HAqztFUsdcTG3OSGH7/iG7caqeGDAx9wIvEEX7X/6j9jD+DoD3X6wIlfoP0kMLep8Pw3GRQ4iLjcOBacXYC/vT8v1nsRTV4emRs2kv7HSgovhgJgZG2NWY0aGNnaIIRAdf06uQcOkLZ0KZiaYtupI9Weex7rVi0rrYuCgsK9QTH4ZaHRaN053i219eorQCt/J34+EEFekRorM93f5u9CvmNL5BbebPomvfx73T2gzQRtLsDpFdqIIT0Y32g8ERkRzDn2DY33xWOxbAPFaWmYBwXh+s472HTuhFmNGnet/mVREfkXLpC9bTuZGzaQ/c8OrFq0wG3Ke1jUqaOXTgoKClWHQXz4QoieQogwIUS4EKLUEo9CiEFCCCmEKLHB7gPHtT2Qfg1ajK7wpa1v+PFPRunux98auZXF5xfzTOAzvFzv5ZIHeTfXfgEd/gGK9SuhIIRgqvXTfPOzxHT2Uoz8ffFdsZwaa1bjNOIVzP39Swz7FGZmWDVujNt7k6m1aydu779PYXg4154eTNK33yGLivTSS0FBoWrQ2+ALIYyBH4AngbrAMCFE3RLG2QITgaP6yrxnnFwClo5aN0oFaeZbDZMbfnxdiMiI4KODH9HQpSHvtXivzPh62rwOGVFwaWOF9bqJLCoiccZMkl8chauJA18/Y86cl52wbFJ6IldJGJmb4/jCcPw3bcS+Tx9Sf/qJqBdfQpWo9OZVUHjQMIRLpwUQLqWMABBCrAT6ARfvGPcZ8BXwjgFkVj3ZiXBpkzYyx8S8wpdbm5sQ7KWbHz9Plcebe97EwsSCWR1nYWpsWvYFtXuBg4+2iFtFGqbfQJ2cTMwbb5J/8iQOQ4bg+s47dIhaxdcnvmbTtU085f9Uhec0qVaN6l9Ox7p9O+I/+B/Xnh6Ez6JFWNSu/e8YKSUpMTkkXM0k8VoWWan55GYWoVFrEEYCKzsz7JwtcfOzo3qgA85eNhX68lFQUCgbQxh8TyD6lucxwG07eEKIJoC3lHKTEKJUgy+EGA2MBvDx8TGAanpwegVo1ND0pUpP0crfiQX7IsgtVGNtXvpbPeP4DCKzIln4xELcrN3Kn9jIGJq9oq3JnxymrZ+vI/nnzhHz2jiKc3KoPutr7Hv3BuD5Os+zI2oH049Op4V7i0oXXLPv3RvzgACiR40mavgLeP/4I2qfIC7sjyP8ZCJZKdqELys7MxzcrHDztcXEzJjiYg15mUXEX83gyvFE7VwultRu5U79jp5Y2phVSh8FBYX/qPJNWyGEEfAN8FJ5Y6WUC4AFAM2aNatkN3ADoNFAyFLwbQfOAZWeppW/E/P2XOVEVDodA0sutrb7+m7+vvI3IxuMpIVHC90nbzwcdk+D4z9Drxk6XZJz8CAxr0/AxNERv0ULb1t9GxsZ81nbz3h6w9NMOzqN7zp/p7sud2ARGIjfbyu4MOY9Nk3fQ7JzOgiBd51qNH3SD6+gatg6WpS6es9JL+T6xVQuH0vk2IZrhGyNol5HT5r38sPcqpy7HwUFhVIxxKZtLOB9y3OvG8duYgvUB/YIISKBVsD6B3rj9tpebR36ZqVsnOpIM7+y/fgp+Sl8fPhjghyDeK1h2SUb7sLaGer2hzO/Q2FOucOztmwh+tWxmHl74/vbituM/U387P14teGr7Ly+k4OxByumzy3kZhSyf2cWB71fJq1abXzj9zBkhBt9Xm9E3bbVsXOyLNNVY1PNnLptq9P/zcYM+6gltZq6cmZnNCs+OsKlI/FIef/WAgoKDzOGMPjHgQAhRA0hhBkwFFh/86SUMlNK6Syl9JNS+gFHgL5SyhMGkF01nFkJ5vYQVHFf9q1YmZnQ0NuhRD++lJJPDn1CTlEO09tNL99vXxLNR2pzBM6vKnNY5vr1xL41CcuGwfgu+xVT19LdNS/UfQFfO1+mH5tOUXHFom2klFzYH8uKj48QdiyBRl29eW5yAwIz9pM6cQxFMbHlT3IHjh7WdH2pLs9MaY69iyU7l4SybeEFCvOUDGEFhYqit8GXUqqB8cA2IBT4U0p5QQjxqRCir77z33OKciF0g3Yz1NRC7+la+ztxLjaT7ILbDdS6q+vYE7OHN5u+Sa1qtSo3uXcLcGug3bwtZdWbtXUrce9NwaplS3wWLcLYzq7MKc2MzZjSYgpRWVEsvbBUZ1Wy0wrYMOc0e1aE4epry7MftaTt0wHY1PTG5+dFyKIiYsaNQ5ObW6GXeBMXH1sGvt2U1gNqcu10Mn98cZzU2PLvbBQUFP7DIHH4UsrNUspAKWVNKeUXN459KKVcX8LYTg/06j50I6hyoeFQg0zXyt+JYo3kxC3x+Cn5Kcw8PpMmrk14ts6zlZ9cCGj+CiScg9iTd53O3rWb2LffwbJxY7zn/YCRhW5fYG0929LNpxsLzi4gMTex3PHXL6Ty5xfHiY/IouOwQPpNbIy9i9W/581r1sRz1iwKr1whbsr7SI1G99d4C8JI0KSHLwPeaYJGreHvmSe5fsFwZagVFB51lOJpd3J2pTbk0buVQaZr6lsNU2Nxm1tnxvEZ5Kvz+ajNRxgJPf8E9Z8GUyttCYhbyD16jNiJE7GoUwfvn37EyMqqlAlKZlKzSailmvln5pc6RmokxzZEsOH7M1g7mDHk/ebU7+iFMLrbP2/Tvh2ub79N9vbtpP3yS4V0uRP3GvY8/V4z7Jwt2fjDWS4fT9BrPgWFxwXF4N9KdgJE7IHgIWBkmLfG0syYRt4O/zZE2R+zny3XtjAqeBT+9v76C7Cw027env8birTljguvXiXm9dcx9fHBZ+ECjG0qXnPHy9aLobWHsiZ8DREZEXedVxUVs3XheY5viiSopTuDJjfDwa3sLxXHl1/CtkcPkr6bTf7ZsxXW6VZsqlkw8O0meNS0Z8cvFwk7qhh9BYXyUAz+rZz7C6QGgg3jzrlJqxt+/MTsTD478hk17Wsysv5Iwwlo/Lx28zZ0A+qUFKJHj0GYmeH9008YOzhUetpRwaOwNLFkdsjs247nZRWx9ptTRJxOpu3TtejyYh1Mzcrv3yuEwOPTTzBxdSF20tsU5+jngzezMOGp8Q2pHujAjiUXuXKifPeTgsLjjGLwb+XMH+DZFJwruYlaCq38ndBI+OLQd8TnxvNRm48qF5VTGr5twNEfzdGlRL86FnVaGt7z52Pm5anXtI4WjrxS/xV2Re/idNJpANITcvl7xgnSYnN4cnQDGnXzqVA2rLG9PZ5ff40qNpaETz/VSz8AU3Njeo9rqF3pL7lIzCXDdBpTUHgUUQz+TZLDIPGc1p1jYJr4VMPMMpE9Cat5OvBpGrs2NqwAIZDBzxL7x0UKLlzAc9bXWDaob5Cpn6/zPM6Wznx78luSo7NZMysEVWEx/d9qgn/jkpPJysOqSROcx44la/0Gsnft1ltHUzNjeo0NxsHVis0/niMlJlvvORUUHkUUg3+TC2sAofWHGxgLUyOqeW9BSAsmNJ5g8PkBUk9pyIm1xG1QE2y7dCn/Ah2xMrVidPBoYq6m8Pes4xibGDHw7aa41Sg7vLM8nMeMxjwwkISPP6Y4K0tvPS2sTXlqfEPMLU3Y+P1Z8rKUip0KCneiGPybXFgDvm3BVodaNhVkx/Ud5BlfIj/xCYypfNOS0sjZv5/kBUuxq29PtWonQaNfL907aSO60id0PHnG2QyY1KTczVldEGZmeHzxOeqUFJJmfm0ALcHW0YJeY4MpzFWxbeF5iosrF/6poPCoohh8gKRQSL5UqcqT5ZGvzmfm8Zl4WflTlN6CE5GG9TEXxcQQ+/Y7mAcG4vH+m4jsOG2kkYGIDk1j6/cXMbcz4s/aM7msvmCwuS0bNMDx5ZfI+Osvco8cMcicLj62dB4eRNyVDA6uCi9zrEYj2X8lmS82XeSZnw7T5es9dJm1h8E/HuKTDRfYfSkJtfKlofAIoRh8gAtrAQF1DJ8YvPj8YuJz4/mg9fuYGZtyJMJwBl9TUEDMhAmg0eA1ZzZGDfppS0Kc+8sg88eFZ7B53lnsXS0Z+m5rLOxN+OnsTwaZ+yYur7+Oqa8PCZ98arDGKYEt3GnY1Ztzu2NKjNwp1khWHrtOx693M/znYyw9HEWxRlLHw446HnZICb8fu87LS47T5stdLNofQYHKsHdNCgr3A6XFoZRad45fO4O7c2JzYvnl/C886fckbb1a0sjncKX63JaElJKETz6l8GIoXvPnYebrqz1Rrx+cXw29Z4GZdaXnT76ezabvz2DjaEHfiY2xsjPj5fov8/WJrzmddJpGro0M8jqMLCxwnzqV6NFjSPv1V5xGGiZctc3AmiREZLJn+SXc/Oywc7YEIDwpmzf+OM352CwaeTvwbo8gnqjrhoXp7WGlRWoNe8KSWHo4ks83hbLsSBRfD25Icz9Hg+inoHA/UFb4SaGQEgZ1+xl86q+Pf42RMOKtZm8B2vDM87GZZBXoX/gr48+/yFyzBufXxmLbufN/J4KHQFEOhG2p9Nxpcbmsn30aMysT+k5shJWdthb94MDBOFo48uOZH/VV/zZsOnTApksXkufNR5VomFh6I2Mjuo+oB8A/v1xAU6xh3elYnpp7gLiMAuYOa8ya19rQp2H1u4w9gJmJEd3rubNiZCuWj2iJRkqe+ekw3/xzGY3GwNU6NcWQmwL56drS3AoKVYRi8C+uBWFkcHfO4bjD7Li+g1ENRuFu7Q5AK39HNBKOX9PPrZN/9iyJn3+Odfv2OI8bd/tJnzZg5wVn/6jU3JnJ+aybfQojY0G/Nxpj6/hf/R0rUyuG1x3OwbiDhKWF6fMS7sJtynugVpM0Y6bB5rRztqTjc7VJiMjix3mnmLjyNMFeDmyd2J4+DavrnD/QLsCZrRM7MLCxF3N2XuH1laf0c/FICZEHYOOb8H1z+MwFZtaEr/xgWnVY0Al2fgaJhtsvUVCAx93g33TnGDg6R6VR8eWxL/G29eaFei/8e7yJTzXMjI30cuuo09KImTARE1dXPGfOQBjfsTo1MoLgwRC+E3KSKzR3Tnoh6747RbFaQ9+JjXBwvTsa55naz2BlYsWSC0sq/RpKwszbG6eRI8natIm848cNNm9gc3ekrxXFFzJ4uoYLy0a0wNWu4lVQrc1N+HpwMFOeDGLzuXhGLD1OflEFjb6UELYV5rWGJb3h7J9QrQa0exOenAE9pmk7mZlYwoFvYX4bWNoHYh7cWoMKDxePtw8/+RKkXIYWow067e+hvxORGcHcLnMxN/6vH66FqTGNfRwqvXEr1Wpi35pEcXo6fr//VnrZhOAhWoNxYTW0HKPT3PnZRayffYqCXBX932yMk2fJ4aN2ZnYMChzE76G/M7HJxH/vXgyB0+hRZKxeTeKMmfj9sRJhgHpGSw5eY05GKuPMrWiSIDGRle+RK4RgTMeauNiaM+mvM4z69QSLXmxWokvoLrITYN04CN8BjjWh/3xtzodZKSGuualw6lc4PA8WdYVGz0PPaWBhX2n9AQrUBYSmhRKREUFWURYSSTXzatR0qEmQYxBmxkoryUeZx9vgX9qo/a1no5NbSclPYf6Z+bTzbEdHr453nW/l78TcXVfIzFdhb1mx8grJs2eTd+QIHtOmYVG3bukDXeuAewNtIxcdDH5hnor1c06TnVpAnwmNcPUtO6lqeJ3h/Bb6G8suLuOd5obrSW9kYYHLxInET5lC9tat2PXqpdd8Oy4m8vGGi/So70afYF+2zD/HiS2RtOyrX9G6gU28kBLeXnWGSX+eYe6wxhiVUCH0X67ugr9Haovb9fxS27imvNIa1k7alX/zkbBvJhz6HiL3wdOLwatizeKklByMO8hfYX9xOP4w+er8EsdZmljSybsT/Wv2p3X11koD+UeQx9zgb9bWzrHzMNiUs0NmU1BcwOTmk0v8wLTyd2L2ziscv5ZGt7q6u5Gytm8ndeEiHIYOwWHggPIvCB4C2z+AlCtl9uUtKlCz8fszpMXl0uu1YKoHOJQ7tYeNBz38erDq8irGNByDnZl+Wbe3Yt+3D2lLlpD0zbfYdOuGkVnlVpxXk3N484/TNPC0Z/bQxliYGlO7lTshW6Pwb+yCi7etXnoOaupFWm4RX2wOxdvRiveeDCp5YMivsOENcAmCwYsr1HAeAHNbeOJT7aJk1QhY/CQM+BHqD9Lp8iPxR5h5fCaX0y/jbOlM35p9aVu9LQHVAnC00EYcpeSnEJYexuG4w2yP2s6Wa1uo51SPCU0m0KZ6m4rpewfq9HTyz5xBFRdHcVo6wtQUY3t7zGvVxDyoDsY2lY8kU6gEUsoH8qdp06aySsmMlfIjOyn3fW2wKc8knZH1l9SXs07MKnVMfpFaBkzdLD/bcEHneQuuXpWXmjSVEc88I4sLC3W7KDNOyo8dpNz5ealDVEVqufbbEPnDqztl+MlEnfWRUsrQ1FBZf0l9uejsogpdpwvZ+w/Ii7WDZMrixZW7vkAlu3y9Wzb+dLuMSc/793h+TpH85Z39cuXnR2WxulhvPTUajXx/9VnpO3mj/OtE9N0DDs7R/o/9OkDKgiy95cncVCl/7qmd89APZQ7NKsySk/dNlvWX1Jc9V/WUa6+slUXqonJFFKmL5N+X/5Y9VvWQ9ZfUl5P3TZZp+WkVUlOdni5Tl/4qIwYMlBdrB5X+U7+BjHr5FZm+Zo3U6Pp/rVAuwAlZil0V8gFtCN2sWTN54kQVblYdXwSbJsFrR8G1lNVZBdBIDc9teo7EvEQ2DNiAtWnpK5ehCw6TU6hm4+vty523OCeXyCFDKE5Pp8bqvzF1r4DP/Nf+kBYBE89ou2PdOm+xhq0/nSfybApdX6pDUKuK3+WM2j6KqxlX2Tpoq8F9v9dHjCT//Hlqbd+GsX3F/Nbv/X2WP05Es2JkS9rUdL7t3NVTSWz96TztBgfQsKu33nqqizUM//kYp6LTWTuuLUHuN+52bv5/1RsAAxeW78LRFVUBrBkNF9dBj+nQ+rW7hlxMvcikPZOIz41nVPAoRtQfgYVJxTaqC4sLWXRuEYvOLcLJwolZnWbR0KVhmdcU5+SQ9sti0pYsQZOXh0W9etg+0Q2rZs0w8/XF2NERWVxMcWoqhVeukHv0KNk7dqCKuo6xizPOo8dQbegQhGnF3iuNRpJwNZPrF1NJic4hIymPonw1UmprLNk5W+Dqa4dXUDU8ajmU7X57BBBCnJRSluj3e3yjdC5t0m6eVfQWuxTWhq/lfOp53mz6ZpnGHrRunQtxWWSW04hbSkn8Bx9QdO0ant/MqpixB61bJyMKYm6PetFoJDuXhBJ5NoUOQwMrZewBXq73Msn5yWyL3Fap68vC9Z230WRlkfpzxbpj7biYyMrj0YzpUPMuYw/g38gF3/pOHN0QQW5God56mhgbMXtYI2wtTHltRQg5hWo4t0pr7AOfNKyxB22f5UE/a8OIt02BYwtvO70/Zj8vbnkRlUbFkp5LGNdoXIWNPYC5sTnjGo1jRa8VmBiZ8NLWl1gbvrbU8dl79hDR+ylS5s3Dun17aqxZTY2/V+H86qtYNWuGiYsLwtgYIzMzTD08sOnQAbd33qHm1q14L1qEuX9NEr/4goj+A8g7dUonHfOyiji2IYKl7x1kzawQTm27Tk56IS7etvg3dqVmE1ecPG3IzSjk5NYo1n5ziiXvHeTo+ghyM7V/eyklcRn5HApPYfO5eDaejeNQeArRaXk8qIthfTDICl8I0ROYDRgDi6SUX95x/i1gJKAGkoFXpJRRZc1ZpSv8gkyYURNajYXun+k9XVZRFn3W9MHXzpelPZeWu9l1JCKVoQuOsPCFZjxRhh8/9ZfFJM2YgevbkyqXgVqQBTNrQbOX4cmvAO0/+J7fwri4P47WA2rSpIdvxee9gZSS/uv6Y2FiwcreKw2+yRf71iSy9+yh1o5/MHEsP8M1LbeI7t/uxdnGnHXj22JuUnL0TGZyHr9/cgz/Rs50H2mYMtJHIlJ5duERXg/K4s3rE7Ubq8+v1hroqkBdBH++AJe3wtAVENSbDVc38OHBDwmoFsC8bvNwtrz7C68yZBZm8vbetzkSf4SJTSYyov6If//WsqiIhOnTyfh9JeYBAXh8/hmWDcu+EygJKSU5u3eT+PkXqBITcX71VZzHvoowuXubUVVUzKnt1zm1PQp1kQbf+k7UbuWObz0nzCxL3pYsKlATdT6Vy8cSiTyXgjASpHtbsEmVS1xuyV/8LrbmtK3pRP/GnrQPcMH4IbkzKGuFr/emrRDCGPgBeAKIAY4LIdZLKS/eMuwU0ExKmSeEGAvMAAxfeF5XrvwDGhUE9TbIdPNOzyO9IJ0fu/2ok9Fr5O2AmYk2Hr80g5975ChJs2Zh+8QTOI4YUTnFLOwgsLs216DHNKQw4uDf4VzcH0fTnr56GXvQhik+V+c5PjvyGWeSzxis3MJNnMePJ2vrVlIXLsJt8rvljv9iUyiZ+SqWjWhZqrEHsHexoumTvhzbcI06bdPwrqN/uYRW/k5MbutAv+PjyLN2xuqZZVVn7AFMzODpX2DpU/D3SDb3/B9Tz/9Ic/fmzO48Gxszw1VltTe3Z17XeUw9OJXZIbPJKcphYpOJFKekEDPxDfJDQnB85RVc3phY6U12IQS2Xbpg1bw5iZ9/QcoPP5B/KgTP777D2O6/oID48Ax2LLlIVkoBNZu40rJvDaq5l7/xa2ZhQq2mrlw20/BPVhrVY4uoFyl5xswYu/Y1CGrsiqONGQJBak4h11JzOXYtjb2Xk1l7Og5vR0te7xzAwCaemBgbwDGiLtQm38WFaHtx5Kdrj1nYg40beDbRdrIzMIaI0mkBhEspIwCEECuBfsC/Bl9KeWuXiyOA4V9JRbi0CaxdwKu53lNdSb/CyksrGRw4mDpOdXS6xsLUmKY+1UpNwFLFxRH75puY+fnhMX26fivn+oMgdANEHuDYeW/O7IgmuLMXLfsZoJ8u8JT/U3x38jtWhK4wuME396+BfZ8+pP/2G44vvYSpm2upY49GpPJ3SAyvdapJHY/yo4Yad/fh0pEE9q28zNAPWmBsqueHuFjNqMRPKRT5vFT4AfOkDU76zVg+ZlYw9Hf2Lu3G1HPzaOrSkB+6/lApF055mBqb8mX7L7ExteHn8z/jkFZIu692oE5Jofqsr7HvbZjFk7GtLdW/+hKrFi2I//hjIocOw/unHzHx9OL4xmuc3BKJrZMF/d9sjGftajrPG56Uw7urzhByPYPabrZ0eakuLWytOfTHFVJ3JqBSG1NrUC1MzIwBW9rUcua5lr4UqTX8czGRBfuu8u7fZ1m4P4Kvng6miY/usm8j9iQcXaD9TKpytcfsvbX2yMRcu+cWuV/7JfCAGnxPIPqW5zFAyzLGjwBKLPQihBgNjAbw8fExgGoloC7UrvDr9QcjHRJmykBKyfRj07E2teb1xq9X6NpW/k58t/MymXkq7K3+8/FqCgqIeX0CUqXCa+5c/cPWAnqAmQ0h685yIqyYOm09aDc4wGDuFytTKwYGDGR56HISchMMmogF4DzuNTI3bSJ1wQLc//dBiWNUxRr+t+48ng6WvN6l9BDUWzExNabD0EA2zj3DmV3Ret/tsH8WRtFHyOgym1Pb3Ji65jw/Dm+q35w6cK4giUn2pgQW5DE3OR0LIwPuF9yBkTDig1YfYB6TQsCUJeRjQa1fl2IZHGxwWQ6DBmLq7UXs6xO4OvwVwp/6jOvheQS1cqf9kMBSXTd3IqVkyaFIvtxyCSszY74a1ICnm3r/657xfK8ZR9Zd5fSOaJIis3jy1WBsqv2XLGlmYkTvYA96NXBn24VEPt1wgUHzDzGibQ3e7RmEmYmOC4WEc/DPh9qcDDMbaPC01sPg01p7J3670lCUq9u8FeSebtoKIZ4HmgElFkyRUi6QUjaTUjZzcalc+7xyidwPRdkGSbbaFrWN4wnHeb3x6zhYOFTo2lb+jkgJR6/9t8qXNypgFly4QPUZX2HuX0NvHTGz4qzlRA6H1SOgqQudngtCGNgXOTRoKBqp4c+wPw06L4CZjw8OAwaQ8eefqOLiShyz+OA1Lifm8HHfeljq0Ez9Jr71nPALdubElkj9OmRdPwp7v4IGz+DR4SXe6h7I1gsJbLuQUPk5dSA5L5k3dr+Bs5Ur8xu/jU3kQdg9rUplqmPjGDD7FBZGZrw3RM1hh5Qqk2XdogUuPy7mmO/LXL+SQ+su1ej6Ul2djX2BqpgJK0/zyYaLtK3lzLY3OzCkuc9tvnhjUyPaPh1Ar9eCSU/IY9WXx0m+fneLTCEEPeu7s/2tjjzf0pdFB64xZMFhEjILylZClQ/bpsKP7SE2BLp/Dm+FQt85ENjjbmOvFQbmhm+UBIYx+LHArfFtXjeO3YYQohswFegrpdQ/PKKyXNoEptbgf3cWbEXIU+Ux68QsalerzeDAwRW+vqG3A+YmRreVWUj//fcbFTBfM1ibwosH49gf1owa5kfp2i6uSkLSvGy96OTdiVWXV1FYbPg/rfPYVwFImX93lc7UnELm7Ayna5BrmRvgpdF2UC2KizQcXR9ROeUKs2H1SLD3hN7azl0j2tUgyN2Wj9Zd0EbtVAGFxYW8sfsNslXZzO48G8dmI6HJC7D/a7iyo0pkqlNSuD5iBFKlotay37CrU5/39r9HaGpolcjLSS9k89pMCuw8aBy1HJvvxlMUGanTtcnZhQz56TAbz8YxuWcQP7/YDFfb0l1dNYKdGfhOU4SxYO03IcSHZ5Q4zsbchM/612fec024nJDNU3P3czam5LEknIOfOsDh77WBExNPQ5vXSzby9whDGPzjQIAQooYQwgwYCqy/dYAQojHwE1pjn2QAmZVDo9GWDa7VBUwt9Zpq0blFJOQmMKXlFIwr4RqyMDWmyS1+/LyQEBKnTcemY0ecx48r52rduHw8gd3LL+Ed5EAP90UYh/5tkHlL4rk6z5FemM6Wa5Uvy1waptWr4zB4MBlr1lAUc/taYu6ucPJVxUzppdv+yZ04uFnRoJMXoQfjKtf8fNfnkBENAxb8W+fG1NiIaQMbkJhdwDfbL1dKr/KYcWwGZ1PO8kW7L6jteCO0+MkZ4FoX1r2mrcVjQIpzcrk+ejTqpGR8fvoR+9r1mNNlDvbm9ozfNZ6UfMOu9LPTCljzTQi5mYX0mdiYpvM+Aim5PnIU6uSyiwImZRUwdMFhLifm8OPzTRnbqaZOLkxnLxsGvt0UK3tz1s85TfSl0mte9Wrgwdpx2kiwYQuOcCj8jtd/YQ383F27IBi+Bp76Fiwr6fc3IHobfCmlGhgPbANCgT+llBeEEJ8KIW7WHJ4J2AB/CSFOCyHWlzJd1ZJwBrLjobZ+NVrC08NZfH4xfWv2palb5f20rWs6EZqQRUr4NWJen4CpZ3Wqz5xhkKJhl48lsOOXi1Sv5cCTrzXEuF4v7d1NUZ7ec5dEC/cW1HKoxW+hv1VJ/LLT6FEIIUhd+F/ceWRKLsuPRDG0uTe1XCt/C9ystx9mViYc+Cu8YrrHnISjP0HzEeDb+rZTTXyq8WwLH5Ycusb52MxK61YSO6N28uflP3m53ss84fvEfydMLWHgAshLg01van3BBkBqNMRPeY/CsMt4zf4Oy0aNAHCxcuH7Lt+TWZjJ5H2TKTZQL+X8nCLWzz5NQY6KvhMbUb2WA+b+NfD+cT7q1FSujx5DcU5OidfGZ+YzZMER4jMLWPJyc3rUq9iekq2jBf3faoydsyWbfjhL3JX0UscGuNny99g2eFaz5KXFx9l+IUH7nu+bCX+9pK1nNXov1DTM3bohMIgPX0q5WUoZKKWsKaX84saxD6WU62887ialdJNSNrrxY/hegrpweTsgIKB7pafQSA2fHvkUazNrJjWbpJc6rfydsCwqIPa1cUiVCu/5828LQassl47Es2PxRaoHOPDU+IaYmhlD/ae1jVGubNd7/pK4GaIZmhZKSFKIwec3dXfHfuBAMlevRpWg9Y3P3BaGmYkRE7vptlFbGhbWprR4yp/YsHQiz+q4Ui1WwfrXwdYDun5U4pB3ewbhaG3OB2vPG6xpSkJuAh8d/oi6TnVLDhRwbwCd39dm4p41zJ5K6k8/kf3PDtzefQebDh1uO1fbsTYftPqAYwnH+OH0D3rLUhUWs+mHs2SnFtD7tWDca/yXZW3ZsCFes7+j8PJl4ia9jSy+/QsmLbeI5xYeJTm7kGUjWtDSv3JxUtb25lqj72TBph/OlujTv4m7vQV/jmlN3ep2jPvtJNf/eFt71xc8BF7cYPAuevryeGXaXtmmLZZmXfmElDVX1nAq6RSTmk76t/hUZQn2sOb9k8sxiYnCa/Z3mPvrHyoZeiiOnUtD8axdjd7jG2JqfsPd5NcOrF3hfNW5dXr798bOzI7fQn+rkvmdRo1CajSk/vwLZ6Iz2HQuntEd/Mv0zepKvQ7VqeZuxcFV4RSrdeg6dWguJF3Q+u1L8cnaW5ry3pNBnI7OYN2Zu7a1KkyxppipB6ZSVFzEV+2/wrS0DN62E8G7FWx+BzL1k5u9ezfJc+Zi368v1V54ocQx/Wv1Z0CtASw8t5D9MfsrLUujkWxbdJ6kyCy6j6xXYiE/mw4dcJv6Pjl795I8Z+6/x/OLihmx9DixGfksfrk5TX31+2xa2pjRZ0IjzCxN2DD3NBmJpd8ZO1iZsfTl5nxrswKfS4tICHwe+v+oDbN8wHh8DH5OsnaXPLBHpadIyU9h1slZNHVrSv9a/fVWKePrr2macIlV7Z/FunXr8i8oh4sH4ti17BLedRzp/VqwdmV/EyNjbV2Xy9u0GbhVgKWJJQMDBrLz+k4Scw3TqvBWzLw8se/bl4w//2Th+hM4WJkysr1h8gmMjbXRGpnJ+ZzfW46RzIyFvTO0kV7lJO8NbOxJQy97vtoSRl6Rfhu4v136jWMJx5jSYgp+9n6lDzQyhgHzobhIa/Qr6dopiokl7t3JWNSti/snn5TpB3+/5fvUrlab9w+8X2l//pG1V4k6l0qHoYH4Nyo9Sq/asGE4DB5M6k8/kbV5M8Uayeu/n+J0dAazhzY2WN9hW0cL+k5shJSwYe5p8nNKj+SyP/g5TxVu4g+zAXS99BQXEiqxH3QPeHwMfvg/gNTLnTPz+Ezy1fl82PpDvePY05YuJX35cqK69GOJYyMy8vQICwRCtkexe/klfOo60mtsgxsJJHfQ4GkoLoSwzXrJKoshtYdoQzQvGz5EE7S+fI1KheuWvxnV3h8bc8NV+Pap54hXUDVObImkKL8M47zjY5AabYeqcjAyEnzYpy4JWQX8uOdqpXWLzo5m7qm5dPTqqNtiw9EfOk+BsE0QWvEtM6lWE/eO9svCc/Z3GFmUfRdlYWLBjA4zyFfn87+D/6vwPs7l4wmc2n6deh08qd/Rq8yxQgjc//cBlk2aEPf+VH5cvI0doYl80rcePesbNg+kmrs1vV8LJjejiK0/nS/57u/gHDg4G5qPpONr87GzNGPEkhPlh2zeBx4fg39luzZl2b1ySSI7r+9k87XNjGowCn97/VaVmevWkTj9S2yfeAKnSZOQksp3wdJIDq66wuHVV6nVzJVeY4MxKa0Dk1dzsPfRFveqIrxsvejo1ZFVl1dRVKzfl1hJmNeowaWgFvSJPMRzdfTr/nQnQghaD6hJQY6KU/9cL3lQ9HE49ye0GQ/VdEvWaurrSN+G1flpXwQx6RXfNJdS8smhT/5NfNJ5sdFqnNanv/ldyM+okMyU+T+Sf+oU7p98jJlX2Qb4Jv4O/rzV9C0OxB7gjzDdeyonX89m96+X8KhlT/tndNuPEWZmeM3+DpW5JbXmT+eFxq680NpPZ5kVwd3fns7Dg4i7ksG+lZdv/zI7/Rv88z/t3fOTM3B3sOTnF5uTXaBixNLj5FZRWG5leTwMfrEKwndBwBPanq8VJL0gnU8Pf0qQYxCjGozSS5XsPXuIe38qVi1bUv3rmQT7OmJhWrk+t8XFGnb+GsrpHdE06ORF91fqYVxW5p8QUH8gROw2eNjerQwLGkZaQVqVVNE8F5PJd+7tsFAXUfSH4fcKXH3tqNXMldM7rv9bUfFfNBrY+p524dDurQrN+96TQQgBX265VGGd1oSv4WjCUd5q+lbFMpmNTaDPHMhN0t6V6EjeiROkzJ+Pff/+FS6ZMCxoGG2rt2XWiVlcy7xW7vjCfDVbF5zDwsaUnqMblP3/ewdXiy34vNFQvHKSGX1qTYX0rCi1W7rTtKcvFw/EcXZXjPZg1CFYPwFqdIQBP/2buV+3uh3fP9uE0PgsJq48bbANe0PweBj86KNQmKktM1AJPj/yOVlFWXzR7ovSN8p0IC8khNg33sSidm28fvgeI3NzzE2Maepbel2d0ijMU7Hph7OEHUmgRZ8atB8SoFsGbf1BoFFX6jZfV1pVb4WfnR8rL600+Nyzd14h080by65dSV+2nOIsw+9HtOzrj0YtOb4p8vYT51dB7AltVE4FMyGrO1gypkNNNp6NJ+R66aF+d5KSn8LXx7+mmVszng58ukIyAW0RrpZj4eRiiDpc7nBNbi5x703B1MsLtw9KLmVRFkIIPm37KeYm5kzZPwW1pvQVrpSSvSsukZ1WSPcR9bCy073wWk6hmleXnyTCpy5WI0aSvXYNmevWVVjfitCyrz81Gjpz8O9w4k6HwR/DwcEHnll61wZt5yBXPuhdlx2hiczbE16lelWEx8PgX94GRqZQs3OFL916bSvbo7YzrtE4AqsFVlqFvFOniB41GlM3N7wXLsDY5j+D0drfiUsJ2aTn6uYCyUjK4+8ZJ4m9lE7n4UE0711D99t89wbgFFCl0TpGwoihQUM5m3KW8ynnDTbvhbhMdoQmMrJdDdzHvYYmJ4f0FSsMNv9NHFytqNe+OhcPxP0XnaEq0K6SPRpBw2GVmnd0B3+cbcz5cvMlnX3cs0Nmk1+s3TcyEpX8uHZ+X1uga9MkKC7bxZD03WxUsbFUn/ZFpes4uVq58kHLD7iQeoFlF5eVOi70UDxXTiTRok8NPGo5VEjGR+suEJWay/fDGuP35gSsmjUj/pNPKYwo/66isggjQdeX6mLnZMa2RaHkFVnCsJWlJlS93NaPfo2qM+ufy+y7XHay2L3i8TD4V7aDbxttf9AKEJ8Tz2dHPqOBcwNeqvdSpcXnhZwieuQojJ2d8Pl1KSZOt8cHt7oRL3z0Wvl+/NiwdFZ9dYK87CL6vtGIum2rV0wZIbSbt5EHICu+YtdWgH41+2FlYsXvl3432Jw/7Y3AxtyEF9v6YVG3LjYdO5K2ZCmaXMMXmmrWuwYmpkYcWXdjo/XEz5AVq+2fUMnEOGtzEyZ2C+BYZBq7w8pPOD+TfIa14Wt5oe4L1LDXo66SuY12gznpgvZ1lELeyZOkL19Oteeew6pZxRql30kPvx509u7MD6d/ICrr7tYXafG57F95Ga+gahUuXLfudCx/h8QwvksALf2dECYmVJ/1NUZmZsS98w5SVXZjIX0wtzCmZ801FKrN2W40G41T6XsOQgimD2xAbTdbJqw8RXRa1SQ9VoRH3+CnR0HypQqHY6o0Kt7Z9w7Fspgv23+JiVHlokHyQkKIHjkSE2dnfH/9FVO3uxMxgr0csDQ15tDV0sPZpEYSsi2KdbNPY2VrxuD3muEZWMlU7fqDAAkX11bueh2wMbOhb82+bLm2hbSCym1I30pMeh6bzsUzrIU3dhZat5rz2FcpzswkfaXuG4S6YmVnRqMnfLgakkxCWDzsnwX+naBGh3KvLYuhzb2p4WzNV1vCKC7Dt1usKWba0Wm4WroyJniMXjIBqNMH/DvDri+0Icp3oCkoIP79qZh6euL65ht6ixNC8EGrDzAzMuOjQx+hkf9FtxSrNWz/+QKmFsZ0e7luheo7Rafl8cGa8zT1rcaELrX+PW7q5ob7J59QcOFCiTWXDEbIrzhHLqRjyzhirwuObyz7jsLKzIQfn29KsUby2ooQClSGyUauLI++wb+ZWVpB//33p77nTPIZPm79MT52lSvVnL1rN9dfGYGJqys+pRh70JZgbVHDkQN31uO4QUGOik3zz3J4zVX8GzkzaHIz7F2sKqUTAM4B2milKozWARhWZxgqjYq/L+vvPvr5wDUE8HLb/1a6lo0aYdW6FalLFqMpMHwIXKNu3ljamnJ4+VFkbip0+VDvOU2NjXinR23CErNZHRJT6rjV4au5mHqRt5u/jZWpHn/rmwihrbWjyoWdH991OnnuXIqiovD47FOMrPUsyX0DVytX3m7+NicTT7Lq8n//ayc2R5Iak0Pn54Owttc9OalYI3njj9MAfDek0V2NSOx6dMe+X19SfvqJ/LNnDfIabiPxAmx5F/w7UefFl6jTxoMTmyOJvlj2gsbP2ZpvnmnEudhMvtpa8U17Q/J4GPxqNcCpps6X7Inewy/nf2Fw4GB61uhZKbHpf/1FzPjxmNeqhe+K5WU27wBoH+BMRHIucRn5tx2PvZzOH9OOER2aRvshgfQYVR9zHcvDlkn9QdoNyPRI/ecqBX97f1p5tOKPsD/K3Lwrj8w8FX8cj6Zvw+pUd7i96J3zmFcpTk4h42/D70mYWZjQ/AlX4pLtuO76KngZpr79k/XdaejtwDf/XC5xxZdRkMHskNk0c2tGT7/K/f+ViEsgtHoNTi2HmP/ahxZcukTa4iU4DB5skATAWxlQawAtPVryzclvSMhNIDEyi5Nbo6jdyp0aDStWAv3Xw5GcjErn0/718HYs+UvQbepUTFxdiXt3Mpr8/BLHVIrCHG19HAt7bZ9iI2PaDw2kmoc1O5ZeJD+77P23J+q68VIbPxYfjGRnqOGTEnXl0Tb4RXlwbZ/WnaPjpubl9MtM3jeZuk51ebd5+W317kQWF5P0zbck/O9DrNu2xXfpkrt89iXRLkBb7uHAFe0qX1VYzP4/LrP2m1MYGxsx6J2mBHf2Mlzf2PoDtb+rcPMW4NmgZ0nMS2R39O7yB5fC8qNR5BUVM6rD3fkPVi1bYNm4Mak//4wsMnzcf13NcuyM4zmc1Ntg4XVCCN7rGUR8ZgG/Ho686/xPZ38iuyibKS2nGLxPMB3fBRt32Pw2aDTaHgyff46xvT2ub+tXG6okhBB83PpjNFLD5we/YOeSi1jZmekcb3+T2Ix8Zm4Lo1NtF/o38ix1nLGdHdWnfUFRZCRJX8/SV/3/2PIupFzRGnsb7eLN1MyY7iPqUZCrYtey8jfip/QKoq6HHW//dYbErPuTlPVoG/zI/aAu0Dm7Nq0gjQm7JmBtas2cznMq3CquOCOD6DGvkrpgAQ7PPIP3vB90vj2u7WaLi605+8NTiA5N44/Pj3F2dwzBnb0Y8kELXH0NXEPbwQe8W8K5qjX4Hbw64GnjWenN20J1MYsPRtIh0KXE1oVCCJxfHYM6Lp7MDRv0Vfd2suIxPrGAVvUiSU1Uc+WY4RqatK7pRKfaLvyw+yqZef9tMsbmxPJH2B8MqDVAr6iwUjG31W48x52CU8vI2ryZ/BMncXnzDYztDZvIdhMvWy/GNxpP4RE70hPy6Dw8CHMr3cObpZR8uPY8UsJn/eqX+yVo3bo11V4YTvqKFeQcPKiv+toqs6dXQIe37+qj4exlQ5sBtYg8m1JuSQ5zE2PmDGtMgUrDGytPl7mHU1U82gb/8jZtsxO/duUOzVPlMWHXBFLyU5jTZQ5u1hWrcpd/+jTXnh5M3tGjuH/6CR6ffoIw1f2fWghBJ69qmB9NY/3s00ig/5uNaT8k8L8CaIamwWBt5EbihaqZHzA2MmZI7SEcTzjO5fSK14ZfeyqWlJxCRpdRM8e6QwfM69YhZcGCuyoo6sWhOVCsotYzw3DxseXo+msUq3QorKYj7/YIIqtAxby9/8Vp/3DqB4yEEWMbjjWYnLtoMBh82qDZ+glJX32FRd26OAwaVHXygC7mT9EwrgvXqofgFFCxomKbzyWw81ISk7oHlurKuRPXt97CzN+f+KkfUJytR12bvDTY8IY2nLlDyXf8wV288KnnxMG/w0mNLbls801qudrwSd96HI5I5ce9lS+1UVkeXYMvpbZ3rX+ncqvWFRYXMmHXBM6nnOer9l9R37m+7mJUKpJmzyby2eeQmmJ8l/1KtWeeqZCqBbkqDq+5it+xLLwKoEbn6gz7sEWFmjRXirr9QRjDub+qVMyAWgMwNzavcCKWlJKF+69R18OOtrVKd4sJIXAe8yqqqOtkbdmqr7paclPgxGIIfgbh7E/rATXJTivg/D79q17epG51O/o38mTJwUjiM/MJSwtjY8RGnqvzXIUXHBVCCHjyK1JOqlAnJeP2wQcI4ypaVKCNytn/2xUs7I3Z7fUHc0/NLf+iG2Tmqfho/QUaeNrzUhs/na8zsrCg+pfTUSclkTj9y0pofYPN70B+OvSfDyYlJ4YJIej6Yh3MLIzZ/vMF1EVlLzoGN/PiqWAPvvnnMqejMyqvWyV4dA1+8iXIvA6BZbtzCtQFvLXnLY4mHOWztp/R1berziLyTp3i2pAhpM7/Efu+ffFft+7f5hC6UJCr4tjGayybeoiQ7VF4N3DiZ7tCot1NS6+HY0hsXLTNGc6t0pYNqCIcLBzoVaMXGyM2klmoezOQg+GphCflMKJd+Ylltk90w6xmTVJ/+glpiNdy+AetO/BGCQXvOo5416nGic2RFJZVWK2CvPVEIBopmb3jCt+FfIetmS2v1H/FYPOXRlGRPWlhttj75WPlWbVlfE9tv05aXC7dnq/PwLr9+f3S7zon5H25NZT0vCKmD2xwV1ROeVgGB+M0ahSZq1eTvbsSe0gX12mzqztO1q7wy8DKzoyuL9YlLS6XQ2vKXrkLIfhiQAPcbM1584/Td1VR3RO9h30x+yqurw48ugb/8o06LmX47zMLMxnzzxj2x+znf63+R5+afXSaWpWURNzk94ga9izFKal4zplN9S+nY2yrW2JXekIue38LY+mUgxzfeA2vOo4M/aAFfV8Nxt3dutTwzCqhwWDIjNaWn6hChgUNI1+dz7pw3dPflxyKxMnajKcaepQ7VhgZ4TxmNIVXrpCza5c+qmpXdMcWQt1+2siWG7QeUIuCXBWntt+dSFRZvB2teL6VL6su7uFA7AFGNhiJvXnV+NJvJfHLrxDmFri0kLB1ssG6Y91JRmIeJzZHUqupK34NnJnQZALOls58evjTciO3jkSk8vuxaEa2q0F9z8q9J87jXsM8MJD4Dz9Ena57SQtyU2DjW9rM6nZv6HSJb30ngrt4cW53DFHnyy6VYm9pytfPNCQyNZcvNv3XEzgxN5EPDn7AvNPzbstdMBSPrsG/sl37rWxXcibqtcxrvLjlRc6lnGNGxxk8U7t8N4wqPp6Ez7/g6hPdydq8GafRo6m5ZTN23cvfFC7MU3HxQBxrZoXw28dHCT0UT0AzN4Z80IInxzTAyVNbaqFdgDPHrqXduwSNoN5gaqWtAFmF1HGqQ2PXxqwMW6nTP3J0Wh47LyUyrIUP5ia63e3Y9eqFqbc3KT/+pF+bxWMLoShbu0l3Cy4+tgQ0c+XMzui7C6vpwbhONbFw3YoZjgwLqlzZhoqQs28fObt34zxuHKZPfaCNZKuC2kpSSvasuISxqRHtbkTl2JrZMrnFZELTQsvcyC9QFfP+mnN4O1ryRrfKb14bmZlR/asvKU7PIPHzL3RVHDa9BYVZWldOBepntR5QE8fq1uz8NZS8rLKjxtrUdGZkuxqsOHqdXZcS0UgN/zv4PwrVhUxvP73ypTTK4NE0+PnpcP1Iiat7KSUbIzYydONQUgtSmd9tfpmxzlKjIffIEWInvU149x6kr1yJXZ+n8N+0Ede33iwzCic7rYAL+2PZPP8si989yO7ll8jLKqJlX39emNaGLi/Uwdnr9iJc7QOcKVRrOBFZgdWIPpjbaHv8XlgDasOHNd7Ks0HPEp0dzYHYA+WOXX40CiMheLal7klvwsQEp1EjKTh/ntwDlYzOKMyBI/Mg8MkSb+Nb9iulsJoenE47gLCIJjOuM6FxBowdLwFZVETitOmY+fnhOHw4NH0Z3OrDtqkG73d86XA8sZczaDOw5m0JVt19u9POsx3fn/qehNySI5/m7blKRHIuX/RvgGVJvR0qgEWdOji/NpasTZvI2qZDi88Lq7XunE5TwK1uhWSZmGpDNYvy1OxeFlruwuPtHrUJcrfl3VXnWHRmGYfjD/NO83f0K6VRBgYx+EKInkKIMCFEuBDivRLOmwsh/rhx/qgQws8Qckvl6i6QxXdl10ZkRPDqjleZsn8KgdUC+avPX7T0aHnX5VKlIvfIURKnf8nV7j24/tLL5OzfT7UhQ6i1bSvVP/8cM5/bDZHUSNLicgk9FMfuFZf4/dOj/Pr+IfasCCM5Opt67avz9HvNePbjljTr5VdqZcCWNZwwNRb33q2Tn65936qQrr5dcbF04bdLZZc1LlAV88fxaLrXdbsr0ao87Pv3x8TdnZSfKplef+IX7Xtxx+r+3/ldrKjXwfP2wmp6oNaomR0ymxp2/tgXt+KrrboXVqsMacuWURQZidvU9xFmZtoSyk9+pXXrHZpjMDl5WUUcXBWORy37u+o9CSGY2nIqGqnhy2N3b6heTsxm/p5wBjT2pENgxZKzSsN51Cgs6tUj4eOPUaeW4W7JTtQWmfNsCm0mVEqWk6cNrQfUJPJcKhf2x5U51tzEmO+GNiK7OJrvz3xHB88ODA4cXCm5uqB3yqYQwhj4AXgCiAGOCyHWSykv3jJsBJAupawlhBgKfAUM0Vd2qVz5BywdwasZqmIVRxOOsuryKnZd34W1qTVTWkxhSO0hGBsZU5yTQ1FkFEVRkRReCiP/zBnyz59H5uUhTE2xatkSl4kTsOnajaJiY7Kyisi9mEpeZhGZKflkJOaRnpBHZmIe6hshe+ZWJrj62RHUygPf+k5U87DSOYHG2tyExj7VOBCeDARV2Vt0G7W6at+vc39CbQNmdt6BqZEpg2sPZt7peURlReFrV3LRrPVn4sjIU1WqoYWRmRlOr7xC4rRp5B0/jlXz5rpfrMrX9qr17wRepRcPa9bLj9DD8RxZF0HP0bpHdJXE2vC1RGZFMqfzHK671eCj9RfYezmZTrXLzsyuDKrEJFJ+mIdN587YtG//3wm/dlBvIBz4Fho9q83R0JMDf11BVVRMp+eCSizb7WXrxZiGY5gdMps90Xvo5N0J0Pa1nbL6HDbmJnzQu47eetxEmJpS/cvpXBs4iISPP8Fzzuy7P5NSwsY3tXc6/edrvwwrSXBnL6IupHLwryt4BjpQzb10T4C/iwXVA9eQlGdOE+vRhk+2uwVD9IdrAYRLKSMAhBArgX7ArQa/H/DxjcergO+FEEJWwVImOTaaLevcKRYjKR49C5VaBRLq4k5zk1FYGlki/slmbdF8pEqFRl0MQiARYGSMkW1HZLv+aKzt0JhZoiqSqHYXo9py5K5MSyHA1skCBzdrvAKr4eRljbu/PQ6uVrrVpi+FdrWc+XbHZdJyi3C01r1GeKUxNoV6/eH071qXRgVrvVeEwYGDWXB2ASsvrWRyi8l3nZdSsvRQJLXdbGnlX7nepA6Dnyblp59Imf8jPhUx+KeWa5uFdFhc5jArOzMad/Pm+KZIEq9l4Vajcklx+ep85p2eR2PXxnTy7oSquuTnA9f4amsYHQJcKlRUTBeSv5mFVKlwm3LXTbg2GStsC2z/AJ75VS85URdSuXI8keZP1cDRo3RD92K9F9kUsYlpR6fRwr0FVqZWrDh2nZNR6cwa3BAnG8NGD5kHBOAycQJJX88ia+NG7PvcEaRx7i9tS8gnPgOX2nrJEkbaUM2Vnx5j+88XeHpys1Kbu3x/+ntSiq7hJ8cxa0s83QJr4etkmHpGd2IIl44nEH3L85gbx0ocI6VUA5nAXYHVQojRQogTQogTycmVqx+tTo0l37gxRUb10MgAjI3rYmpSF2PT2hQKLzJxItPMnRw7H/JcAyj0qY+qZiM0dZojg1uhqVkfEx8frKs74ehpi1dQNQJbuNOouw/tngmgx6j6DHi7Cc9/1orRczoy/PM29Hm9Ie2eCaBOm+pUc7fWy9iDduNWSjh4T906z4A6X5tVWIU4WzrT3bc7a8PXkqe62yUScj2dC3FZvNDGt9IrHSNLS5xefoncQ4d0L6KlLoID34F3K/BtW+7wRk/4aAurrQ2vtAtmRegKkvOTeaPJGwghMDMxYlL3QELjs1h/pmxXQEXJCzlF5rr1OL7yyl3uSADsvaD9JK3vOmJvpeWoCovZ+1sY1dytaFpO2WNTI1M+bP0h8bnxzD8zn4TMAmZsuUS7Ws4MbFJ6+QR9cHz5ZSwbNSLhs89RJd5SojorXhtz79UCWo8ziCxre3M6Dw8iJTqHo+sjShxzPOE4S84v4enAp1n49IsYGwne/OM06uIqCpOWUur1AzwNLLrl+XDg+zvGnAe8bnl+FXAua96mTZvKSqPRSKlWVf76+4xKXSyDP94m3/7z9L0TWlws5Tf1pVw2sMpFnUo8JesvqS//uPTHXede/y1E1v9oq8wp0O/vp87OkZdatJTXx76m2wUnl0r5kZ2Ul//RWcaZXdfl92N2yqjzKRXWLz0/XbZe0VqO3zH+tuPFxRr55Hf7ZLuvdspCVXGF5y0JjVotIwYMlJc7dJTFOTmlDyzKl/LbBlJ+37LSn5+Df1+R34/ZKWMvp+t8zUcHP5INlzaUzy9dLQOnbpaRKWXoaAAKIiJkaMNGMmr0aKnRaLT2YsUzUn7mKmXyFYPL27U8VH7/6k4ZfSnttuOZhZmy21/dZO/VvWVuUa6UUsq1p2Kk7+SNcs6Oy5WWB5yQpdhVQ6zwYwHvW5573ThW4hghhAlgD1RdU1Uh9PK/3W9MjI3oEOjCnsvJ964fppERNBgEV3eXWC/dkDR0aUgdxzr8fun321bHSVkFbD4Xz+Cm3lib6/f3M7axxnH4cHJ27aIgLKzswcVqrf/ao5F2P0NH6rX3xM7ZgkNrriIr+HdadG4RuepcJjS5fWPQyEjwbs/aRKfl89tRw8T7Z6z6m4KLF3F9952yazuZWmgbpSSHltkopTRSYnI4vSOaOm09qB7goPN1bzZ9EwtjW07mLWRC15pV5s64iXmNGri+9Ra5e/eRuXo1nPkdLm/Vtq50rlX+BBWk3dMBOLhasWPxRQpy/6ubNO3oNJLzkpnebvq/JbD7NfKkT8PqHItMq5LPviEM/nEgQAhRQwhhBgwF7gzqXQ+8eOPx08AueesnXeEuOgW6kJxdyMV4w/dsLZUGz2ijmy5UbUNoIQTP1nmW8Ixwjicc//f478eiUWskw1tXrANSaTg+/xxGVlak/vRT2QMvrIG0CG1kTgXcSMYmRrTs509qTA6Xj+te8jY+J57fL/1O35p9Cah2d9XIjoEutPJ3ZO6ucHIK9cvqLc7MJPnbb7Fq1gy7Xr3KvyCot7ZRyu4vtMlHOiI12ph7C2sT2gysmNE0klaokp7C2DIaW9eqTQC8SbXnn8OqRQsSv5iG6q8p4NMGWr5aJbJMzY154pW65GcVsWdFGFJKNkdsZlPEJsY0HEMDl9vDf78a1IClL7cw+B4OGMDgS61PfjywDQgF/pRSXhBCfCqE6Htj2M+AkxAiHHgLKGHXSOFWOtbWhqPtvlR+KzyD4VZXG5N9xnBtCUujp19PHMwd/g3RVBVrWHE0ik61XajhbJgVnrGDA9Wee5asLVtL73Wq0cD+r8GlDtTuXWEZAU3dcPa24ej6CJ0Lq/1w+gcAxjUq2VcshGByzyBSc4tYtL9k36+uJM/9nuKsLNw+mKrbnsiNOjsU5cKuz3SWc+FAHInXsmg7qBYW1ronKgHM2BpGWlI9Gjq14vvTc4nLMez+RUkIIyM8vvgc1AXEHzRF9plT6daVuuDqa0eLvjW4GpLEsb1hfH7kc4JdghnVYNRdY63MTKrE2IOB4vCllJullIFSyppSyi9uHPtQSrn+xuMCKeVgKWUtKWULeSOiR6F0nG3Maehlr1PvU4PS6FmIC4Gk0PLH6oGFiQWDAgaxO3o38TnxbLuQQFJ2IS9WIhSzLBxffBFhZkbqwoUlDwjbpK271H5SpT7wwkhoC6ulFnB+f/mF1a6kX2H91fU8W+dZ3K3dSx3X2KcaPeu5s3BfBCk5lcvqLQi7TPrvv1Nt6BAsgioQ4utSG1qMgZNLIe50ucNzMws5vOYqnrWrEdiy9NdUEiej0lh+NIqX2tRgRqdPAPj08KdVmotwE7Pk3bgGp5GbYEr6P8fLv0BPGnf3xSPAnqOrorDMs+PLdpVvnVpZHs1M20eETrVdORWdQVpu1WbA3kbwEDAy0db/rmJulrP4I+wPlh6KxMfRio4GSrS5iYmzMw7PPEPmhg0UxdxhkKWEfTPB0R/qDai0DO86jngFaQurFZVTWG1OyBxsTG0Y2WBkufO+3aM2+apivt8VXu7YO5FSkvjFFxjb2OAyoRIJRJ0mg7WztvFHOcb34Kpw1KpiOj1bu0KRVUVqDVNWn6O6vSVvd69NdZvqTGwykYNxB9l0rWqjxciIhq3v49C1CdZt25A082uKrl+vUpFGRoKMNhdRSxVDYt/C07pqIpHK1OGeS1TQmc5BrkgJ+69U7SbqbVg7Q2BPOPMHFKvKH68H1W2q09m7M3+GreJ4VBIvtPatkltZpxGvgBCk/rzo9hPhOyH+DLR7U69NfiG0q/yCHBUhZRRWC0kMYU/MHl5p8IpOBdJqudowpLk3K45GcT21Ylm92Vu3knfsmLaxiYNDha4FtK38un6kLapXRvns6xe1MfdNe/rh4Fax3rs/7b3K5cQcPutf799N+qG1hxLsHMxXx74iraDsXrGVRqOBdeNAahD9f8Djiy8QJibEvf++YSqtlsKF1AvMDf+GtBYXUcWbcGJzZJXJKg3F4D/ABHva42Rtdm/9+KB16+QmQfiOKhc1LGgY2apMrKqdY3BT7/IvqASm7u44DBhA5qq/UcXeWOVLCftmgJ0XBA/VW4arrx0Bzd04vSOarJS76+FIKfn25Le4WrryXJ3ndJ53YtdAjIRg1j/lRBrdgiYvj8QZMzGvUweHwXqk6Td6Dqo3hu3/g8K7m4ioi7Qx9w5u5cfc38nV5Bzm7gqnd7AHXYL+q/1vbGTMJ20+IUeVw4zjMyqve1mc+Bmu7YUeX0A1P0zd3XF7/33yT5wk7Vf9ks5KI0+Vx+R9k3G0cOTtIaOp3dKdE5sjib+qe7lwQ6AY/AcYIyNBx0AX9l5Ovrft0AK6g7XLPXHrBNo1Qha64ehxDDtDNGcvBedXxwCQPG+e9kDkAe3qtd0bpTa2qChtBtZECDi0+u566Lujd3M6+TRjG43F0kT3+kDu9haMbF+DdafjOBmlW0G9lIULUcfH4/7BVP0amxgZwZMzIScB9t/dH/bElkiyUgro+GxtjE11NyUajeT91eewMDXioz53FyerVa0WIxuMZFPEJsPXhU+9qv0Cq9UNmr7072H7/v2w6dyZ5G+/K32DXw+mH5vO9azrfNn+SxwsHOgwNBBbJwu2LzpPfs69c9kqBv8Bp1OQK+l5Ks7EZNw7ocamWl9+2FbIrbp0CYBVJ2MpTGtNpiaSM8lnqkyOafXqOAwbSubaddoP9P6vwdoVGj9vMBk21Sxo0sOXqyFJxF7+zzirNWrmhMzBz86P/rX6V3je1zrVws3OnE82XCg3NrsoOpq0n3/B7qmnsGratMKy7sK7OTR8Fg59D8n/3WWkxeVyavt1ardyx6uCndl+P36do9fSmNq7Dq62JfeNHtVgFAHVAvjw4IekFxiocqymGNa8qv2C7zv3thBcIQQen36CkYUFcVPeQ6oN1+Rm67WtrA1fy8gGI2nuri31YWZpQo9R9cnPVrF9Ufl/V0OhGPwHnA4BzhgJ2BV6H9w6GlWV1skv1kiWHYmiYbUu2Jra8uvFqrmdvonz6NEIc3NSZnwCEXugzXgwrVg1zvJo/IQPNo7m7P/zyr8f4vVX13M18yoTm0ysVFSGtbkJ7z0ZxNmYTFaFxJQ5NvGLaQgTE1zfKbnaZ6V44lNtfaV140FTrI25/+0SphbGtB1UsZj7+Mx8pm++RNtaTjzTrHQXnpmxGdPbTSezKJPPjnxmmKidQ3Mg5hj0mlVinwwTFxfcP/qQgjNnSV1U8cSzkojNieXTw58S7BLM2Ea39yl29bWjw7BAYi6lc6yU0guGRjH4DzgOVmY093NkR6juiT0Gwa2eNvO0Ct06e8KSuJ6Wx8utgxgaNJQdUTu4lmn42+mbmDg74zh8OFl7jlKQ5wTNRhhehpkxbQcFkBqTw8UDceSp8vjh1A80dGlIVx/ds3jvpH8jT5r4ODBjaxjZBSVvpmfv3k3Onj04j3sNUzcD9sS1cYGeX2qN5fFFnN8XS3x4Jm0HBWBpq7s7TErJ1DXnKdZIpg8ILjeip7ZjbcY1Gsc/Uf+wMWKjfq8h8QLsngZ1+kKDp0sdZterF3a9niR57lzyTpzQS6SqWMXkfZORSL5q/xWmRnfnJ9RtW526bT04uTWKiNNVH5yhGPyHgO713LmUkE1Uau69Fdz4eUg4p41kqQKWHIrE3c6C7vXceK7Oc5gZm7H4fNmVKvXFqVczjEw1JEfWqrKqoDWbuFA9wIGj6yJYduo3kvKTeKvpW3qVvRVC8HHfeqTmFjK3hDBNTWGhtrFJzZraxiaGJngI1OpG1tbvObz6Cj51HQlqXbGY+/Vn4th1KYlJ3QPxcdItouflei/TyKUR049OL7VZSrmoCmD1aG3k0VPflptN7f7pp5h5eRHz5puoK1nEEeCbk99wJvkMH7X5CC9br1LHtR8aiIuPLTuXXCQ9oWo/44rBfwjoXle7Wtt+4R6v8hs8DSYWcMLwRvhqcg77r6TwXEsfTI2NcLJ0YmDAQDZEbKj8B1sHjE/Nx6mBmpyz0eSFnKoSGUII2j0TQGGeivNbE+ni3YUmbk30njfYy4HBTb1YfPAaV5NzbjuX+vPPqKKjcf/fB9rGJoZGCGTvb9iTPgLUhXSsYMx9Wm4Rn2y4SENvB15uq3s3J2MjY6a1m4Zaqpmyf0q5fXBLZPsHkHheW+Pe2rl8mTY2eM6ZgyY7h9g336qUP3/rta0sD13O83WeL7OjHmi7ZPUcUx8jEyM2/XCWgpyqC4dWDP5DgLejFXU87Nh+seoMYYlYVoP6g+Dsn1Bg2Jo+yw5HYWZsxLBbWhi+VO8lkLD0wlKDyvqXxAtwaSOOL7yAsbMzSTNnVllGp4u3LYVBCdSOa8mLroar0fJOjyAsTI35YM35f3Uviokl9acF2D7ZE+tWrQwm604uhZoRXRBMa+sl2F1fVaFrP1p/gewCFTMGBWNcwVwLbztvpracyonEE8w7Pa9C1xK6EY4vhNbjIeAJnS+zqB2Ix6efkHfiBEnfflshkREZEXx46EMauzbmrWZv6XSNnZMlvcYGk5NeyOYfz+pcpqOiKAb/IaF7XTdORKVXOs2+0jQbAapcOPuHwabMKVSz6mQMvYM9cL6lyUV1m+r08u/F31f+Nlxkxq3s+xrMbDDq8DouE14n/9QpsrdtM7wc4HrWdX63nYO0VHFlXTYaA9U3d7E1Z8qTdTgckcpfJ7QbuIlfTgdjY9wm391QxlDkZhZycNUVPGrZU79uDmx9TxviqAPrTsey4UwcE7oEUNvdtlLy+9Xqx4BaA1h4bqFOPZEByIzRJlh5NISuH1ZYpn3fvjgMG0raz7+QuWGDTtfkFOXwxp43sDSxZGaHmSX67UvDo6Y9XV4MIj48k90rqqbVpWLwHxK613NDSth5rzdvPZtoPzAnfik3xV5XVofEkFOo5sU2fnede6X+K+Sr8/n9koELuCVf1lbFbD4SrBxxGDQI88BAkr6ehabQ8F+is0Nmg7mG9kMDSYnO4ezusqNrKsLQ5t608HPki82hxG7dQc6OnTiPfRVT94r51HVFSsne38JQqzR0GV4HMfBHMDLW+sXLycaOz8znf2vP09jHgbGdauqlx5SWUwioFsCU/VPKd/sVq+HvUaBRw9OLwaRy3bPcp0zBqnlz4t+fWu4mrlqj5p1973A96zozO8zEzbriG+eBzd1p0acGVrZmUAU3n4rBf0io62GHp4PlvffjC6Fd5Sdd1CYq6Ym80cKwoZc9jbwd7jpf06EmXby7sDx0OVlFBnQjHfhGux/RejwAwtgYt/cmo4qJIX35csPJAc4mn2V71HZeqvcSDVv44xfszNH1EWSl3p2BWxmMjATTBjZA5uUR+9HHmNWsidOLL5Z/YSUJPRTPtTMptOzjry2fYO8FT30HsSe0tYhKQaORvP3XGVTFkm+faYSJsX7mxtLEklkdZ1FUXMSkPZMoUBeUPvifD+H6Iej9DThV/otGmJnhNXcOpp6exIwbT1FkZKljZ52YxYHYA0xtNZUWHi0qLbNZLz/aDKqld+e8klAM/kOCEILu9dzYH55Crp410itMg6fB3A6O6x+bfDA8lavJuSWu7m8yttFYsouyWXZxmd7yAEi7pt2HaPaKNsTwBtZt2mDTsSMp839EnWqYBDON1PDV8a9wsnDixXovIoSgw9BAEIJ9Ky8b7Da9lqsNM7MOY5uZSswrb1TNRi2QmZzH/j+v4FnbgUbdbombrz9Qm5C1byZc21/itUsORXIwPJX/PVUXPwOVvK5hX4Np7aZxNuUsHx78sOT38+xfcOQHbX37hkP0lmns4ID3gp9ACK6PHoMq6e6cmD8u/cHy0OUMrzucwYF6lLOAKm1irhj8h4ge9dwpUmvufclkM2toOBQurq1QU4ySWHIoEidrM3oHe5Q6JsgxiCd8n2DZxWVkFGToJQ/QZtUamUDbu6tGuk5+F01+PsnfzdZfDrApYhNnk88ysclErE21Rs7W0YJWff2JOpfKpcPxBpGTf+YMPns2cKBeRyaFyirZ29EUa/jnl4sYGQm6vlj37hVnrxngVAv+egkyb69EeiY6g+lbQuka5MqwFoatkdTVtytvNHmDLZFbmHfmjk3c+LOw/nVtX+LunxtMppmPD94/zkedksL1V15BnfZfYbd/ov5h2rFpdPDqwKSmkwwmsypQDP5DRHM/R1xszdl4xjBGo0I0GwHFRXCy8iGa0Wl57LyUyLAWPpiblF3jZVyjceSp8lh8Qc+Q0JRwOP27dnVve7eP29zfH8fhw8n46y/yTukXppmryuWbk99Q36k+/Wr1u+1ccGcvPAMd2P/nlRKLq1UEqVIR/78PMXF1pf2Mj8gqUDN51VmDb/Kd3BpF4rUsOj1bG1vHEkogmNvCkBWgLoA/XwC19ksnM0/FuN9CcLW14OvBDatkxfpK/VfoX6s/P575kbXha7UHs+Jh5bNg5QiDl2hLhBgQy0aN8J4/H1V0DNdHjKQ4I4NDsYd4d9+7BDsHM7PDTIyN9KhddA9QDP5DhLGRoHcDD3aFJZWabVlluAZBza5wbOG/H+yKsvxIFEZC8Fwrn3LH1nSoSS//Xvx+6XdS8vW4q9gzTbth17708Djn8eMxcXcn4eNP9KqhsuDsAlLyU5jScgpG4vaPljASdHmhDgC7fg2tcA/cW0n9+WcKL1/G/aMPCarpwXs9g9h5KYkVRw1Xzz3+aibHN0US2MKNgOZlbD66BEL/eVp//sa3kBoNk/46TWJWAd8/25hq1lXjahJC8GGrD2nl0YqPDn3E1strYMVgyE+HYb+DjWuVyLVu2QKv77+n6OpVLg0ZxKfrJuBv78/3Xb//ty/tg4xi8B8yngr2oEitufelFkBbeyYnscz66KWRX1TMHyei6VHPDQ973erXjG04lqLiIhaeLaVbVXkknIfzf2t9uWUYAGMba9ymvk9hWBhpyyq3gRuVFcWvF3+lb82+BLsElzjGztmSdoMDiL2cwZld0ZWSUxAaSvIP87Dt2RPbLl0AeKmNH+0DnPls40XOx+pfbjcvq4htC85h62RBh2G1y7+gbj/o8C6cXs7xpZPZEZrE+73q0NinYkXVKoqpsSmzO8+mkXMwUw5/yO6cCHjmV21UWRVi074dGdMnUJAQx0dLC/nB/z2d+hs8CCgG/yGjiU81qttb3B+3jn9nbc/bwz9UOERzVUgMGXmqCmVZ+tr5MjBgIH+G/Vm5Gju7p4G5fYm++zux7dYNm06dSJ47F1VcxXqqSimZcXwGZkZmvNHkjTLH1mnjQY2Gzhxec5WEaxUzzprCQuLefRcTBwfcP/ovrtzISPDtkEY4Wpvx6vKTpOvRIU2jkfzzywUK8tQ8OaY+5rqWrO78PjG+A2gRtYDpfiG8VMamvCGxEib8kKmiTkEhb7m6sNHIMJFQZfFP1D+MTfuexa/VxNHUnswXx5K1fXuVyzUEehl8IYSjEOIfIcSVG7/v+koXQjQSQhwWQlwQQpwVQui/bf4YY2Qk6B3swb4ryWTm3WO3jhDQepw2RPPqTp0v02gkvxy4RkNvB5r5VmzVN67ROCxMLJh14u567GUSc1Lbr7bNeG3GcDkIIXD74AMA4j/4X4X84f9E/cO+mH2MbTgWF6uyWzQKoXXtWDuYs23h+Qql0Sd/N5vCK+F4TPsCk2q3vyZnG3PmP9+UpKxCJqw8Ven+Ccc3XiPmUjodhwXi7KV7ktTZ2Ex6RgwixKwpQxO/QZytuiqr/6IuglUvYxO2hZ+CJ9DEvRlT9k9h8fnFVZK0JKVkwdkFvLXnLeo51WPay7/h/+efmNWsSeyEiSRMm4Ymv+q/cPRB3xX+e8BOKWUAsPPG8zvJA16QUtYDegLfCSEc9JT7WPNUcHVUxZJtF+5xqQWA+k+Djbu2PrqO7AhN5FpKLiPb1ajwBp6TpROjgkexN2Yvh+MO637hrs/AyglajS1/7A3MvDxxe/cdcg8dImPlSp2uySrKYvqx6dRxrMPzdXWrrW9hbUrP0fXJyypix5KLOvnzc48cIW3JEhyGDcWmffsSxzTyduCz/vXYfyWFj9dfqLDRu3IikRObI6nTxoM6be4uH1wa11JyeWXJCRxsrPF5dRXCty2sGQOnqrCBTmEO/PEcXNoIvb7GtvV45nebTw+/Hnxz8hve3fcuuSrDFSLLLMxk0t5JzD01l6f8n2JR90XYmdlhWr06vsuXUe3ZZ0n/dRkRffuRc/CgXrJUiYnkn6mi3hBSykr/AGGAx43HHkCYDtecAQLKG9e0aVOpUDIajUa2/2qXfHbh4fujwL5ZUn5kJ2VsiE7DB88/JNtM3ylV6uJKiStUF8oeq3rIAesGSHWxuvwLLv+j1e/g3ArL0mg0MuqVETK0UWNZGBVV7vhPDn0ig5cGy/Mp5yss6+zuaPn9mJ3yyLqrZY5TJSXJsLbtZHjPJ2Vxbm65807bdFH6Tt4oZ++4rLMu8REZcv743fLvmSekukj3v1N0Wq5sPW2HbPzpdnklMUt7sDBXyqX9tH+DvTOl1Gh0nk8nMuOknN9Oyo8dpDz+y22nijXFcuHZhTJ4abDsvbq3PJlwUm9x+2P2yy5/dJGNljaSi88tlppSXk/OkaMyvHsPebF2kIx6+WWZe+xYqWNLojA6RsZ/8qkMbRAsw3v1rtC1twKckKXZ39JO6PIDZNzyWNz6vJTxLYBQwKiU86OBE8AJHx+fSr3Yx4Vv/wmTfu9tlDHpefdeeH6GlNN9pPxtaLlDT19Pl76TN8qF+8o2auWx7do2WX9Jfbn84vKyB6pVUn7fUsrvGkqpKqiUrKL4eHmpWXN57ZkhUlNYWOq4kwknZf0l9eXMYzMrJUej0cidv16U34/ZKUMPxZU8RqWSkcNfkKENG8n8sDCd533rj9PSd/JG+cuBiHLHZybnyZ/f3id/nXpQ5mWX/nrv5HpqruwwY5ds8NFWeT424/aTRflSrhqhNfqrRmi/BAxB+C4pZwZI+bmHlGHbSh12PP64fOKvJ2T9JfXl/w78T8Zll/z+lkVERoR8fefrsv6S+rLfmn7yQsqFcq8pzs+XKb8slmGt28iLtYNkeM8nZdLsOTL32DGpzs6+baymsFDmh4bK1F+XycjhL8iLQXXkxfoNZOzUqbIwOrrC+t6kLIMvZDm3fUKIHUBJRTqmAkullA63jE2XUpboMBVCeAB7gBellEfKu/No1qyZPKFnA4JHmei0PNrP2M2kJwJ5vWvAvVdg70zY/TmM3gvVG5U6bPxvIewNS+bQlC7YWlQ+LlpKydgdYzmVdIp1/dfhbl1K3ZgTi2HjG9pojbr9Sh6jA1lbtxL7xps4vvgCblOm3HU+T5XH0xueRiM1rO67utIhecXFGjbOPUPclQz6TGh0V7vApG++JXXBAjy+nI5D//46z6sq1jD+txC2XUjk7e6BjOtcq0R3Wm5GIau/PklhnpqB7zTF0UO3jNjQ+Cxe/OUYhWoNS15uXnJEjpTakhY7PwXHmjDgR/CuZMmBwhzY+6XWlegcCIMXa5v0lEGeKo/5Z+azPFQbedWrRi/61exHM/dmd4XN3qRAXcDR+KOsuryKvTF7sTK1YmSDkQyvOxxzY93r8Wjy8sjauo2M1X+TH3IKNNrieUb29hiZmyOLiylOS/s3+MHM1xe7vn1wGDgQU4/SkxJ1QQhxUkrZrMRz5Rn8ciYOAzpJKeNvGnQp5V1xXEIIO7TGfpqUUqe6qorBL59hC44Ql5nPnrc7VWk6dokUZMJ3weDbRhv3XAIx6Xl0nLmHV9r6MbX33c2qK0pMdgwD1g2glUcr5nSZc/drLsiCuU202Z8vbym30UV5JHwxjfRly/D87jvseva47dzHhz5m9ZXVLO65mKZu+vWOLcxT8feMk+RkFNJ3YiPca2hD/DI3bCDunXdxGDwYj88+rfC86mIN7646y+pTsbzY2pcPnqqL6S31bPKzi1gzK4Sc9EL6vvGf3PLYdSmRiStPY21mwq8jWhDoVs7m7rV9sPY1bfXKhsOg8/vgoGP2rboIzq+CnZ9Bdpy28XiP6WCm+xdsfE48P5//mQ1XN5CnzsPWzJaGLg3xsfXBwcKBYk0xGYUZhGeEczH1IvnqfBwtHHmm9jMMrT0UJ0snnWWVRHFWFnknTlIUcRVVXByaoiKEMMLEzQ0zXx+smjTB1NNTLxm3UpUGfyaQKqX8UgjxHuAopXz3jjFmwBZgg5TyO13nVgx++awOieGtP8/w55jWtKjheO8VKGeV//H6Cyw/EsXedzvj6WCY3rFLzi9h1slZfN3xa3r43W6E2fExHPgWRu0CT/0beMuiIiKHD6co/Cp+K3/HPEB7J7X7+m4m7J7AK/Vf4c2mb+otByAnvYA1s0IoyFXT741G2CRf5vrLr2DZqBE+Py+qdK0cjUYybXMoiw5co4WfI3OGNcbd3oLczEI2zDlNRlI+fV5viGdg+ZFMhepivttxhfl7rlKvuh0LXmim+9+1IEtbd+foTyCLofaTEDwU/NqBpcMdShdrO61d2qjd+M2O08bWPzkTfFpW/E24Qb46n73RezkSf4SzKWdJyEkgW5WNQGBjZoO/vT91nerSyasTzdybYWZcNUljVU1VGnwn4E/AB4gCnpFSpgkhmgGvSilHCiGeBxYDF2659CUp5emy5lYMfvnkFalp8cVOnqzvzszBVZtsUiI3V/meTWD4mttOJWUX0P6r3fRrVJ0ZTxtON7VGzbObniUhN4G/+/79Xxhk0iX4sZ220NuAHw0mTxUfT+QzQ8DEBL+VK0mzkTyz8RlcrVz5rddvmBowfT87TWv0C3OKaHBhAS4m6fit/B1jBwe95153OpbJf5/F1MiIt9vWROxNIj9HRa9XG+Bdp/zFwpGIVD5Ye57wpByGNPPmk371sDCtRBmBjGg49hOc/g3yUkEYgb032Hlq78gKs7TlMNT52nM1OmgrnNbqpvcdW0moNCpMhMm9v0OuQqrM4FclisHXjcmrzrLhbBzHp3bD2lzHJBlDcngebJsCz/0NAd3+PTx9cygL90ewc1InahioUuJNrmZcZejGoTR2bcyPT/yIEQKW9NZ2tBp/4raKmIag4OJFIp8fjqmPD9NesORcfjgre6/E38HfoHIA0s5dZf2s4+SZOdKxX3Xq9a5vsLkjU3KZ8etpalwpwFgIXHt70bdrDexK2VspUmvYfyWZRfuvcTgiFU8HSz4fUJ/OtQ1QtkBdBDHHte6e1HDIjgeE1lXjVAvcg7UdqnRoSahwO4rBf4QJuZ7OwHmH+Lx/fZ5v5XvvFVAXwbyWYGwOrx4AYxPSc4to+9UuutVxY86wxlUi9s+wP/nsyGdMajqJl9RmsHYs9Jmt9fFWATn79xP16hjC3SQWc6bRo/4Ag8soiokh6oUXKCrQENbrc+JjiqjfwZO2T9fCxEy/olwajeTU9iiOrovApJoZO6ppOJaajZmxES1qOFKvuh0utuYYGwnScou4lJDNsWtpZOarcLU1Z0zHmjzbwgdLPfVQqHrKMvj3YUmoYEgaezvQwNOeXw9H8lxLn3t/a2piBk98Cn88DyFLofkIFh+KJK+omHGda1WZ2MGBgzkcd5jvQr6lTmouLb1aQOMXqkzeNrckNvUXTForsPr4N4oXdTaIq+Um+ecvED32VWRhEf6LfyGodh2OrIvg9D/XiQvPoNOztfGoVTl5KTE57F5+iaTILAKaudLp+SBGmRsTcj2DLefiORyRyuKDkRTdaMMoBNRwtuaJum70auBOu1oumJkoVVgeBZQV/iPAXyeieWfVWX4b1ZI2Ne/DLbCUsLQPJJwje9Qh2s49T+uaTvw0vMRFhsHIKczm+T86k6zO57dOc/D171olcvbF7GPCrgm0qt6KL42eJmHiW5hU98B73jzMa+rXtg8ge+dOYt95F2MHe3x++unfzWGA6xdS2b38EjnphdRq6kqTnr64eOtW8iA9IZeTW6K4fCwBc2tT2g8JIKCZW4mLgmKNJLdITXGxxM7StMKNxhUeHBSXziNOgaqY1tN30rKGEz8O1z86pVIkX4Yf23LJoSM9Y19m4+vtqO9ZxRUEz/xB9IaxPOvrj4ONB0t6LtE7hO5OTiedZvQ/o/Gz82NJzyVYmVqRFxJCzOsTkIWFuH/4P+z69KnUnZWmsJCkr2eRvmwZFvXq4TV/Hqaud/vHVYXFhGyL4szOaFSFxbj721GjkQueAdWo5mGFmYX2Rr2oQE1mUj6xl9OJOJ1MfHgmxqZGNOjkRdMevljYGLY+vMKDiWLwHwO+2nqJn/ZeZf/kLgYLgawoudunYX3oK36sPo1XR4+rWmEZ12F+O3Ctw8len/PqztfwtvPml+6/4GDhYBARJxNP8tqO13C2dGbpk0txtvzv7kkVF0fspLfJP3UKmy5dcH3nbcxr6FYJVEpJzu7dJE7/ElV0NNVeGI7r229jVE7oZWGeiosH4rl8PIGU6Jx/jxubGCGMQF2k+fdYNXcrglp7ULuVO9b2lWvgrfBwohj8x4DYjHw6ztjN8618+bhv2RmIVcVna08zJOQ5/G1UmIw7VHURFupC+KUHpF6FMXvB0Z/DcYcZv3M8fvZ+/ND1h9IzcXVk1/VdvLf/Pdyt3VnUfRGuVnevvGVxMWm/LiN5zhxkYSF2vXvjMHAAVi1aIIzv3twszswke8dO0pYvpzA0FLNaNXGfOhXr1q0rrF92WgHJUdmkJeRSlK9Go5FY2Zph62SBR017bKqV0KFK4bFAMfiPCW//dYaNZ+M4MLkLzjb3dlUXnZZHl1l7eL1uARMiXtXGTz/7JxhVwWbfhje0rRaH/gZBvf89fDjuMG/ueRMrEyvmdJlDfeeKhzQWa4pZdG4R35/+ngbODZjTZc5tK/uSUKemkrpgARmr/kaTm4uRrS2WDepj4u6BMDdDk51DYcRVCsMuQ3ExZrVq4vjiizj0748wVdwsCoZFMfiPCVeTc+j2zV7GdqzJuz2D7qnsiStPsfV8Anvf6Yx72DLY/DZ0+xjaGSYT9V9O/AIb34S2b8ATn9x1+kr6FcbvHE9SXhKjgkcxqsEonZOjrmVe48ODH3I6+TS9avTikzafYGGi+0pZU1BAzu7d5B4+QsGFC6iTk5EqFUbW1pj5+WFRvx62nTph0bBq+rwqKIBi8B8rxv0Wwr6wZA681wV7y3uzejwemcbgHw8zoUst3upeWxu1s+pluLD2RhGzvoYRFLoR/hyuzboc+jsYlxxVnFmYyfRj09kUsQkvGy9GB4+mh1+PUgucXUm/worQFawNX4u1qTXvtXiPp/yfUoyywkOJYvAfIy7EZdJ7zoH/jG8VU6yR9Jl7gIy8InZO6vRfYo4q/0ao5nl4YS34tNJP0JUd2oYXbvXhxfVgVn727v6Y/cw9NZfQtFCsTKxo7t6c2o61cTB3oLC4kLicOE4lnSI8IxxTI1MGBw5mVPCocl04CgoPMkri1WNEver2PBXswcL913iulS9udlW7eff7setcjM9i7rDGt2dhmlpqV+G/9IBlA7UVNf07Vk7IhbXw90hwDdLuC+hg7AHae7WnrWdbQhJD2HxtMycTT7IvZh8S7SLH1tSWBi4NGBQwiF7+vXC0uA8F6BQU7iHKCv8R5HpqHl2/2cOgJl58OSi4yuQkZBbwxLd7qVfdjt9HtSrZBZKdAL/2h7QIbemDRsN0F6DRwN6vtD/eLbTG/s7KihWkWFNMjioHUyPTStewV1B4kClrha/kSz+C+DhZMbyVH3+eiOZiXFaVyJBS8v6ac6iKNXw5MLh0f7etO7y8WWuw174Kq8dATlL5ApJCYUkvbdOL4CEwfK3exh7A2MgYe3N7xdgrPJYoBv8RZULXWjhamzFl9VmKdWiSXVFWh8Sy61IS7/QIwq+8aphWjlqD3eFdOP83zG0KW9+H+DPa2uc3URVA+A748wWY3waSw6D/fG254wo0vFBQUCgZxaXzCLP+TBwTfj/F/56qy4h2umWB6kJkSi595h6gtrstf4xpXbG6KynhsPsLCF0PGjWY2YCNq/ZxVpz2t7k9NHsZ2kwAa8OWSlBQeNRRNm0fU/oEe7D2VCxfbwujY6ALtVxt9J6zQFXM2BUhGBkJvhvaqOJFtpxrafuR5iTB1V0QGwL5aYAAey9ty0S/dtpNXwUFBYOirPAfcRIyC+g1Zz8uNuasHddWr3rmUkom/XmG1adi+eWlZnQJcjOgpgoKCoZA2bR9jHG3t+DbIY24nJTN5L/PotHDnz9jWxirT8Xy1hOBirFXUHgIUQz+Y0DHQBfe7RHE+jNxfLE5lIre1Ukp+WF3OPP3XOXZlj683qXqGpsoKChUHXr58IUQjsAfgB8QibaJeXopY+2Ai8BaKeV4feQqVJxXO/qTmFXAzweuUaTW8HHfejr539XFGr7ccolFB67Rt2F1PutXXyk5oKDwkKLvCv89YKeUMgDYeeN5aXwG7NNTnkIlEULw4VN1GdPBn2VHonhp8THiMvLLvCY6LY9nFx5l0YFrvNTGj++GVGKTVkFB4YFB3yidfkCnG4+XAnuAyXcOEkI0BdyArUDV9r1TKBUjI8GUXnXwc7bms40X6f7tPl5o7cvTTb3wd9FG8Gg0ktCELP48Hs1vx65jZmzEt0MaMqCx133WXkFBQV/0NfhuUsr4G48T0Br12xBCGAGzgOeBbnrKUzAAw1r40KamE19tvcT8vVeZt+cqDlam2FmYkpZbRE6hGhMjwdNNvXijWyDu9kozDQWFR4FyDb4QYgdQUvugqbc+kVJKIURJu4GvAZullDHl+X6FEKOB0QA+Pj7lqaagB75O1sx7rimxGfnsDE0kLCGbnEI1Dpam1PO0p1sdNxyty265p6Cg8HChVxy+ECIM6CSljBdCeAB7pJS17xizAmgPaAAbwAyYJ6Usy9+vxOErKCgoVIKqzLRdD7wIfHnj97o7B0gpn7tFkZeAZuUZewUFBQUFw6NvlM6XwBNCiCto/fNfAgghmgkhFumrnIKCgoKC4VBKKygoKCg8QiilFRQUFBQUFIOvoKCg8LigGHwFBQWFxwTF4CsoKCg8JigGX0FBQeEx4YGN0hFCJANRekzhDKQYSJ2q4EHXDx58HR90/UDR0RA86PrBg6Wjr5TSpaQTD6zB1xchxInSQpMeBB50/eDB1/FB1w8UHQ3Bg64fPBw6guLSUVBQUHhsUAy+goKCwmPCo2zwF9xvBcrhQdcPHnwdH3T9QNHREDzo+sHDoeOj68NXUFBQULidR3mFr6CgoKBwC4rBV1BQUHhMeOQMvhCipxAiTAgRLoR44OruCyG8hRC7hRAXhRAXhBAT77dOJSGEMBZCnBJCbLzfupSEEMJBCLFKCHFJCBEqhGh9v3W6FSHEmzf+vueFEL8LIe57n0ghxC9CiCQhxPlbjjkKIf4RQly58bvaA6jjzBt/57NCiDVCCIf7qGKJOt5ybpIQQgohnO+HbuXxSBl8IYQx8APwJFAXGCaEqHt/tboLNTBJSlkXaAWMewB1BJgIhN5vJcpgNrBVShkENOQB0lUI4QlMQNvspz5gDAy9v1oBsAToecex94CdUsoAYOeN5/eTJdyt4z9AfSllMHAZmHKvlbqDJdytI0IIb6A7cP1eK6Qrj5TBB1oA4VLKCCllEbAS6HefdboNKWW8lDLkxuNstIbK8/5qdTtCCC+gN/BANrERQtgDHYCfAaSURVLKjPuq1N2YAJZCCBPACoi7z/ogpdwHpN1xuB+w9MbjpUD/e6nTnZSko5Ryu5RSfePpEcDrnit2uz4lvY8A3wLvAg9sJMyjZvA9gehbnsfwgBnTWxFC+AGNgaP3WZU7+Q7tP67mPutRGjWAZGDxDbfTIiGE9f1W6iZSyljga7QrvXggU0q5/f5qVSpuUsr4G48TALf7qYwOvAJsud9K3IkQoh8QK6U8c791KYtHzeA/NAghbIC/gTeklFn3W5+bCCGeApKklCfvty5lYAI0AeZLKRsDudx/V8S/3PCD90P7xVQdsBZCPH9/tSofqY3RfmBXp0KIqWhdoivuty63IoSwAt4HPrzfupTHo2bwYwHvW5573Tj2QCGEMEVr7FdIKVffb33uoC3QVwgRidYl1kUIsfz+qnQXMUCMlPLmndEqtF8ADwrdgGtSymQppQpYDbS5zzqVRqIQwgPgxu+k+6xPiQghXgKeAp6TD17yUE20X+5nbnxuvIAQIYT7fdWqBB41g38cCBBC1BBCmKHdKFt/n3W6DSGEQOt7DpVSfnO/9bkTKeUUKaWXlNIP7fu3S0r5QK1OpZQJQLQQovaNQ12Bi/dRpTu5DrQSQljd+Ht35QHaVL6D9cCLNx6/CKy7j7qUiBCiJ1oXY18pZd791udOpJTnpJSuUkq/G5+bGKDJjf/TB4pHyuDf2NgZD2xD+wH7U0p54f5qdRdtgeFoV86nb/z0ut9KPYS8DqwQQpwFGgHT7q86/3HjzmMVEAKcQ/s5u++p90KI34HDQG0hRIwQYgTwJfCEEOIK2juTLx9AHb8HbIF/bnxefnwAdXwoUEorKCgoKDwmPFIrfAUFBQWF0lEMvoKCgsJjgmLwFRQUFB4TFIOvoKCg8JigGHwFBQWFxwTF4CsoKCg8JigGX0FBQeEx4f9laWvwPHZrIgAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEGCAYAAACkQqisAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACeZUlEQVR4nOyddXhTVxvAfyeppO7uhQrubsVhDBtDNpiyMbYxd3dhLsyYMmBjsDHcpbgXK9DSUkrd3SPn+yOwMaxpm7bs2/09T582ybnnvLlN7nvPq0JKiYKCgoKCQn1QNbcACgoKCgr/XhQloqCgoKBQbxQloqCgoKBQbxQloqCgoKBQbxQloqCgoKBQbyyaW4DGwNnZWbZs2bK5xbguKC8vx87OrrnFuC5QzsXfKOfib5Rz8TeHDh3Kk1J61OWY/0sl4uXlxcGDB5tbjOuC6OhooqKimluM6wLlXPyNci7+RjkXfyOEOFfXYxRzloKCgoJCvVGUiIKCgoJCvVGUiIKCgoJCvVGUiIKCgoJCvVGUiIKCgoJCvWl2JSKE+EEIkSOEiL3K60II8ZkQIlEIcUwI0bmpZVRQUFBQuDLNrkSAn4AR13h9JBB2/mcG8FUTyKSgoKCgYALNnicipdwuhAi+xpCxwM/SWLN+rxDCWQjhI6XMvNoBuko4vCEFjb0lzl62uPnZYaVp9reqoKCg8H/Hv+HK6gekXvQ47fxz/1AiQogZGHcqBLiHs3tp4kUvgq0b2PsInILByk40tszXDWVlZURHRze3GNcFyrn4G+Vc/I1yLhrGv0GJmISUci4wFyAiIkLe+3F/KkpqKMquIOtsMamnCsmJLSEnFgJaudBlRBB+4S7NLHXjo2Tj/o1yLv5GORd/o5yLhvFvUCLpQMBFj/3PP3dNrGwssLKxwNnLluD27vQcCyX5lcTtyeLEjnSWfXQYvwgX+kxoiUegQ6MJr6CgoPD/zPXgWK+NFcDt56O0egLF1/KHXAtHNxu63xjCbW/0ou/EMAoyyljyzgF2/p6AtlpvXqkVFBQU/gM0+05ECPErEAW4CyHSgFcASwAp5dfAGuAGIBGoAO5q6JoWVmo6DA4goqc3e5ad4eimVM4dz2fYPW3wCFB2JQoKCgqm0uxKREp5Sy2vS+DBxlhbY2fJwKmRhHf1YuMPJ/hj9iH6TQ6jTT+/xlhOQUFB4f+Of4M5q9Hxi3Bh8ovd8Qt3JnphPDuXJGAwyOYWS0FBQeG6R1Ei57FxsGLUrA60H+TP0c2prPvmODqt4idRUFBQuBaKErkIlUrQb1I4/SaHc/ZYHmu+PIa2RlEkCgoKCldDUSJXoP1Afwbf3orUuEJWf3FUidxSUFBQuAqKErkKkb18GHJnazJOF7H6y2PotYbmFklBQUHhukNRItcgooc3g+9oRXp8IZt+OolUnO0KCgoK/6DZQ3yvdyJ6+lBRomX30kRsHK3oNykMIf47tbcUFBQUroWiREyg07BAKkqqObIpFSd3GzoMDqj9IAUFBYX/AIo5y0R639SSkA7u7PojkdRTBc0tjoKCgsJ1gaJETESoBEPuao2Lty3rv42lKKeiuUVSUFBQaHYUJVIHrDQW3HB/exCw9uvj6JQcEgUFhf84ihKpI04eNgy7uw0FGeXsWJLQ3OIoKCgoNCuKEqkHgW3c6Dw8iJM7Mkg4kN3c4igoKCg0G4oSqSfdx4TgHerI1oVxin9EQUHhP4uiROqJWq1i6PQ2qFSCjd+fwKBXMtoVFBT+eyhKpAE4utkQNTWSnHOlxKxPaW5xFBQUFJqcZlciQogRQoh4IUSiEOLZK7weKITYKoQ4LIQ4JoS4oTnkvBotu3jSsqsnB1afJS+ttLnFUVBQUGhSmlWJCCHUwBfASKA1cIsQovUlw14EFkspOwFTgC+bVsraGTAlAms7Szb9eAq9TjFrKSgo/Hdo7p1IdyBRSpkkpawBFgFjLxkjAcfzfzsBGU0on0lo7C0ZOC2S/PQyDq5Jbm5xFBQUFJqM5q6d5QekXvQ4DehxyZhXgQ1CiIcAO2DIlSYSQswAZgB4eHgQHR1tbllrxSkYDq5NplCeQ+N0fRRpLCsra5ZzcT2inIu/Uc7F3yjnomE0txIxhVuAn6SUHwohegHzhRBtpZT/sBtJKecCcwEiIiJkVFRUkwta2bWGX17ZR3m8LcOf7IxQNb8iiY6OpjnOxfWIci7+RjkXf6Oci4bR3OasdODikrj+55+7mOnAYgAp5R5AA7g3iXR1xMbeij43tyQrqZiTu647q5uCgoKC2WluJXIACBNChAghrDA6zldcMiYFGAwghGiFUYnkNqmUdSCipzd+4c7s+fMM5cXVzS2OgoKCQqPSrEpESqkDZgHrgVMYo7BOCCFeF0KMOT/sCeBeIcRR4FfgTinlddtiUAjBgFsjcI5cyO4tzzS3OAoKCgqNSrP7RKSUa4A1lzz38kV/nwT6NLVcDcHF2w73kBxK86tIiy/EP8KluUVSUFBQaBSa25z1f4u9iwa1pYqdi08rJVEUFBT+b1GUSCMhVAJHdxvy08s5sUNxsisoKPx/oiiRRsTGwRK/CGf2rUyiqlzb3OIoKCgomB1FiTQqgr4Tw6mp0LF/5dnmFkZBQUHB7ChKpJFx97enTX8/Yrenk59e1tziKCgoKJgVRYk0AT1Gh2KlUbNTaaeroKDwf4aiRJoAjb0l3UaFkBZXSMrJ/OYWR0FBQcFsKEqkiWjb3w8HNw17/jyDNFy3uZIKCgoKdUJRIk2E2lJFz7Gh5KWWcfpAdnOLo6CgoGAWFCXShIR19cIj0IF9K5LQa5UERAUFhX8/ihJpQoRK0Gt8C0rzqzi+La25xVFQUFBoMIoSaWICWrkS0MqFg2uTqa5QEhAVFBT+3ShKpBnoNb4l1eU6YtanNLcoCgoKCg1CUSLNgEegA2HdvDi2NZWKkprmFkdBQUGh3ihKpJnofmMIep0kZt255hZFQUFBod4oSqSZcPayJaKnN7Hb0ykrVDogKigo/DtpdiUihBghhIgXQiQKIZ69yphJQoiTQogTQohfmlrGxqLbDcFIg+TQuuTmFkVBQUGhXjSrEhFCqIEvgJFAa+AWIUTrS8aEAc8BfaSUbYBHm1rOxsLR3YbIPj6c3JlBSX5lc4ujoKCgUGeaeyfSHUiUUiZJKWuARcDYS8bcC3whpSwEkFLmNLGMjUrXkcEg4NCa5OYWRUFBQaHONHePdT8g9aLHaUCPS8aEAwghdgFq4FUp5bpLJxJCzABmAHh4eBAdHd0Y8pqM3lAEYJIcziGSk7sz0TpnYeUgzCpHWVlZs5+L6wXlXPyNci7+RjkXDaO5lYgpWABhQBTgD2wXQrSTUhZdPEhKOReYCxARESGjoqKaVspLOBQzF4AunWuXo7xTNfNf3IMq35Oo0a1rHX8BKSXlhQWUFxehq65GGgxY29mhsXfA3sUVoVIRHR1Nc5+L6wXlXPyNci7+RjkXDaO5lUg6EHDRY//zz11MGrBPSqkFzgohTmNUKgeaRsTGx87JmrYD/Di2OZWuI4Nx9rK94jhtTTXJR2NIO3Gc9PiT5Kenoqu+cmSXhbU1bn4BGGwdSLTTENi2PVY2V55XQUFBob40txI5AIQJIUIwKo8pwK2XjFkG3AL8KIRwx2jeSmpKIZuCzsOCOLEtnUNrkxl859+7ESklGfGnOLpxDYkH96GtqsTC0gqfsAjaDx6Bs7cP9i6uWFprEEJFdWU5lSXFFGSkk5eSTFrccZbHHsbCypoWXXvQNmoIQe07IYR5zWYKCgr/TZpViUgpdUKIWcB6jP6OH6SUJ4QQrwMHpZQrzr82TAhxEtADT0kp/+86O9k6WtG6ny/Ho9PpdmMIDm4azhzaz76li8g6k4C1nR2RvfsR0as/fq3aYGFpadK8WzZvIszbk/g9O4nfs4P43dtxDwii25gJRPYdgEqlbuR3pqCg8P9Mc+9EkFKuAdZc8tzLF/0tgcfP//xf02loELHb09m+aAfleVtIOxWLs7cPg6c/QJv+g7DUaOo8p0ptQUCb9gS0aU/UHfcSv3s7B1cuZe0XH3Fg5VIGTLub4A6dG+HdKCgo/BdodiWi8DfWNhJ7h/3E79iBjYMTg6c/QLtBw1BbmOffZGFpSZsBg2ndfxCn9+5ixy8/8sfbLxPapTtD73kQe1c3s6yjoKDw30FRItcJaXEnWPflxxRnZ2Gh6USrqIl0HNa+UdYSQhDRqy8tuvYgZs1y9iz5hZ+efICBd8ygdf9Bir9EQUHBZJo72fA/j5SSgyuXsvi15wCY9Mo7tB18K/H7CigvbtyaWhaWlnQfezO3v/857gFBrPvyY1Z/9j41VUr2vIKCgmkoSqQZqamqZNUns9m24AdadOnBbe9+RkDrdnQZEYRBZ+DIptTaJzEDLj5+TH7lXfpOuZ3Te3ay8LnHyEtVqgsrKCjUjqJEmonyokIWv/Y8Cft203/qXYx54nmsbY15HM6etoR18yJ2ezqVZU3Tb0SoVPQYP4mbX3yTqvIyfnnxSZKPHGqStRUUFP69KEqkGSjMTOfXl58iPy2FsU+9QLcxEy7zQ3QZEYyuRs/RzU2zG7lAYNv2THv3E5y9vFk6+zWObV7fpOsrKCj8u1CUSBOTn5bColeeoaaigkkvv02LLpeWCjPi6mtHi04eHN+a1uS92B1c3Zny2myC2ndi49zP2fXbfIyR1goKCgr/RInOakLy01JY/PrzCCGY9Nps3PwCrjm+y8hgzsTkcjw6na43BDeNkOexsrFl3FMvsem7L9m79De01VUMuO2eOkVuFRcXkpOZTkVpGdUVVeh1OtQWFlhYWWLn5IibpycuLu6o1UrCo4LCvxVFiTQR/1Agr7yDq69/rcd4BDgQ2MaNY1tT6TgkAAurpr3Yqi0sGHbfQ1haW3No9XL0Oh2D7rwPobp8A5udncGZYyeoOFeAJkeFe7kj9npbbAAb42znfwAMQBFVFJEsYsm2L6TCVYd1kBMtO7XFx+faylVBQeH6QVEiTUBxTjZL3nihTgrkAl1GBPLnh4c5tTuTdlGmH2cuhBAMvHMGaktLDq5cijQYGDz9AYQQnDl9iuT9J7BNFgSUeRKIhmrhTqZDAWmBhahdK7Fxc0Bjb4e1nQ1qtQV6vQ5djZaKohIqC8vQFlRinSfwT3PB/pwt+u3JHLA5RHGojtA+7QgNjWjy96ygoGA6ihJpZCpKivnj7ZfRaWuY8tp7dVIgAD4tnfEOdeTwxhTa9PNFpW56N5YQgv5T70KoVBxZsQJdnsBR50lgmRdheJDimEN8x1x827WgRXgkLSyt67yGXq/nTEIcaccTsDhTQ/gJL1QnctjtcBzZ1YFuUVFYWdd9XgUFhcZFUSKNiDQYWDb7dUrzcrn5xTdxDwiq8xxCCDoPD2LNV8dJPJRDeHfvRpC0dnJyMqmusmVU0ANYF1mTo8oloVsB7Qb0pK/7gAbPr1arCY9sQ3hkG+N62Zmc2LEfh1gLvLfacnrHZrLbVtFz9FDs7BwavJ6CgoJ5UJRIYyEl+ekpZJ2pYPQTz+EXaXqzqUsJbueOi48dMetTCOvm1aRlSbIy04hdtpMWKV6ESy8SfTIor0gh4egOhg5+CHd3r0ZZ19PLB8+bx6Ifr+fIvt2U7Swl4ogvZ2N3kNtZS+9Rw7G2rntBSgUFBfNSJyUihLADqqSU+kaS5/+G4txsqkpLibrjOcK69WrQXEIl6DwskM3zTpFyooCgto1fKLGkpIj9f24kJM6VFnhxJjibiBHdGRw0AL1Oy7L3K9j07RfYu7oS2qlbo8mhVqvp0rsf9IbYI4coXJdJ2H4fYo+uR4xwp3OvPo22toKCQu1cU4kIIVQYG0VNBboB1YC1ECIPWA18I6VMbHQp/2XE79lBaV4uds4udBpxo1nmDOvmxb4VScSsP9eoSsRgMLBr7TrcdquI1HsT75tOxE09GeI/8K8xagtLxjz2HIteeYZVn7zHLa+/h0dQSKPJdIG2HbtgaN+Jw3t3wwbwXG5gy75FtLmlP15evlc9rlqn40hmDuuKK1i1bR/ZNTpy9QZKJGgRaBFIwAqJFRI7wNNChY+1JS3sbenu7U57Lw8slFBkBYXLqG0nshXYBDwHxEopDQBCCFdgIDBbCPGnlHJB44r57yEnOYl1X31C+FhbnH18zWZ6Uluo6DgkkJ1LEsg8U4xPCyezzHsxSYnxpC85SkixD2edMlGN9WVw635XHGup0TDumZf45fnH+XP269z61ofYu7iaXaZLUalUdOndl+ouVez8YzXBxz0o/Ow4Z6JO0HvoUADSi0tZk3SO7XnFnNBJsq1s0KvU4OgLBrBEhSNaHNBjg8QJYyJlDVCNIAMVp4QVWr0FFOugOAvLk2n4ayvporFgsLcHw1sEYmtl1ejvV0Hheqc2JTLkfG/zfyClLAD+AP4QQpjWYu8qCCFGAJ9iTCL4Tkr57lXGTQB+B7pJKQ82ZM3GorKslOUfvInGzh63gECMGznz0bqvLwfWnCVm/TlGPWC+MvE11dVsX7ySFifd8FA5cbZfKb1HTKg1CdDB1Z1xT7/MolefYdl7bzD51XewbCI/hbW1hsG3TuBcciJZCw9TuteFOzOXcdzdjXQbo+NdLTQEUcEwWUUbWzts8rKYMrA/bram9ZrPKSvnSHYuh3ILiC2t4hSC36WG37PKsEo7Skd9FWO9XZnUqiUOSuSYwn+UayqRixWIEKIz0BeQwC4pZcylY+qKEEINfAEMBdKAA0KIFVLKk5eMcwAeAfbVd63GRkrJ+q8+oayggCmvzyaj5DWzr2Fprab9wAAOrDpLfkYZbr72DZ4zKSme7F9iiSzzIt4vnQ63DCSyDs5yr9CWjHroKZZ/+BYbvvmcGx56sskc/ylFxXydWsCazr5ka+wAd7xLixlVkceYliEMCQnA7qLdQnR0tMkKBMDT3o5h9nYMaxH813NZpWWsTExmbU4ph9TW7C/U8sa2o0SptNwfGUIP/6ub1RQU/h8xybEuhHgZmAgsPf/Uj0KIJVLKNxu4fncgUUqZdH6dRcBY4OQl494AZgNPNXC9RuPw2hWcObiPqNvvxadlBBkxjbNO+yh/Dm84x5ENKQy+s/4RXwaDgR0rVuO/zxZnlR3pw7UMHjilXnO17NaTPhOnsmvxAnzCIug8cky95aoNg8HA4lMJ/JCSQ6yVHQaVFX7UcI+lll6qagK2lGGn05AhTmMX0cLs63s72HNvp7bcC1Rpdfwel8CCtFI2qO1Yl5BD2PEzPBrkzfjIFqiukNl/KdU6PakFleSWVlNUUUNRpZbyah16g8QgQSKxs7LA3toCe40FHg7W+Dnb4GFvjUqlNA9TaH6EKYX1hBDxQAcpZdX5xzbAESllg9KJhRA3AyOklPecf3wb0ENKOeuiMZ2BF6SUE4QQ0cCTVzJnCSFmADMAPDw8uixevLghotWJ8pxM4v/8FcfAEFqMGIcQAr3hPQDUqqfNvl5mjIGCBAi7UWBld+0LSVlZGfb2/9yxVFVWoDqcT+uSYOIczlHd0RE7O8cGySSl5MzaZRSnniVizCTsfcybXV9tMLC+pIqNlg7k2jpgo62mc3khw60F4bZ/m5IqK8uwPlRMeFkghzxOY98x+C+z3JXOhbnIrdGyulzHdlsXKqw0+JYVM1ZW0M9Bg0oI9AZJZrkkuURPcrGBtDIDORWSwipJfUpbWgjwsBUEOqgIdFQR5KiihbMaGwvTFEtjnot/G8q5+JuBAwceklJ2rcsxpob4ZgAaoOr8Y2sgvS4L1Yfz0WEfAXfWNlZKOReYCxARESGjoqIaVbYLVFeUM/+Zh7F3cWPqS29iY2+0xx+KmQtAl87ml6O0fRULXtyDTbkf/UaFX3NsdHQ0F5+LU8ePUL2kFCetPwndCxg07laT7phNoXeP7ix8/jHSotcz7d1PzeJoL66s4q0DR/mjBsqdXPGsKucxG8msPp3+Yaq6GO0QLdvm/0mX0+GcOZRB55kjcHB0uuxcmJuJQElVNR/HxPJLtRVfWTuxoqyYkDwDJ5KqqdQaI+NtrdREeDsSFWRHoJstQW62eDlocLa1wtnWEnuNBWohUJ/faZRX6yir1lFapSOntIr0wkrSiio5k1POqcwS9mUZO1GqVYIO/k70buHOwEgPOgW4XHW30tjn4t+Eci4aRm0hvp9j9IEUAyeEEBvPPx4K7DfD+unAxdX2/PmncnIA2gLR5+3s3sAKIcSY68W5vuWHrynJy2Xyq7P/UiCNjYOrhvDuXpzcmUHXG4Kxsa89SshgMLBj1RoC99hRbQnVU10Z2HZgrcfVBWtbO8Y8/jwLX3yClR+/y6SX30ZtUb981pKqat49cJRFlZIKS2vC9KXc7+vElNbta1V6lpaWDLl7EttXriZ4lxcnP9lM4L2Nl8tygSqtnn1JRZSkWWAbl4u9Rx55oZ6kB1sT5pTP7d4hDGzpS4i7/V8KwhQ0lmrc7C/sti6PyiuqqOFYWjF7k/LZk5TPV9vOMGdrIl6O1gxv482odj50D3Ft0iRVhf8OtX3DL1yoDwF/XvR8tJnWPwCECSFCMCqPKcCtF16UUhYD7hceX8uc1Rwk7NvNyR1b6TnhFvwiWjXp2p2GBRG3N4vjW9PoPjr0mmMrKyvY9f0KItP8OOOaQft7BuPi6n7NY+qLe2Aww+97mNWfvc/uJQvpd8sddTpeq9cze98RfirVUmaloYW+lKeD3Bkb0bHOsvQfPYoY9124rHQg78tjFHWqqPMctaHTG9h2Opelh9OJjsuhvEaPg8aCIa286R/uToSPLR+fiGONkzNvlJeQmVjG824d+buiccNxtrWif7gH/cM9ACip0rI1Loe1x7NYfDCVn/ecI8TdjsndApjQ2R8PByWSTMF81BadNa8xF5dS6oQQs4D1GL9VP0gpTwghXgcOSilXNOb6DaG8qJCN387BM6QFPW+a3OTru/raEdzenWPRaXQaFoSl9ZUvSuXlJRz5cA3hZT7Et8lmwC0TsKjn7sBUIvsMIPXEcfYv/52ANu0Jbt/JpOMWnYjn7ZQ8cjR2BBkqme1lx4TWHRskS+defUhwOwHzk4k45EBc+FEi23Zo0JwAiTmlLDmYxtLD6eSWVuNqZ8WYjn6MaOtNr1A3rCz+3i19692bmIwsHjqawJfVDqzasIfP24bSI6BxIrkcNZaM7ejH2I5+VNToWHs8i0UHUnh3bRwfbohnTAc/OtkYGmVthf8e13SsCyFWYvQzrLs0lFcIEYrRV5EspfyhMYWsKxERETI+Pr7R5pdSsuz9Nzh37DC3vfspbv6Bl405FGPcUHXp/EujyZF5ppil7x+i76QwOgy6vAdH/MnjVP2SjK3BhsLhFnQfENVoslyKtrqKhc8/TmVpCbe/9zl2zi5XHXsgPZNnjiVyUuOAU3Ulj3jYM7NTG7P5agBSzyWR910sdnobqm92pl3nupu3dHoD609k89PusxxILkStEgyM8GRSV38GRnpiWUuFZYPBwEcHjjGnuAatSs10jYFXe3cx6/u8Fok5Zczfk8zig2lUavUMjPDgocFhdA68+v/mv4DiE/kbIUSdHeu1KRFv4HFgAlAA5GJ0sIcAicAcKeXyekvcSDS2EondupH1X39K1O330GXUuCuOaQolArD0g0OUFlQx7Y1eqC+6iO2L3oLbegNlFpXYTQ0hLLJto8pxJfJSkln4/OP4tWrDhOdeu6yZVVFlFU/sjmEtGtQGPZOtDLzSs2OjJe6tWrUc74MSl2oHisdoTK67VVhew68HUpi/5xyZxVUEutoyrWcg4zvVzzSUXFjEXXuPc0rjQGRVKd+1b4HPuWSqzyRRc+4c2qxMDGXlGCoqEGo1KltbVI4OWPn7YxkYiCY8HE2rVoh6ZswXltfw+q/RbM8U5JfXMKSVF08ODyfSu2ERev9WFCXyN/VRIrWZs7KAp4GnhRDBgA9QCZyWUprfwPwvoCQvl63z5uLfum2j5kOYSudhQaz+8hiJB7KJ6OmDwWAgeslyWh52Jc2hgKJO1tzQDAoEjP6RgXfOYOO3cziwcindx97812vzjp3ircwiSqxs6VNTxofd2xLs4tyo8tjbOxE8qxVnvtyFxwpBjNhF555XVyRphRV8sy2JJYdSqdIa6NPSjTfGtmVgpGedHOOXEuzizJpQT17bE8N8/3CGHk/h0cXzGLZ7Oyo7Oyx9fVHZ26N2cEAa9OjLStGmpVG6aTNojQYBodFg07499lFROAwbhpW/n8nru9hZMbalFW/e1pcfd53lm+1JjPx0B+M6+vH0iAh8nGzq/d4U/nuYbByXUiYDyY0myb8AKSWbv/8Sg8HAiPsfvWKb2KYmqK0brr52xGxIIaSzG9u/W0pkih+nvdPpdd8Y9u0zRxBd/Wk3eDjnjh9h56KfCWzTnhJndx46cIKjGgfcDZKvfewZF9mxyeRxd/dCPas/p+dsx325E0ct9tGha49/jDmbV85X0YksjUlHCLipkz939w0hwrth0XeGigqKli2j6NdFVCckcIdKRa+hI3hx6FjemTaTpClT+XBwn6sWepR6PdrMTKpiT1ARc4iKffvJee89ct57D0379rhMnoTjDTegsjFNCdhZWzBrUBjTegbx9bYkftx1lvUnsnhoUBjT+4b8w6+joHA1TM1YnwC8C3gC4vyPlFL+p/a/p/fuJCnmAANum46TZ/M0h7qUC2Xit/x0ir3vryay1I+4VlkMnDax1tpXTSKfEAydMYvUhDieWr+V6PDOGCxtmSKqeHtw12YpYuji6k6LB/qQPGcPTksNxFocom3HLpzOLuWLrYmsPJqBpVrFtJ5BzOgfiq9zw+7M9cXF5P/wI4W//oqhpARN27Z4vfQijsOH08rdnQGVVUzbdoDfrB2J3bCbX/p2wsvh8uQ3oVZj5e+Plb8/jiOGA1CTkkLpxo0U/fknmS+8SPbs93C59Rbc7rwTtbOzSfI521rx7MhIpvYI5PVVJ5m9Lo4lh1J5fUxb+oY1ThSfwv8Ppu5EZgOjpZSnGlOY65nKslK2/PgNXqFh14UZ62K8Iqzp4Qiepe4kdi9gyE0Tm1ukf5BUXsXPN9xJsp0zIUW5fNWzPR19GqeZlam4u3uhv787aV8ewH6x5IWDK/jljBobSzX39g/lnr6hDQ6FNVRXU7hgAXlzv8VQUoLD0KG43nknNp06/iNnw9lGw4phfXhl9yG+N9gxcNcxfm4XQlc/n1rXsAoMxG36dFzvvpvKgwcpmL+A/K+/oXD+Alxum4bb3XejdjTtXi/A1ZZvb+/K1vgcXltxgmnf72NKtwCeH9UKR02D6qwq/B9j6n41+7+sQAC2L/iBytISht33EKrr4A7/Arm5WcR/Ho2bSs3Bch0RHaKaW6S/MBgMvL/vCCOOniVdY8+k9DhuWvQpzrkZzS0aAMLGlRWRzpSqKpmaZMXMjhp2PTOI50a2arACKd+7j7NjxpLz/gfYdGhPyJ9L8f/sU2w7d7pi0p9KpeKNvt34yt+JSpUFN59M5c9TprfqEUJg260b/p99SsiK5dj160f+199wZuQNFP3xB9JgekjvwAhP1j3an/ujWrD4YCrDP95OdHyOycebgpQSnVaPXmfAlNJLCtcvpu5EDgohfgOWYWxMBYCUculVj/g/IiX2KLFbN9J97M14Bl87sa8pST2XRO4PsbjVOJI9UkXeCmH2MvH15VxhEffsPc5xjQMhuirmdoogsn87FhyKZv1Xn3DH+1+gaaZ6RcUVWr7efoYfd51Fp5eINnZMPKVl+IkKaqLywK7++Rv6sjKy33mH4j+WYhkYSMD332Hfx/Tui2MjWhDkaM/Uo2d4MKOEpNIjPNG9Y51k0ISH4//Jx1SeuIfsN98i84UXKfxtMT6vv4YmMtK0OSzVPDMikuFtvHlqyVHu/PEAt3QP5OUbW2NjZfpNVE2ljswzxWQnl1CUVU5hdgXlxTVUl2sx6P9WHpbWauycrbFztsLV2w73AAc8ghxw97NHKIUmr2tMVSKOQAUw7KLnJH9X9f2/RVtTzca5c3D29qHnzbc0tzh/cfpULDULU7CR1lTf4kr39p2hJIkDq5MpyCjH1deu2WT79nAsb+dWUGNly53qGt4c1vsvZ/HIWU/w60tPsvmHrxj1cNMWZdYaJN9sO8MXWxMpqdIxtqMvjw8NJ8jNjlMnjmK3MIfkb/Zi8+ggHB2d6zx/5fFY0p94Am1aGm733ov7gw+g0tS9v0pHHy8229tx087DvF/uwJmte5gzoEed80ls2rQh6JeFlKxYQfZ773N24iQ8Hrgft3vvNV2WAGdWPdyXjzaeZu72JA4mF/D5rZ2uGQ5cnFvBmZhczhzOJfdcCVICAhzdNDh72eIZ5IjGzgJLjQVIMOgN1FTpKS+upqygirh9WWi3Gasfaews8Y90IaSjOyHtPa6aVHtNtFWQewqyT0LOSShOhbIc44+2kl7VlXDAEixtwNYVbFzAORDcwsA9HHw7gr1n3df9j2CSEpFS3nWt14UQz0kp3zGPSNcXB5b/TlF2JhNfegtLq+ujXMTRg/uwWVqMXm3A9s4WhLY0FlNuN9CfwxtSOLzxHIPvqH+Z+PqSU1bOjF0x7LVywFuv5ctIP3oH/jP01LtFGD0nTGH34oW06NqDyN79G10uKSXrYrN4eUcluZVxREV48PTwSFr7/n0hbNWmAzFjduG1zJKjX26g+2NjsDaxwZaUkoJ588j58CMs3N0Jmv8ztl26NEhmbwd7Ng3uwbSt+1hq5UDept0sHNwLyzqaUoUQOI0di13//mS/8Sa5n35G6eYtqCea7jeztlDz3MhW9G3pzuOLjzJmzi5eGtWKaT2D/jLN6bUGEmNyiN2WRlZSCQCewY50uSEY3zBnvEOcTFYA0iApya8iK6mY1FMFpJ4sIPFQDhbWakI7uNO6ry++Yc5XrwUmJWQegYRNkLwdUvaB/rwBxUJjVBD2XuDTAazsyM/KxtfXD7QVUFEAFfmQedT4+wKuoRDYC1oMgrChoDF/Z9F/KyaVgq91EiFipJSdzSCPWTBXsmFRViY/PfkAYd171/muubGSDfdt24rHOkmBdQl+M7rg4/vPTPXtv53mxLZ0pr3ZCwdXTZMlUi0+cZoX0goos7RiHNV82LfLVSOvDHo9i15+msLMdO786KtrZrM3lNj0Yl5fdZL9Zwvwtxe8M7kb/cI8rjp+1/r1BG215bR3OgMeqj3CzVBdTdbLL1O8fAX2Qwbj++abJkdFmYLBYOC+rXtZqbKlc3Upvw/q0aCItpJ168h65VW01dUEvPsOjiNG1On4vLJqnlh8lG2nc7mhnTdvjW7L2b1ZHNmYQmWpFidPG9r09aNFFw8c3cyTbyINkozEIk7vz+ZMTA7VFTrcA+zpODiAlt28/k6yzY2Ho4vgxJ9QeNb4nHc7CBkA/t3Aqy24hoDqn//Tq35HKgqMc6YdgNR9kLKHmrJCCrSO5Dt0oNSpLRXWvlRWVGLQ6ZBSItRqNHZ2aOwdcHT3xNXXDxcfP+xc/h0FMM2esV6HhQ9LKU0rkNQEmEuJ/Dn7NVJPxnL3x19j7+pWp2MbQ4nsWL2GwB12pDvk0ur+qCsWUSzJq2TBy3tpP9CfvhPDGl2JFFdW8eDOQ2yysMO1uoKPWvowomVIrcflp6cy/5mHCenYlTFPPG/2L1hOSRXvr4/n95g0XGyteHxoOD4VSQweVHvl4q1LlhF2yI24sEyGTJ901XG63FzSZj1E5dGjeDzyMG4zZzbaheLp7fv4WW9NeFUpK6K64WxT/zbE2owMTk6/B6uzZ3GZNg3Pp59CVQfFZDBI5kafYdPKRHrVWKHRQ0BrVzoNCcQ/0qVRfRjaGj2n92VxdHMqhVkVOLpr6N65kLDir1Gd2w5CDaEDoM14iBgFdrV/b6/1HdFWVZF8/DBpJ46TevI4uSlnubgBjLVah42tBrWdG8JSg16no7qinKqyUgx6/V/j7F1c8Ytsg19ka0I6dsXZu/bIu+bA7BnrdeD/LrzizKF9xpyQaXfXWYGYG4PBQPTiZYQf8eCMawZdH7gBu6uUnXd0tyGsmycnzpeJb0zWJZ7licRM8q3tGKIr54sBXXAy8eLm5hdA74lT2fHLT8Tv2WE2s1aVVs/3O8/yxdZEtHoD9/YL5cGBLXGysSQ6+qxJcwycOI5Nhb8RmeDL9pWr6T961GVjqs+eJWX6dPSFRfh9+imOw4ddYSbz8V7/HrjsjeEzac/Q6IOs7NsR7yvkkpiCpa8vhU88TqsDBymYN4+qEyfwn/M5Fm6mfc7T4wtx2JbHwEor0q0MHHA08OxQHwJaNbx/TG1YWqlp08+P1j09OLdqOXujq9i0wY8Yq8n07TeGgJHjwP7qO01T0Ou0nDm4j/g9xrwwXU01FlbW+IZH0GvCLXgEhuDq549TdTIWx3417nx0lRA2DPo8AkF9kFJSWpBHYUYG+ekpZCbEkxZ3gvg9O4Bv8AgMpmX33rTuN7DJFYrBYKCkpJCcrCxKCwrRVdeg02qR+vpdxs2lRK7/fVod0NZUs+XHubj5B9KpmXNC9Ho9W3/6ncgEX+J90ug38yasaqkt1XlYEKf3ZRO7LQ1MbyluMlVaHY/tOMAyrLEXKj7ztGVSm451nqfrjeNJ2LeLLT98TWDbDtg61t/OLKVk1bFM3l0bR3pRJcNae/H8Da0Idq9fgMGAu25i98dLCdrlxRGvvXTs3vOv16pOniTlHqNzOmj+fGzatqm33HXhuZ6dcYmJ5fVCG0buPMrqPu3xdaxnFr2FBV7PPYtNp45kPPMsyZMmE/D1V1iHhV31kIqSGnb8dprEQzk4etgw6sH2WPjbct/8Q0yfd5BHh4Tx8KCwxm3ba9DD0UWIbbMJLjpHUKuOJPo8y96DoazYXEXLomz63OyIvUvd/ZelBXkc27SOY5vWUVFchK2TM22ihhDeow9+ka1QW1yaKxMILfrD8LfgwPew72v4aRQE9EQMeRXHoF44unsS1L4jjDR+Rouzs0g8uJfEA3vY88ev7Pn9FwLbdaT94BGEde/VKOkDmRmpJB6JpTqtBE2eCs8yZ2wNGmy5cHmwPP9TP8xlznpeSvl2gycyEw01Z+1avJC9f/zKpJffJqBN/cJlzWHOqtFWs+PrP4lI9yMuNIOB0282OQt91ZyjZCeXEDJCx6Ah5ms+tTslnQdPJJOpsaNHTSnf9umMp339I8HyUpKZ/+yjhHXvxY2PPlOvOY6mFvHGqpMcPFdIKx9HXrqxFb1bXG7qq6tpr6SkiPiPt+JQY4tmeijBoWFUHDxI6sz7UTk6EPj991iH1G66Mzfzjp3iudwKPGuqWFNPRXLxuag8fpzUBx5AVlbh9/HH2Pfre9n4pCO5RC+Mo7pSR9eRwXQaFoiFpfGzWKXV8/zS4yw9nM7oDr68f3N7NJaNkEuVshfWPm10evt2gqjnjHf/QqDT6jm8IYVD686hUgl6jAml/UB/k0xrG1auQGSmEBu9EYPBQGinrnQcNoqgDp1QqerwPrSVcHgBbP8AyrIgfCQMeQU8r9xrqDQ/j9jojRzfsoHSvFwcPbzoNvom2gwc0qAgHoPBwMljh8k6kIhzujXeVcYdZqWqmmz7Qqrc9KhcNdi42mPv6oy1RoOltRUWagsCg1uYvYrvhc6GV6IaOAMslFKW1mXRxqYhSqQhzvSLaagSqagoY/8Xq2iZ70d8+xwGThlfpxDPjIRC/vzwMN5dBBPubbgS0er1vLjrEAu0aqz0ep7zsGVGJ/MUdtz7xyJ2LV7AmCeeJ6x7b5OPyyqu4r31cSyNScfd3oonh0UwsWvAVYsj1sc/lJZ6lpKv46m0rMZ/oDOFjz6GpY8Pgd9/h6VP89m15x87xbO5FXjUVLG6d3v8nOqmSC49F9rMTFLvf4Dq06fxef01nG82FsvU1ujZ8dtpTu3KxD3AniF3tsbN73IzmpSSr7ad4b118XQJcmHubV0u6sbYQMpyYP0LcHwxOPjC0Neh3c1wBf9TcW4l2xedJuVEPn7hzgy6o9VVHfwVxUXsXvILxzavQ6VS0XbQcLqOGtdw81JNOez9CnZ9avy7x0wY+BxYX/l/ZDDoSYo5yP7lS8g8HYetkzM9J0yh/eARdeoMmpGewsnN+3A7Y41HtQs1QkuqSy76EGsCOoQREhpRay+hxigFf622dBZAG6CdlHJoXRZtbBqiRJa9/wYpscfq5Uy/mIYokaLCfGK/2kJAiSfJvUsZMObGOs8hpWTp+4fIzy7hnveiUNXS6+JaHM/KYcbheM5qHGhbVcp3PduZteKuXqdj4QuPU15YwJ0ffVVrm+HKGj3f7kjiq+gz6A2S6f1CeCCqBQ61lOaob5DB8cMHcfitBJmfhD5jGcHzfsLCvflrSi04fopncipwr6liVa92BDibXsruSufCUF5O2iOPUr5zJ55PPoHF2FtZ+00s+elldB4WRPfRIahrKcq46lgGjy8+irejhh/v6kYLjwYklEoJsX/Amqegpgx6Pwx9HwPra88ppeTU7kx2Lk4AAf0nhxPR0/vvcGSdjqMb17B78UK01VW4RrRl/IOP4ujeMF/KZVQUwObX4dBP4OANI96B1uOuqPwuyJ12KpbdSxaSdjIWFx9f+t5yB2Hde18zYON4zAFyt52hRbY3IEh2zULdzokOfXrhUEcTcbNEZwkh1kgpb2jA8SOATzF2NvxOSvnuJa8/DtwD6DD2M7lbSnnuWnPWV4mcO36E3998kb633EGPcQ2rP1VfJZKZmUrq3IN4VDmTPdRAz0GD6y1D0pFc1n59nKHTWxPere4FIw0GA7P3H+HLMgNIyUMOFjzZvUOjNFHKSU5i4fOPEdm7PyNnPXHFMVJKVhzNYPbaODKKqxjZ1pvnRrYi0M00x099lUhl7AlSnvkEu3a3k+B7joEPT6vzHI3FwuNxPJ1TjntNFWvqsCO52rmQNTVkPPssSXtTONVxBiqNhqF3tyGorek3VIfOFTLj54PoDJKvp3WhV4t63IyV5cCqxyBuFfh1gbFfgqdp2fYXKMmrZPO8U2QkFBHZ05v+t0aQl5LIhq8/Iy/1HEHtOzHwzhkcTzjTuGHwaQeN7yXrmNH8NvozcLz6bkdKydnDB9m+8Efy01Lwb92WIfc8iJvfP8P5j8ccoHDDWUKLfChTV5DWsphWQ3vg5x9Ub1GbJTqrgQpEDXwBDAXSgANCiBVSypMXDTsMdJVSVggh7gfeA8zej9Zg0LPt5+9w9PCiyw1jzT29SSQlxlP6cwLOOnuKxmvo2b1Xg+YLae+OtSPErE8hrKtXncJPz+QXcs/+WE5pHAjVlvNtl1a08Wy8u2/P4FC6j5vI3j8WEdG7P6GXdB48nFLI66tOcjiliLZ+jnw8uSM9Qhs/aq46MZHU6dNR29uT4H+OsLQgdqxeQ79R9f7Ym5Wp7SIRsXE8lQ2jdx9lfb9OeDTAR4WlJVlDH+JYxVnsi1Pp7ZhCYCvTy7YAdAly4c8H+nD3vAPc8cN+Pp3SkZHt6mAiOrMVlt4LVSVG01XPB0Fd90uVo7sNYx/rxIHVZzmwOpHEA8soz9+DnasbY598kRZdexi/Ewln6jx3nfDvCvduhf1zjTuTL3vCqA+NJrkrIIQgtHM3gjt05viW9ez4dR4/P/UQ3cfdTI9xkziTGE/WypO0KPRFWNiT0K2AHiMHE2nbPGWEmrthQHcgUUqZJKWsARYB/7iCSym3XtQAay/g3xiCxG7dSG5KMv2n3oVFM5QnP3H0ENU/JqM2qJDTvOnUQAUCxjLxbpGC/LQyUk4WmHSMwWDg04NHGRSTwGlLW6Zbatk+rHejKpAL9LxpMu4BQWz8dg7VFeUAZBRV8uiiw4z/cjdphZW8f3N7VjzYt0kUiDY7h5QZM8DKksB5P9H3vskkuWTgv9OGE8diGn19U7m1bSRvuNuQZWXLmB0xFFdW1Wseg97Atl9Ps3f5WVp28WRYtxJ0y34h8/nnkRflPJhCoJstv8/sRVs/Rx74JYaF+65pPDCi18HmN2D+eLB1gxnRxpDZeiiQC6hUgpB2YG3xB2V5u7HQtKX/tFdp2a1n0yb/qS2g1wMwcye4tYQ/psOSO40mr6vJrlbTYegN3PXR10T06kvMn8vZ8cx32PxcgEeJEwld8gl9vj8DJ4zFtpkUCJgpOqveiwtxMzBCSnnP+ce3AT2klLOuMn4OkCWlfPMKr80AZgB4eHh0Wbx4scly6Guqif3lezROLoSPm2KWD5fe8B4AatXTtY7NTUuh8wk/iixLyegqcXA0XwZ3aUkZGVttsXKAkEHXvmfIq9HyRaXglKM7vuXFPKiuooVN05Z6Kc/JJG7pL7hEtOOofxRrz2oxACODLbkh1BIbi/r/b8rKyrA3seijqKzE5cOPUOfmUvjEE+gCjaaEqsoKPHfrsJAq0npLbG0b1qjKnKwtqmCeow+hZYW8ag9W1zA7Xnou9FpJ2h5JWQa4twLP9gIhBHar12C/ciWVPbpTcscdUEdTZrVe8sWRao7l6rkpzJLRoZZX/H5ZVRfQ+uT7OBefJNN7CAlh92JQ1z+hEoxmobyTx0jdtQULjQ1+PYdRfC6YynzwaCvwaGO866/L58IcCIOegNQ/CU7+lRorF062fooSp4irjjcYDOQnnqX9WX9sDBoSSmPICizHt1svhJlDggcOHGhec1Yt0VlIKR+uy2INQQgxDegKDLiKLHOBuWD0idTFxrn9l5/QVVYw9qW38G5x9Tj5unAoZi4AXTpfW46da9fRPTaQDLt8Ws7sQxcP8za7io6OpseoUHb9nkhkUCe8Q67saPv2cCzv5JZTZW/Jrapq3hnRB+s6RIaYC4NBkpmaQ+H+jRwsCmZYj648MyKSANeGJ7yY6hORNTWkzpxJeVYWAV9/TZu+/zTnJITEopqXjeORAro/MazWvJ2mIgpw2hPDZ8KVD6tKWTG011X/hxefi6pyLSs/P0p5ZgkDbo2gbf+L6p1FRZHXIpTcTz7Fy9ML33ffqfOFa1CUgad/P8bSw+k4evjx8o2t/5lLkh4Di+6HqiIYPxefDpNpaNxbTWUFG7/9gpRd2wju0JmRs57A1tEJvdbA1oVxxO/NwtnGi0G3RbJz945m6LE+GNLvQrPkTjoffR4GvwK9Zl2mpNNSz5K08AC9isJJcs7E6wZParYbyNqxF1mczw0PPYmrr+mtkRuD2q4SBxt5/XTgYm+R//nn/oEQYgjwAjBASll96esNoSg7i5jVy2jdf5DZFIgpXOiFHn7YnTMuGXR5cCT29o3TKLJ1X18Orknm8PoURs5s94/XskrLmLHrMPutHfDW6/g5wo++QY1iMayVXYl5vLs2jlPZQdyhceHWmr3MmHA7liYWQjQHUkoyX36F8t178Hn7bez7Xu4PCItsy+5BmQRv9mb7T38y5L4pTSZfbTzfqzNlO/bzg8aByZv38PuQ3ldttwtQWVrDis+OUJBZzoj72hHa8fIIJfeZMwFB7iefgJRGRVKHGwxLtYoPJ3bA1c6K73eepbCihg8mdsBSrYLjv8PyB8HOE6ZvMNa6aiBFWZn8+d7rFGak03fK7XQfe/NfrazVlioG39EKVx879iw7Q0leJU7tm8ka49cF7tsBK2bBxpfg3C4Y9xXYuqLX69m5cg2++23wxoWkPiX0HXUzKpWKiPadaNG1Bxu//YIFzz3K8JkPE9GrX/O8B2pRIlLKeRc/FkLYXuSfMAcHgDAhRAhG5TEFuPWSNTsB32A0e5m3Mw6wY+GPCLWavrfcbu6pr4pOp2PrT3/QKtGXeJ90+s0c36h3s1YaC9oO8OPQunMUZpXj4m10vH57OJbZOWWUW9lxE5V8MLhbs7SrPZFRzLtr49iRkIefsw3vTelKV6tQlrzxPLt+W0DU7fc0mSwFP/5E8bJluM+ahfNN4686rvfQoWxKW0xkvB/bV62h/43Xh6Md4O1+3SnduoclVg7csWUP8wf3vmJEXXlxNcs/OUJJXiWj7m9PYJur+5ncZ94HKhW5H32EUKvxeeftvy7MpqBSCV4c1QpXOyveXx9PdY2WOT5rsdj1EQT2hkk/N7hcCUDqiWOs+MhYUPzmF98ksO3lycJCCDoPD8LZy5aNP5ygIFtS2Onv70WTYuMMk+bD/m9h/fPw7UAKRn7NseXnaJnvxxmXDMKm9aK/X+A/Dgvv2RfvlhGs+nQ2qz6ZTdqpEwy4bToWlk3fgdKkT4EQopcQ4iQQd/5xByHElw1dXEqpA2YB64FTwGIp5QkhxOtCiAv1Rt4H7IElQogjQogVDV33AmknYzm9bxfdx9yMwxWKGTYG5eWl7Pj0d1ol+nKqZQZRsyY2iTmk/cAA1BYqDm9M4Ux+IcPX7uClIh12Bj0/B7ny5cBeTa5AUgsqeHTRYUZ9tpPj6cW8OKoVm58YwE2d/Qls254OQ0cSs2YFmQkNL6ZpCmU7dpLzwQc4DB+O+4MP1Do+6rabOOOaQcAuG04eO9wEEprOpwN6MEJfzmYLex7fvv+y17UVkj8/jKG0oIrRszpcU4FcwH3Gvbg//BDFy5eT/dbbde5IKITgwYEteW1US0YlvITFro/Qdbwdbl9uFgVybNM6fn/rJWydnJn61kdXVCAXE9rRg/FPdMagh6Xvx5B9tqTBMtQLIaDHDLhrDUerA0ifl0dQgSeJPQrp99REfC9RIBdwdPdg8ivv0mXUWI6sX8VvrzxNSa7Z77NrxdRbiU+A4UA+gJTyKGCWinlSyjVSynApZQsp5Vvnn3tZSrni/N9DpJReUsqO53/MUsxKGgxEz/8Oezd3uo6++h2nOcnOzuDYRxsIzfUhsUchQ++ZbHIZk4Zi62hFRE8v5uWfZWBMIrFWttyqqmbfkB4MbRHcJDJcIL+smjdWnWTwh9tYG5vF/VEt2PbUQO7pF/qPchn9br0LO1dX1n/9KTqttlFlqjl3jvQnnsA6LAzft98yKbjCwsKCDvcOodiyjJrf0yjIz21UGeuCSqXiu4E96V5dyiKp4e09f0eTVZTUkLxVUllSw9hHOuIXYXogh/v99+N6110ULlxI7qef1l2wqhLuSHqS0eq9vKu7hTtyb6XC0LAgUSkl2xb8wMZv5xDUriO3vvmByVnnnkGOhAwRWNmoWfZxDOdO5Nd+UCOg1+vZvD0V54KnqFHVoLV9miiXk7VeoNUWFkTdfi9jnniegox0Fjz3KGknY5tE5guY/N+TUqZe8lTdYv6uM+J2bSM7KZF+t9zRJDb3hLhYsubE4F7pSM6NgqjxTVvYMSYji+ed81jfwRfvygqWR/ry0YAeaCybznleWF7D7HVx9HtvKz/uOsv4Tn5EPxXFMyMicbK5fBtubWvL0HsfJD8thX1/mh5tV1f0ZWWkPvAgQqXC/4s5qOxMN2s4u7hhPTkQJ609x7/fgk6nazQ564qFWs3iwb2IqCrl80rB90dOUFWuZcWnR9BWwKhZHfAOrXNGM55PP4XzxInkf/0N+d99Z/rBpVnw0w1wbjeM/4aw8S+yJ6mAO37YT2lV/W4S9Dod67/6hIMrl9Jh2CjGPfMy1rZ1M0tZOwhueqoLzl62rPniGPF7M+slS30pLSlm+ydLiDjuSaJvJhGP9yO8bTeIfgeW3A41tXsQwrr3ZurbH6Oxd2DJmy9ybPP6JpDciKlXkFQhRG9ACiEsgUcwmp/+lei0Wnb+tgDP4Ba06nPFYC+zcmDndpzXVBtz8m/3oVukeWpOmUK5Xs99W3azUlpjYaXh5rQC2hxS0W5I05XtKKqo4dsdSfy0K5kKrZ7R7X15eHAYLT1rD6sM7dSNVv0Gsn/ZYsJ79MYjyLwFD6WUZD7/AjXJyQR+/z1W/nUPKmjVpgPbe6+mxS5fon9dxpDbrpxE1hxoLC34c0BXhm47xMt5BtJ27MQzGwL7CXxbOtdrTiEE3q++gqG8nJwPPkRlb4/LlFqCC/LPwPxxUJ4Pt/4GLYcwAbCyUPHob0eY9v1+fr6rO062ptv0tdVVrPpkNkkxB+g9cSo9J9Q/PN/OyZrxj3dmzdfH2PTTKWqq9LSLavwAk5TkM2TPO0ZopTcJ3QsYOG6S0X817kvwbmusGVZyI9yyqNYWva6+ftz61oes/vQ9Ns79nLzUZKJuu6dRKgNfjKk7kZnAg4AfRgd4x/OP/5Uc3bCaktxs+k29s07OwTojJVt+XYrXKkmeTQneszoT1kQKxGAw8OWh4zyitWW5sKWrtoLoLi15ZUA3DFUGYrdfFgRndoortHy0IZ6+s7fyxdYzREV6suHR/nx2SyeTFMgFom6/B2s7e9Z//dk/Gv2Yg8L5CyjdsAHPxx/HrmePes/Td9RI4gLSiTzhxYGd280oYcNxtbXh965tcKiu4vsIO7wnemHv3bBcKKFW4zv7Xeyjosh67XWKV666+uDcePjxBmMxwjtXQsshf700uoMvX07tzMmMYm75di+F5TUmrV9ZVsqSN1/k7OFDDLnnQXrdfEuD87usbCwYPasjIR3c2b7oNIc3pDRovtqI2bOLim8Tsa+xpeAmawbeNPbvAAghoNeDMGWhsTf8d0Mg93Stc2rs7Bn/zCt0GTWWw2tXsvTdV/9K3G0sTLqCSinzpJRTz/smPKWU06SUzWM8bCBV5WXsXfobQe07Edy+8Zox6vU6itJzCT/qQYJPBu0fH4aXl2+jrXcx+1IzGLB+F6+X6LHR6/jG14EVI/oR6uqCR6ADAa1dObolDV1N41gkM4sreXPVSXq/u5nPtiTSL8yddY/244tbOxPmVffkPFtHJwbfPZPspAQOrVluNjkrjx0j+/33sR80CNe772rQXCqVij53jyHdNheHtZWkpSWbR0gzYDBITi5J5dboMiylgaerSkivMu1ifS2EpSV+n3yMbbduZDz/PGW7dl0+KCvWqECkAe5cbQxrvYThbbyZe3tXEnPLuPW7fbUqkoqSYpa8/jw5SYnc+NgzdBg6ssHv5QJqSxXDZ7SlZRdPdi9N5OAa0xqZ1ZVty1fhtlxHsXU59veFXb1CReQouGu1sf/790MgeWetc6vUaqJuv5dhMx8m9cQxFr3yDKX5eWZ+BxetZ8ogIcR7QghHIYSlEGKzECL3fPLfv44Dy3+nqqyUfrfe2WhrnEtOpCK1EE2NFae75DPwocnY2TV+ZnNSQSGTN+xkXEIWKRYa7rPS8ZGNlrERLf4xrvPwICpLaojbY17bb0J2KU8uOUr/97by4+5khrb2Yu0j/fhqWhcivRuWAxPesy8tuvZk928LKMxs+C5KX1RE+qOPYenpie87b5ulSoGNjS2+d3RESEHqT4eoqqps8JwNRUrJjt9Ok3wsj3E3tOHHCD+qVWreMtiSUdLwDg4qjQb/L+ZgHRpK+kMPU3nixN8vZhyBeTeC2gruWnvVvhoAAyM8+fb2rpzJLWPqd/soqriyIqkoLmLJGy9QmJHOuKdeIrxH3ep6mYJarWLo3a2J6OHNvhVn2bvsTJ0j0a6GwWBg07wltNjjxFm3TNo+PpSAwNBrH+TXBe7ZBPbe8PM4OGaaf7DdwGGMf/ZVSnKz+eXFJ8hNSW6w/FfCVFvOMCllCXAjkAy0BOrfbKOZKM3PI2bNClr1jcIrpEXtB9SDvVu3UDU3CbVUo3MXDJo4rlGq3l5MQUUlD23dw4CYM+xQ2zJIX8GObuG81qcrlldY2y/cGa8QRw6tP4deZ2jQ2lJK9iblc8+8gwz9eDurjmUwtUcQ0U9G8cmUTrTyMU8CpRCCIdPvR21pyYZvPkca6i+3lJKM555Hm5uL3ycfo3aqf0fFSwkICqV4hBUBZZ7s/NF8u6b6cnhDCrHb0uk0NJD2A/3pHxzAJ/4uFFvbMHbX0XrX2boYtYMDAXPnonJ2InXGfdSkpBgr1/48Bqwc4K414N6y1nkGhHsw97YuJF5FkZQXFbL49ecpyspk3NMvE9zx8l2NuVCpjUmJrfv5cmjdOXYtSWywIqmprmbrl4uJPOVNXGA6fR6dcNU215fhEgzT10NgT2Nxyl2fmXRYcPtOTH51NkjJopefJiX2aP3fwFUw9ep2wQE/ClgipSw2uyRNwO4lvyClgT6Tzb+JqqysYNPXi/Bfb0m+bQlqX1vsG9Du1RTKa2p4bfchuu08xhJsaK2tZFUrXxYO7Uug89XXFkLQbVQIZQXVxO/Nqt/a1ToW7D3HiE92MGXuXg6eK+CRwWHsfnYwr45pY5YyJZdi7+rGgNunk3YqlmOb19V7noIff6Js61a8nn4am3YNz5C+lO79o4hrlUXkOT92rF5j9vlN5fT+LPb8eYawrp70Gv/3TdNNrVpyZ1k2qdZ2TIg+QLUZIsosvTwJ/O470OlIufN2dN+MBxtXoynG1fRgiKgIT765rQsJ2WVM+34fxRXGqK2ywgIWv/YcxbnZjH/mFWPL2UZGqARRt0bQfqA/R7eksn3R6XorktKSYvZ8soyIND/i2+UwaOYkLOuaGGjjAtP+gDbjjRnuG14y9lypBc/gUG5580Mc3Nz54+1XOLlja73ew9UwVYmsEkLEAV2AzUIID6DhtzBNSH5aCieiN9Fh2CicPM1bnyrx9EmOv7eeyGQ/4sIz6frUaKwbMWy4tLqaV3YdpOPWGL6qVuOu1/K9nyPrR/ajs69p7y2wjSueQQ4cWpeMXm/6XX1SbhmvrTxBz7c38+KyWCzUgvcmtGfPs4N5bGg4rnaNm7DYNmooge06sn3hj5Tk1T0vo+rkSXI+/hiHoUNwmTa1ESQ0EjV1PEkuGfjutOb0qaaN2wdIiy9k87xT+IY5M/iO1pe1iR3qZMtMaz2xGgembd6LoQE7uwtYh4bi/+bj6LKzSI12wDD5D3C+cqLctRh4XpGczjIqkszMXBa//jyl+XlMePa1WpMIzYkQgr6Twug0NJDYbensqIciycvL5sSnmwku9OJsv1IGT51Qf+uEhTVM+B663QO7PzOWjNHXfhPg6O7BlNffwy+yNWvnfMj+5b/Xb/0rYKpj/VmgN8a+HlqgnEtKtl/vbP/lJyw1GnqMn2S2OXU6HVt/X474MRM7rYacsSqG3D2p0TLQS6qqeWnnATpFH+abGgtcDTo+8bRhz/DejAqvxa56CUIIuo4KoSSvitP7sq85trRKy28HUpj49W4GfbiNBXvPMaiVJ3/c35tVD/VlUrcAbKyaJmlSCMGwGbOMtuVv59TtC11TQ/qTT2Hh4oL36683ailwCwsLWk+PotyiirJFSRQVNV0cSlF2Beu+OY6Tpy0jZ7ZDbXnlr/mrfboyVlaww8qeh7fta/jC2SexjXkGv6FqqgoEaS++i6xnkujASE++vq0zyem5zH3+aUrycrjpuVfxb9104fEXEELQ66YWdBwayPFt6excnGDy5y4zM5XkOXvwqHAid7TaPH1oVGq44QNjj/kjC+G3aSblkmjs7LnpudeI6N2fHb/8xLYFP5jF12NSnogQYiKwTkqpF0K8CHQG3gTqZwtpYtJOxZJ0aD99p9yOrZlMTElJ8WQsOkZYiTeJ7um0uSMKDzNX4L3AmfxC3jt6ivU6C6osrQgxVPGulxs3RbZvkL8luJ0b7gH2HFqbTEQPr3+00NUbJPuS8vn9UBprY7Oo1OoJ9bDjmRGRTOjih6dD0xVFvBQnT2/6TbmdrfO+5dTOaFr3M62HvMMff1CTlETgD99j4WK+cvtXw93di6wJ3rguKuXwdxvp/9jERq9QUFWuZfWXxxAqwY0Ptkdjd22TyVdRPcnZuIvfrRzw3n2IF3vX08+Qlwg/jwW1FQ4vr8SnbwyZL75E5osv4vPuu/VS2H2DHHigZgulFfkcbjuRu4KvXi69sRFC0PumFkiD5OjmVIQQ9JnY8prvK/VcEnnfn8BRZ0f5zQ507dLdnAJB1LPGvitrnoIFN8EtvxpNXtfAwtKSUQ89icbegYMrl1JVVsrQe2c1KJfE1GTDl6SUS4QQfYEhGOtZfQXUP7C+iZBSsn3hj9i7utH5hoZniddUV7Pjz9WEHHXGXeVIclQ5/YdNMrvz3GAwsPlsCp8npHLQ0g6DsKGdvowHA10ZF9nRLGsIIeh2QwhrvzlOwsEcWnbzYv/ZAtYcz2RtbBZ5ZdU4aCwY39mPm7v40ynAuWkb+VyDjiNuJG7PDrb+NJfg9p2wdXK+5vjSrVux3bYd1zvvxK5376YREmjbsQtbk5YTtt+P6MXLGXzLTY22lkFvYMN3sZTkVTL20U44utvUeoxKpeLXQb0YsWkPX0h7fI6cYHrHNnVbuOAszBt9Pox3FbiG4nxzKLrcXHI//QwLT088n7hyy+Oroa2u4s/Zr1OZeY4WUx7k24N6bv9hP/Ond8dR0/RFBsH4felzc0uklBzdkgoq6DPhyookKTGO8nln0BisMNzqSfu2HRpHqO73GhXJ0hnw4yijz+QarXcBhErF4LtnYuPgyN4/fqWqrIxRDz9V72Z8piqRCwkFo4C5UsrVQojLGkNdjyTu30NmQjzD7nu4weVNDu3egdyQT0SVB6c902l3WxSRZt59ZJSU8tWxOFaU1pCtscPSwoZBhkqebNuSjj5eZl0LwKe1Cxp3DesWx7NgQyy55dVoLFUMivTkhnY+DGnl9Y96VtcLKpWa4fc9wvxnHmLzj98w+tFnrjpWl5dH5gsvovXzw+Pxx5pQSiMDxo1ma+pvtDzqS0zILjr3NH9YKsCu3xNJPVXIwNsi8Q1zNvk4jaUFy6K6MTj6IC/nGfA6fYYbw02MXixOM0ZhaSuMeSAef+8W3GbORJuTQ/6332Hh6YXrbaYFtOi0WlZ89A5pcSe44aEnadVnAI4R2Tyw8BC3fd/8iqTvxDCkhKObUlGdN3VdrEjiTh5DLsxACIHlHQG0DG/duEK1vcm4A/ltGvwwDG5bBm7X/v8JIegzaSo2Dg5s/Wkuf7z7Ktt6j6rX8qYqkXQhxDcYe6HPFkJY0/ytdWtFr9Ox49d5uPkH0mbA4HrPk5QYz7llhwnL8yNbI8i8UTKor/l6SJTX1LD4VCK/Z+ZzxNIWvcoSH2qYaaXj/vaReDmYt+taakEF0adziY7LYdeZPAIrYGyFNYP97eg7tjWDIj2xtWr6hlR1xc0/gJ4TbmHXb/NJ6NOfsG6XJ2xJKcl44QUM5eUUz3oQVTOUulepVPS850ZOfLAJh5U2pPufw88/yKxrnNiRzrGtaXQYHEDrPnVPanW20fBnr3YM33uSWefy8bCxoUdALfNUFBhb2VYWGSvxev/TXyGEwPvFF9Hl5pL99ttYeLjjOGLENac0GPSs+fx9ko8cYth9D/9Vlmhoay++uLUzDyyM4Y4f9jPv7uZVJP0mhSENksMbUxAq6DnOqEhijxzCanE+FRZaXO9uTWBw46QSXEaLgXDHSlh4M/ww3Lgj8al999N55Bgsbe15IjGDY+r6lcI39UoxCRgBfCClLBJC+PAvyBOJ3bqBwsx0xj71Ur1sfueSE0lccZCwDB/8VW6c7pRH33E3mMVxfkFx/JmZzxG1hhoLS6zV1gzQV3JvaCADQzo2eI0LpBdVsi8pn31JBew7m09yvtEJF+Bqw+SuAQyI8CBz0VlcSgSj2vpcFslzPdNtzARO793J5u++JKBVOzSXtDkt+m0x5du24/XCC2T5Nk3FgCthZ+eA1x3tqJ6bRMpPB3B70hONpnZzkymkny5k+6+nCWzjSu+b6n/RCnR2YlGHFow/fpbbTqaw2kZDmLvrlQfXVMAvk6HwHNy2FPw6X3GYUKvx++ADUu6eTsZTT6N2dcWu+5V9A1JKtvzwNQn7dhN1+720GzTsH68Pa+PNF1M78+B1okj6TwkHCTHrU4ythIMK0SwppMSqEt8ZnfHxDah9InPi1xnuWmdU7D+dr7cVfO1db5VWx7OVlhwLbUvnhGOsrceyJikRKWWFECIH6AskALrzv69baqoq2b3kF/wiW9Oijg6tuNijpG85RcsMb4KEO6cjsuk8ZiBhbvXveWAwGDiSlcOypFR2lFaRYGmDTm2BtVpDF0MVN7nZMyGydYN7elTU6DiZUcKxtGKOpRWxM76CvHVbAHCysaRbsCvTegYxMNKTUHe7v7bhCaNgw/cnOHM4l5Zdrl3o7XpCbWHB8JmPsPCFx9m24HuGz3zkr9e0mZnkvP8+tr16GsN5t21rRkkhKLgl+4anErDWi50/LGfIAw3fzZbkV7Lum1icPG0Ydk/bfwRH1IcOPp58W1nJnUm5TDhwio19O1y+E9br4Pe7Ie0ATJoHwX2vOadKoyHgyy9InjqNtAdnEbRgAZqI8MvG7Vv6G0c3rqX72JvpMurKwZ/Dr0NFYpCSpI0p9HCAIusK/O7rgrdP83QHxSPcmJQ4f7zR2T7xJ4i4clmY4soqxkYfIE7jwFRVNY/07kh99semRme9grG/eQTwI2AJLAAax7hrBg6tWkZFcRFjn3zBJGdweVkph3fugphSgku8CVC5kRCWTYcxAxhSD7+H3gBJNU6s3n2IgyUVxGNBsbUNYImz0NHfUMVIT7d6Kw6DQZJeVEliThmJOWXEZ5cSm17M6exSDOej9rwcrQlyVPHA4Ah6hroR6e3wz97WF9GiiyfOq85ycM1ZWnTy+FftRrxCW9Jt9E3sX/47kb0HENS+o7E67yuvIA0GfN5447oJCOgxYCCbkpcQecqP7StX0390/ezQADqtnnXfxGLQG7jh/vZY25jHBDk4NIj3Kqp4IlvF+J2H2Ti4B3YXPqNSwurH4fRaY5hpa9Mi/dXOzgR+O5fkKbeQOmMGwYt+xdLnbwfw8a0b2LV4Aa37D6LvLXdcc65LFcnPd3fHobkUiUrg2aacwOOg1aspjwxqPgVyASd/445k4c2waCqM/QI63vKPIVmlZYzZeYRUa3se0hh4oVf9Y6RM/dSNBzoBMQBSygwhhFmKQQkhRgCfYiyU/p2U8t1LXrcGfsaY6JgPTJZSJl9rTmkwcGDlUsK698Y3/Or1ekpLijkZc4iyYzkEZboTLO3Isa4hoVsBXYdGEW5iOHBBRSV70zM5nFfEybIKknSSTOuHqBJGc4WtyooW+hp6W+kYG+JvckJglVZPelElaYWVpBVWkF5o/PtsXjmJOWVUav8uoOhub01bP0eGtfaivb8z7fyd8HLUEB0dTVTf2jOGVSpB1xuC2fTjSRJjcgjran4nfmPS8+ZbSNi/hw1zP+eOD+ZQuWEj5dt34PX8c/Uq796YRE0dz64P/yBgtwdxIUeJrGfkzvZFp8lNKeWG+9vh7GXeCgG3tI0gq/Ios8scmLB5H6uGne/VHv0uxMyDfk8YI4PqgKWvLwHffsu5qVNJufdeghcsQO3sTFLMATbOnUNwh84Mu+9hkxT+xYrk9mZUJCePHcZycT7F1lXk+fqSsK0AjX0S3UfXLW/L7Ni5wR0rjEpk2UyoLDBWBcaYMjB+/0nyrGx4xdmSmZ0blntjqhKpkVJKIYQEEEKYpRmxEEINfIHRYZ8GHBBCrJBSnrxo2HSgUErZUggxBZgNTL7WvNqKcnQ11f/om24wGMjLzSY5Pp6Sc3lYpxsIKPLED0vK1C4kB+bh1aMFHTqM+iuW32AwUFhVRVpxGellZWRVVJFVUcW5yirSa/RkS0GB2pJyyws+EhWWQoM3VfSWR2ilymBMxEO09XRDa4DSKh1l1TqOpxVTWq2ltEpHcYWWvPJq8kpryC+vJq+smvyyGvLKqskr+2ftIAuVwNfZhiA3W27pHkhLT3vCvOxp6WGPixkyxcO6eRGz/hz7Vxp3Iw01jTQlllbWDJv5ML+98gw7fpxLwE+/YtOxIy5TGy8rvb5YWFjQ7p5BpHy6FxaXU+Dji2sdTaUnd2ZwalcmXUYGEdKh4a1lr8Rj3TqQuX0fP2scuHPLXn52ike17V3oOBUGvVSvOTUR4fh/8QWp99xD6oOzsHz+aVZ+/C6ewaGMfvw51Bam76aGt/Fmzq2dmfVL8yiSU8ePoF6US5llFT73daKTtz8WC+I4sDoZhKD7jebtfVNnrB1g6hL44x5j//aKAo60msHkY0lUWFrzkbc9U9o0PPfG1P/Y4vPRWc5CiHuBu4FvG7w6dAcSpZRJAEKIRRgz4S9WImOBV8///TswRwgh5DVSLYssbdk+4i6itxxEEoNAjQo1oMIgwKByRBukRxtShlRJdCo1NSpXatJKqcnYhValRqdWU622RH+ZQ16FQIOdrMahphrvmkpstAasqwWqKgu01RZo9QYGt1yBQcId3x6hrEqHznDtzFA7KzVu9ta421sR4GpLp0BnfJ1s8He1wd/FFn8XGzwdNKgb0cykUgl6jA5l7TfHid+XRavezeeIrg/+kW3oOHwUR9avxkbq6PLmG4gmaj9cV1zdPMiZFIj1wgKOf7eFPk9MwMLEC2h2cgnbFsUT0Nq10e943+3bjezNe1hvYcfTxzP4oOVQGP2pMdmtntj16I7ve7OJf/ZZ9r7xInaenox/5hWs6hFoMKJt8yiSuNijqH7NocKyCu8ZHf9yog+cFomUkgOrziIEdBvVzIrEwtroF1n1GNtitnKXbigGlZpvg90Y0dI8sglT096FEEOBYYAA1kspNzZ4cSFuBkZIKe85//g2oIeUctZFY2LPj0k7//jM+TF5l8w1A5gBYBnWqov3F/MQUiKMbxKBNP6WEhWGi54DS4MWa4MWa30NGn0N1vpqbAzV2Osq8KgpxFVbhKO2DDttBZqaakSNJAc3soQneSpPslVeVKrtsVQJLFRgoYJxLT9BAFtSH8PGQqCxABsLcf6Hv37bWggcrQXW6sZRDmVlZdjbmx4iLKUkaaNEXwUtRwlUjSRXY2Fx6CBHd25E2NoRedcDqC66MNf1XDQFOQln6H0mnH2+8bi1r73Sra5KkrTB+J0NHS6wsK7f/6cu58Ku6CSvVLsQ49mKqUWpjHZpuCVbW1FO/MLvkZWVdHT1RT91WoMU06FsHV8eqSbYUcWT3TTYWJg+V10/F4V5WbSKcaFCXU1GdwP2Ds7/eF0aJBn7JUXJ4NlO4NGm+b9DB0sr+UzjhrVOy5xz89CET0SqLle2AwcOPCSl7FqXuU3eO55XGhuFEO4YfRPXFVLKucBcgNZOTnL5O8/QYu1aVBfCcaU0ZtRe/GPQg9SDrtrYda2m3Jg0deF3ZRFU6KG8BsoroKIKyrKhKNVoY5TAhbp19t7g1Ro8W4NXGw5VWYOlLVNHD2+O0/EX0dHRREVF1emYFp75rPz8KB7qsCZpEWou9CUlJL30Mp3dXditq8EqL5O+U2776/X6nItGJyqKTV8uokdKBOkddPQYcPUSLga9gZWfH8VQU8yEp7vgEVj/i7nJ5yI3Hr6/gyW23gxzeJ9fHf3o5GbDtHZX9zXWRnVFBYtfew69WjCkfVdUi37Ho2t33GfeV+85o4A2bbKY9UsM3562Yl4ddiR1+VzEnTyG98Zqqixq8JzRns7+wVccZ4iSbPn5FPF7swgJCaHrDVce1xTMO3aKj3UVOOuqWWJ1jNZZv4FtDkxeANYNv6m6phIRQvQE3gUKgDeA+YA7oBJC3C6lrH89biPpwMXB1P7nn7vSmDQhhAXgRC1KzODsjC4jk8IFC3GbfveFNwNCjdF/bwaqS40x8kXnjP2jc05Bzgk48B3oqqC9k7FQ2olxENADArobewFYmcWd1KgEtHbFN8yZg2uSieztg2UTFVdsKNmzZ6MrKKDj119RvG0D+5cvIbxnHzyDm9nJWQt97x7L4Q/W4LbegeSABIJDw644bt+Ks6TFFTLo9sgGKRCTKcmABRNAbYXdtEUss/JkyI4jPJdtwMs2maEtgus8pV6nZcVHb5ObcpbxT79McIfOZJRXk/vJJ1h4euJ80/h6i2s0bXVi1i+H/wr/NadpK/7kcViYSZW6Bvd72+J/FQUCRtPwoNtbgYR9K5JAQNeRVx/fWHy0/wjvlxnw0VayrFc7Ap17g6sjrHjIWOts6hKwvUoukInU5jmdA7wN/ApsAe6RUnoD/YF3GrSykQNAmBAiRAhhBUwBVlwyZgVwIebvZmDLtfwhAFKjwa5fP/LmzkVf3EitT6wdjBm6kaOgz8Mw/iu4bzs8lw4PHgD3cLDzgPI82P6eMWZ7drDxH7frM2PfZDN1SzM3Qgh6jA2loqSG49FpzS2OSZTv3k3xH0txu/subNq0YcDt92Dj4Mj6rz5Fb4Z+GY2JRmND4J1d0QsDufNPUFJSdNmYpMO5xKw/R+t+vk3jq6osggU3Q2Wh8ULjGoKHvR1Lu7fGRq9lxpkcYjLqVn9VGgys/+pTUo4fYdh9DxPSqStCpcL3rTex692bzJdeomx7w/rTj2jrw5xbO3EsrZg7fthPaVX9qghfSkJcLIaFGVSrtbjd0wb/ANMiHgfd0YrwHl7sW57EoXXJZpHFVF7ceYD3yiGkupz1/Tr93WOo01SYPB+yjsOPI403Cw2gNiViIaXcIKVcAmRJKfcCSCnjGrTqeaSUOmAWsB44BSyWUp4QQrwuhLhQLfF7wE0IkQg8DjxrytyeTz6BoaSEvLlzzSGq6agtjAk/9p7g1hLu3wnPnDOWIeg+A0qzjA1lvuoFn7SH9S9A2qHrTqH4tnQmsI0rMevPUVN5fV+EDeXlZL70MlbBwbg/aAxjtLF3YPD0+8lJPsPBVX82s4S14+cfRM04ZzwqnYn5Zh26ixRfYVY5m+adxDPYkf6TLk/SMzvaKmNoaN5p48XGt+NfL7Vwc2Fh22AkcOuxsyQXFpk87fZffuLUzmj6TrmdtlFD/npeWFnh99lnWEeEk/bIo1QeP94g8S9VJCUNVCQJcbHo5qdRo9LiOr117e1sL0KlEgy+ozXh3b3Yu6xpFInBYOD+LXv4TmtJ+6pS1g/qjof9JRaQyPPFGovT4fvhkJeIobJ+7ZxrUyIXd6q5dAWzXPWklGuklOFSyhZSyrfOP/eylHLF+b+rpJQTpZQtpZTdL0Ry1YYmIgKnMWMonL8AbUbDNG2D0ThCyyEw/C14cB88dsIY4eIZCfu+ge8GGRXKhheNO5TrhB5jQqku13F4Y0pzi3JNcj79FG16Oj5vvoFK83eRzfAefQjr0Zs9v/9CXiP1lzYnHbr15FyvMlrm+xE9fykANVU61n59HLWFihEz2l61N4jZMBjgz/vg3E4Y9xW0GHTZkG5+PnwZ4k6ZhRU37Y2loKL2i0/MmuUcXLmUDsNG0X3cxMteV9vbEfjNN1i4uZF630xqkpMb9DYuViRTv91HYfmVe7bXRsLpE2jnp6FV6XG9pzUBQXU3japUgsF3tiasm1GRxKw/Vy9ZTEGr13Prpt38KWzoU1PKyqG9cLhamaaQfsaqy9oK9F8NJ+X2W648rhZq+0R2EEKUCCFKgfbn/77w2Px9Rc2MxyMPA5D7+ZxmluQSnPyhy51GM8FTCTD2S6NC2fu1cYfy7WA49JPR79KMeAY5EtbVkyMbUygrrG5WWa5GRcxhCucvwOXWW7HtenlQyeC778fa1o41n3+AwYQOcM3NgLE3EheSTmS8DzvXrmPLz3EUZVcw/J42OLg2cg8XKWH9c3ByGQx7E9pffrG/wA1hobzhYUOmtS1jtx2ktPrqn4/4PTvY+vN3hHXvzaC7Zlw1mdDCw4OAb+eClJy7++4G3/yNaOvD3Nu7EJ9dyuS5e8gpqVsz1sTTJ9HOS0Wv0uM0PaJeCuQCKpVgyJ2tCOvmxZ4/z3Bg9VmzNIS6mIqaGsZu3E20pT2jDBUsGdoH69rCxn07ohu7iHPrrKg8UT8D0zWViJRSLaV0lFI6SCktzv994XHz1BmoA5a+vrhMm0bxsmVUxZ9ubnGujI2L0UY5dQk8EQfD3oKaMlj5CHwQYfydG99s4vUc1wKDlOxfadIGsEkxVFeT+eKLWPh44/H441ccY+fswvCZj5Cbkkz6vh1NLGH96H/3eM46Z+K3TUP+0Vx6jmuBf2TDnJ8msetT2Pc19HwQej9U6/C7OrTmUVtBgsaBcVv2U6W9XEmnxB5j7ZwP8YtoxciHnkClunaQhnVICAHffYuhtIxzd92FLrfuLZAvZlCkFz/d1Y20wkomfrOHtMLaOwACnDl9iuqfz6FX6XGcHkFQcO3h17WhUqsYcmcrInt5s3/lWXb/kWg2RVJQUcmIzfuIsXZgmqqa7wf3NqnHUU1aGskPvUhNuYaAG+sX9PPvSUmuJ+4z7kXl4EDORx82tyi1Y+cOvWfBA3th+iZjn4Cji+CL7sYomcTNTe47cXS3oX2UP6f2ZJKXVtaka9dG3ldfUZOUhM9rr6O+1OZ7EaGdu9Fh2Chyjh7i3LEjTSdgPbGytMZjcDdqDCq6Okh82jVBdNzRRbDpFWg7wbgLMZFnenbiPisdJzQOjNu0h+qLfDm5586y/IM3cfb2ZdxTL2NpZVr1a5s2bQj45ht0uXmk3D0dXWFhnd/OxfRu4c6Ce3pQWF7DxK/3kJR77c9xUmIcVT8nI5HY3xVmFgVyAZVaxaDbWtFuoD9HNqUSvTAeQy2JyLWRWlTCsG2HSLC25xEbAx8MMK0OVtXp05y7dSr64mKCfvoR+1frl/r3f69E1M7OuM+4l/Jt2ynft7+5xTENISCgG4ydY/SfDHzRGEmx4Cb4qjcc/92Y49JEdBkZjLWNBXuWJjbZmrVRdeoU+d99j9O4cdj3u3YVWYAB0+5C4+zKui8/orK0pAkkrD9lhVXsXpzGMStQqQwk/7CXiopGVOCJm2D5gxDS3+gHqWOXztf6dOUOdQ1HNA5M3LQHnV5PSW4Of7zzClY2Ntz03GuXleivDdvOnQj4Yg41586Reu8M9GUNe/+dA11YNKMXWr2BSd/s4VTmlT8DSUnxVPyUhERie3cLQkLNH8ggVMZ+JF1GBnFyZwabfjiBXm+o/cArcDInjxF7Y8m0suENVyue63nlkvyXUnnkCOduux2kJGj+z9h07FjvUN//eyUC4DJtGhbe3uR88IHZ7ZCNjp07DHgKHj0O4742Jkn+MR2+7AnHFjeJMtHYWdL1hmBSThaQcrL580ylTkfmCy+idnbG69mrdzS8GEtrDSFDRlFRUsLGuXOu28+BXmdg3dxYdDUGBj/YhcLhFviVebDvq1X/iNgyG+kx8Nvt4NEKJi80lsmoB7P7d2eSqGK/tQNTNu5k8dsvo6upZsLzr+PoXr/aXna9euH36SdUxcWROnNmvaOHLtDa15Hf7uuFpVrF5G/2EJPyzx3O2aTTVPxwBoHA9s4WhIY2Xk93IQQ9x7ag1/gWJBzMYd03sei0dfsu70lJZ+zhRErVlszxdeIeE9sal+3cxbm77kbt7ETQr7+gCW+YovxPKBGVRoPHww9Tdfw4pesamh/ZTFhYG8s5378Hbv4RVBaw9F6jqevYYmNUTSPSboA/ju4adv9xpsHb74aS/8OPVJ08ifdLL6F2djb5OFsPL/pOuY2E/buJ3drgqj2Nws4lCWSfLWHQ7a1w9bGj+4AoznQvIizXj+gf/sBgzv9z/hlYONFY8XXa78YowgbwSf/ujNaXs9PaiSVt+jLmiRdwD2hYB0eHgQPxe282lTGHSX3ggQYrkhYe9iyZ2QtXOytu/XYvG09mA5CclEDZjwkIBDZ3hhDasvEUyMV0Hh7EgFvCST6ex8rPjlJVblo48pqEJG6JT8cgBPPDvBnfyjSTW/Hy5aTOnIlVUBDBCxeapcL1f0KJADiNHYN1eDg5H3+CrKlfuN91gUpl9JXM3AWTfgYLjVGZzB0AZ7Y22rJqSxU9x7UgP72MuD2ZjbZObVQnnSVvzhwchg3Dcfiw2g+4hK43jiegTXu2/PQN+WnXV+hy3N5MYrel03Fo4D8agw28aSxxLTOITPJl2x+X5uLWD8uaIqOfTRpg2lJwqHvPnMuQkhEHN9Ix8RhHW7TlpYxSsyg9xxtuwPedt6nYt5/U+2ZiKC9v0Hz+Lrb8fn9vIrwcuG/+QbYn5FD642lUUoX17UGEtoxssMx1oe0Af4be3ZqspGKWfhBDacG1o8gWHD/FjHMFaPR6lrYLYUBw7R0UpZTkff0NGc88i23XrgTN/xkLd3ezyP+fUSJCrcbzicfRpqRQuHhJc4vTcFQqY0Og+3bATd8aM4znjzNeGLJiG2XJll088Q51Yu+yM1RXmCcTuC5Ig4HMl15C2Njg/dKL9ZpDqFTcMOsJLK01rPz4XbRVdQv7bCxyU0uJXhiPX4QzvcZdHko68K6bOe2VTotDLuzdsrlhi1WX0v7Y68bE16lLwP3KZVbqgpSSjd9+QfLhg7wT5MYQXTnrLeyYumk3On3DTa5OY8fiO3s2FQcPknLffejLGqZI3O2t+XVGT0YHGxibbIfKoMLytkBahrdusKz1IbybN6Mf7kh5UTW/zz5IbuqVw/s/2n+Ep3MqcddWs65HKzr41N6FVOp0ZL3yKrmffILj6NEEzv0GtYP5yub8Z5QIgF3//th260bel182+EN43aBSQftJMOuAMaom7QB83ReWzzKWXDEjF9qBVpZp2b/qrFnnNoXCX3+l8tAhvJ59FguP+vfQsHd1Y9RDT5Gfnsqm779sdv9IVbmWdd8cR2NnybDpV25xq1ar6TVzDKmOOXhshNgjh+q3mK4GfrsN+7KzxhLh/nUq2HpVdi/5hditG+g5YQqdho3i58G9uEFfzlZLe6Zs2oPWHIpk9I34ffgBlYePkHrvvQ12tqcnxTEj1QIVgodVeXxzVIe2ng5uc+Af4cJNT3ZGpRL8+UHMP/yPBoOBh6P3GsuY1JSzsV9Hgl2ca53TUFFB2oOzKFq8GLcZM/B9bzaigS24L+U/pUSEEHg+9ST6ggIKfvihucUxL5YaY2z/w0eg5wNw9Ff4vDO+6avN6nz3CHSgTT8/jkenk5/edCG/2vR0cj/8CLu+fXEaZ1pL1msR1L4jvSZM4eT2LcRGN59/RBokG384SVlhNSNmtMXW8epfcBsbWyLvG0CRVRnqJXkknq5jdQODAZbdD0lbiY+YBREjGii9kaMb17D3j19pO3AYvScam4CpVCq+G9SL8bKSnVb2TNi4+x/hv/XFceRI/D76iMrjx0mZPh19UVG95omLPYp+fjo6oSepWwVjBvTkj5g07vxxP0UVzWfudvOzZ8LTXXF0t2HVnGMcj06joqaGCRt3sVhq6FlTysbBPS4vY3IFdHl5nLv9Dsp27MD71VfxfPyxRmkT/Z9SIgA27dvjMGIE+T/91OBEpusSW1cY8bbRZ+LTgfCEuUZ/Scpesy3Rc0woVjZqti863SR38cZ+6a8iAZ/XXjXbF6HnhCkEtu3Alu+/Jvdc0++sAA6sPkvKiXz6TQ7HO7T2dsxubp54Tm+HTqWjcv5ZUs+ZmAQqJWx4AWJ/h8GvkOUzuIGSG4nbtY1N339FaOduDL33wX/8b1QqFV8N6sWU81Fb4zbtocIM/kjH4cPw//QTqk+eInnaNLRZdSsEGXvkEKpfsqlU1+A2ow1Ozu48MiSM929uz4GzhYz7YheJOc1XLcLexZqbnuxMUFs31i09xcA1u9lj5cBEKlk6tA+2Juwkqk6e5OzESVSfOYP/F3NwmXLNZrAN4j+nRAA8H3sUWVND7hdfNLcojYdnJNy+ghOtn4aKAvhhOCx7wPh3A9HYW9JzbAsyEopIPJRjBmGvTfGy5ZTv3Inn449j6edntnlVKjU3PPQk1vb2rPz4XarKmzaZMvl4HgdWJxPZy5s2/UyvzBsQGIrtbaFYGCzI+yGW7GwTyoPs+hT2fgk9ZkLfxxog9d8kxRxg7Rcf4R/ZhhsffQbVVbpIfhLVkzvUNRy2dmD45n3kV5iWNX4tHAYPJuC779BlZZN8y61Unzlj0nFHD+zFenEhpVaVeN/f8R/VeCd2DeDXGT0oq9Yx/ovdbI1r/M/21bCysSDoJh9+Gm5LqoMjExJyebdzZ5Oy0EvWrSd56jQAghcuwGHg1XvUmIP/pBKxCgrCZdIkipb8TnVS89yBNglCkOvZBx7cb7xwHPsN5nQzJis2cAfRuq8vHoEO7Po9kZqqxqtJpcvNJfvdd7Hp0gWXW+tXIO5a2Dm7cOOjz1Cck2Wsr9VESZzFuRVs+vEk7gH2DLglos67qxbhrWCKF/ZaG1K+3kdhwTX8X0d+MWajt7kJhr/ToA6CF0iJPcaKj97GIyiUcU+/jKX1tet6ze7fncdtJInWdgzZdrhO1X+vhl2P7gTN/xmp1XLu1qlUHj16zfH7t0djv7ScQutSAh/sgY/P5VFNXYJcWT6rLwGuttw97wDfbDvTLD6zZXGJjD52llIrK17WC9rHWrLknYNkJBZd9RhpMJD7+RzSH30UTUQEIYt/Q9O68QMF/pNKBMD9gftRWVuT88EHzS1K42NtD0NehRnbwDnQmKz4y2Rjh8Z6olIZnezlxdXGpjuNRNYbbyIrK/F54w1EHTOpTcU/sg2D7rqPs4cPsmvR/EZZ42JqqnSs+cpY7nzkfe2wqGfTr1btOlIx3gG3KifivtxGUdEVEkFPbzAGWYQMgPFf1zkb/UpkJsSz7P03cPbyYcLzr2Fta2vScU/37MS77jbkWlozYt+pOvcjuRKaVq0I/mUhKicnzt15FyUbNlxx3I7Va/BaA9l2hbSc1RcPj6uHNPs52/D7/b24oa0P76yN4/4FMRRXNl004uu7D/FAegk2Bh1LWvkxc1gnJjzdBbWlimUfxnBwzdnLcrX0ZWWkP/IoeV98gdO4cQT+PK9BwSd14T+rRCzc3XG77z7KtmyhfM+e5hanafBuC/dsMt6NJu8wZr3v+6bejnfvUCfa9ffj2NY0ss6av/lXyfoNlG7YgPusWViH1t4EqCF0GHoD7YeMYP/y34nb3bDGSNdCGiSbfjxJYVYFw2e0xdHdpkHzdejWk/xRFniXu3Lq82iKCi9SJGkHYckdxv/75AX1zka/mNyUZJa+8wq2Tk7c/OKb2DjULUHxjvat+C7YjSqVmgmxKaw+3fAbEKvAQIJ/WYh1eBjpDz9C3ldf/bV7MBgMbPl1KSE7HEh2zabDo8Nxdav94mprZcGcWzvxwg2t2Hgqm9Gf7yQ2vZEa3J2noqaGSRt28mW1moiacrb2aU8Pf6OZ093fgcnPd6NlVy/2rTjLik+PUF5srJxcFRfH2QkTKN2yBc+nn8bnnbdRmTkC61r8Z5UIgOudd2Dp60v2u7ORZghB/FegUkOvB4xFHgO6w9qnjd3N8k2zKV9Kz3EtsHOyJnpBHHqd+cIj9UVFZL3xBprWrXG7+y6zzXstBt11H36RrVn/1adkJzVOnbD9q85y9mgefSe2JMBMlXm79e1P/o0WeFW4EDdnGwX5uZB9wpgzZO8JUxuejQ6Qn57K72++iIW1NRNffBN7l/rJP6JlCL+3CcDaoOfe1ELe23u4wbJZuLsT9PPPOI4eTe6nn5Hx5FNoK8rZ8v0Swo96EO+bTq9HxmFnb3p+hBCCe/uHsvi+nmj1Bm76cjfz9yQ3inkrIa+AgZv3s93SntGGCjYM642Xwz/rjVnZWDD07tYMvC2S7KRiFr2+n8NzVnB28hRkRSVB837C7e67GiUC61o0mxIRQrgKITYKIRLO/3a5wpiOQog9QogTQohjQgizhhiorK3xfOpJquPjKfrjD3NOff3jEmTMVB73NeTEGXNL9s2tc/kUKxsLBtwSTn56OYc3mC8DPPvd2eiLivB5601EbT0RzITawpIxjz+PjYMjy957nZI88zpWEw5mc3BNMq37+NAuquHlJi6ma59+FI62wqPCiYQ528mfdxtY2sDty42KpIHkp6Wy5PXnAbj5hTdx8mxYhntXPx+29G5LaE0FH1UK7ty0q8G5JCpra3zfm43H449Tsn4jZx77kcgzvsS1zCDqwYlYXa05Uy10CXJl9cP96N3SjZeWn+CeeQfJKTVfkurC43EMi0kk3VLD8w6Cbwf3xvIqQQpCCFr38WXCY22xqcpld6w9J7o/hufPi6/YT6cpaM6dyLPAZillGLCZK7e9rQBul1K2AUYAnwghnM0phMOIEdh07kzup581OHnpX4cQxnpcD+yBwF6w9imYPxaK6qYMQjp40KKzJwfWnKUwq+FJnGU7dlK8bBlu90xH06pVg+erC7ZOztz07Ctoq6tZ+s6rVJnpM5GbUsqWeafwaelE/3o40k2hS+++FA+rxr3KmbOlz5E27FtwCW7wvPlpKSx+/TmklEx6+R3c/Gsvs2EKvo4ObBrSi8G6Mtap7RiyYTcZJQ0LrRVCoB87isqxz2Pn3I6K+D/p5u+C+ioXZVNxtbPihzu68fKNrdmZmMfwj7ez5njDyv9U63Tct2U3T+RV4aDX8keELw937VDrcRUHD1I04xY6bn2ZDl6Z5GmCWPL5aWK3pzdLXbvmVCJjgXnn/54HjLt0gJTytJQy4fzfGUAOYFZvkRACr+eeRZ+fT/4335hz6n8PTn7GfsujPzVWdf2yN8TMr1MEV7/JYVhaqdk87xSGBmT96svKyXzlZaxCQ3F/4IF6z9MQ3AODGfPECxRlZbD8wzfRaRvmVK0oqWHNV8fQ2FsyYkY71BaN9LUrzabz8ReocJqNvd6RwsUlnI470aApjQrkeYQQTHrFfArkAhpLCxYO7ctDGgMJVnZE7TnRID9J3MljZM85jIN0I7tXMZYWaWQ8+ghZb76FoYElblQqwd19Q1j9sDF664GFMTz862FyS+ve9fNETh4DNu5hubClb00ZO6K60CPg2mHehpoacj74wFjCXQiCF/xM39emMuXF7rj52bPtl3gWv32A9NMN679SV0RzlXwQQhRJKZ3P/y2AwguPrzK+O0Zl00ZKedlVSggxA5gB4OHh0WXx4sV1ksfxp5/QHDxE3quvYDBDYTK94T0A1KqnGzxXQygrK8O+Dr0cNJXZRMZ9hnNxLPmuXYiPeJAaazeTji0+J0nbI/FoK/BsW787bYdfF2GzfTuFTz2JNrT+7UivRF3PRUHCKc5uWo1LywhChtxYr92DQSdJ3iqpKoKQIQIbl8axV1toS+l45AVsKrM52uFVUvXuBMdo0BisiW2Xi5vPP/NrTDkXlfm5nF65BIQgYswkNC6mfQ7qy7GyKr5QO1JirWFEcTbTnDWo63DOc88l0ynOnzKLSs52rMDFzQt0OuyXLsVuy1Z03t6U3H7bZZ+run4uAHQGyaokLSvPaLFSw8RwK6ICLFDVIq9BSpYXV7LUzgMQTC7P4Ubn2qPbLBMScPzlVywyM6no25eymycgNX+HVUspKUmF7CMSbQU4+INnG4Gmjp+3gQMHHpJS1s0uJqVstB9gExB7hZ+xQNElYwuvMY8PEA/0NGXd8PBwWVdqsrLkqY6dZOrDj9T52Ctx8NAt8uChW8wyV0PYunVr3Q/S66Xc85WUb3hK+U6glMd/N/nQ9d/Fyi/v3yKzk4vrvGz5/v3yZESkzHzrrTofawr1ORf7l/8uP5g0Sm789gtpMBjqdKxeb5Brvj4m58zcLM/E5NR5bZOpLJZy7kApX3eX8szWv57OSE+R+1/9UyY9u0XuWLv2H4fUdi7S40/JOXdNll/dd5vMT09tBKGvTHZpmRy+drv02nJY9luzXcbl5NV6THVNldz43W8y9Zntcuebi2VOTuZlY0p37pSnowbKk61ay+z335f6ysq/XqvXd+Q8iTml8pa5e2TQM6vkmDk75ZGUwquPzSuQA9cY31uvNdvl8czaPxPaggKZ/sIL8mREpEwYOEiWRkdfe3y1Tu5flSTnPhIt59y3Wa7+8qjMOVdi0nup1uolcFDW8TrfqOYsKeUQKWXbK/wsB7KFED4A539f0YsphHAEVgMvSCnNV7vjEiy9vHCbPp3S9eupOHiwsZb5d6BSQc+ZMHMnuLWE3+82/piQ7d5/Sjg2jlZs+vEkuhrTHaWGykoyXngRy4AAPB99tAHCm5euo2+i29ibObpxDdE/f1enyJzdfySSdDiXvjeHEdqpkWL2q0qMUViZR2HiPAiN+uslH98Awh7uR5pTLsHRdmz6fjFaE0xzyUcOseTNF9DYO3DL6+/h6mveIIBr4Wlvx5phfXjAWk+SpQ1DjyTx7t6Yq5aUz87OYP/7K4hM8CEuJJ2uT46+Yg6IfZ8+hK5cgfOEm8j/7nuSbhxN6aZNDY60auFhz8J7evDplI6kF1Yy9otdPLgwhuS8v32DWr2e13YfYlBMIvGWtky31LJ9WG/ael/9MyFraij4+WeSRt5A8Z9G/2DoqpXYDxhwTXksrNR0GxXCbW/1puuoYNJPF7H47QP8+WEMCQezrxhBaTBIVh/LZOjH2+p1DprTnPU+kC+lfFcI8SzgKqV8+pIxVsBaYKWU8hNT546IiJDx8fF1lslQWcmZkTdg4epK8JLFiAY44w7F3ApAl86/1HsOcxAdHU1UVFT9J9DrYNfHEP0u2LobW/aGDb3mIaknC1jx2RHaRfnTf4ppXdOy33mXgnnzCJw3D7se3esv7zWo77mQUhI971ti1q6g29ib6XfLHbWato5tTWXHbwm0H+hPv8nmb7EKQFWxUYFkHDZW5G01+orDarTVbP9xGZFJvpxxzaDDvUM4cvT4Fc9F3O7trJ3zEW7+AUx4/nXsnC8LmmwyjmRmc/+R05zVOBBeVcpnHcPp6OP11+sxe3ZhtboYjd6K7IF6+gwbbtK85Xv3kv3WW1QnJGLXuzcpA6Poe9ttDZa3rFrH3O1JfLcjiRqdgcndAujQUsPstGzSNfa0qCrlk/Yt6ebnc9U5pMFA6bp15Hz8CdrUVGx79cTr2WfRRNSvSVZ1hZYTOzKI3Z5OaX4VNg6WtOzsScuunniGOLE6NpMvtiZyOruMCC8HNjw+oM7mrOZUIm7AYiAQOAdMklIWCCG6AjOllPcIIaYBPwIXewfvlFIeudbc9VUiAMUrV5Hx1FN4v/pqg4qW/d8okQtkHoWl90HuKehyl7HsvPXV7cg7Fp/m2JY0RtzXlhadrh1iWhFzmHNTp+I8ZTI+r7zScFmvQkPOhZSSzd9/xdGNa+gxfhJ9Jt92VUWSdCSXtd8cJ6S9OyPua4dK1Qh+kKpimH8TZB4x7kBa3VjrIdtXriZgty3FlmUktSnlpsm3/vWalJJDq5exbcEP+EW0ZtzTL6Gxq5ufoDHQ6fW8ufcw31eCXghGUc2rHcM59cdmIpN8ybTJw21qqzo3kpJaLYW/LiJ3zhwMJSU4DB2K+6xZaCIarvBzSqt4Z/0xtv2vvfuOj6pKHz/+OTOTNplJT0hISAECEggdFJCOCgoCKmBZ26rIsqJYVlx119+qq3wFd1cUsGBBLIB0G0qVJiBFegkESEJ675Mp5/fHBIMYIP2mnPfrlRczw507D4fJPHPvued5LNmkhLTC3VrGfW46XhrU67K1r6TVSt6335K1YAFlp07j1qEDQX/7G57XD6iTK/kcDknCkSyO70jh7OEs7FYHpXqI19mw+Llw05BIxg2MwNVF33SSSH2qTRKRUpJw3/1YTp6k7drvMfjW7JtYs0siANZS2PRv2PG2c53J+Pcg/LpKN7VbHayYvZfctGImvtAH78DKJw8dpaWcGX8b0mIhas0a9FUocV1TtR0L6XCwfsE8Dm5YS7cbb2H4g4/+oRRL8qlcvn7rV/xCTYx7qgcuNSxpckUlufDZbZByECYuhGtuqfJTjx36lZJlCfhbvImLzWDIpHEIYMNH8zm04Qc6XDuAkY89hYtr7Ve316W4zGye3nOE3W5mPC2l3Hk6h/6ueQy/dyzu7jVf9W/Pz2ffv/6F109bcBQW4jlwIL733I1p0KAaldlJLSjkxd0H+V66IYWgS24OKYdLKSiB3hG+TOrThtFdW+NR/r6wpqeTt2IlOUuXYEtOwa1DB/wfeQSvm0fV6kzIpaSUHEnO58vdCXyz9zwhxdDbxZ0wq8Be7DztbHDRMeWd6k+sqyRSCUtcHPHjxuNz222EvPJyjfbRLJPIBed2wMopzvUkAx6HoS9UWlIjP7OEpa/9gtnfnduf7YXB5Y+/FOmzZ5O14EPafLgA04ABdRvnJepiLKSUbP3iE35Zs5xrBgxm5NQn0ZcvhsxIKGDVf/Zh9HZj/NM9r9gbpMaKs8u7Vx5ytke+5uZq76IgP4+f3l1B9+z2nDOlkmI5zLmTe7l2/CQGTLyn3mqU1UZ+fi67F/9AarY3b3byIMXLG29LCQ/4uPFkr664u9R8QermzZsZ2L072V98Qe7iJdjS03Fp0wav0bfgNXIUbh2ir3o0cDIzm5m/HmOddMWqN9C3rJB/d+9IbHAQecVWluxJYPHuROIziwgSVh7Qn+fac/sx7tsJdjvGa6/F78EHMA0eXGdriKSUHE8t4LtDKXxzMIUzmUW4GXSM6daae6+LoFsbH6SU5KQWkxqfR/b5IgZO6lDtJNIwS4GbGLfoaPzuvZfshQvxmXAHHl27ah1S4xLRH/6yHX580VliPG69s7hfyO/HySvAgxEPxPDtvINsXRLHkHt+v8iu5NAhsj76GO87bq/3BFJXhBAMuudB3DxNbPtyIcX5eYyZ/hwlhYKv3/4VV6OBW5/oXj8JJD8FFo2H7HiYtAg6jqrRbsxe3pj6RhGXlkabvV6EiSF4942gz/gJjS6BOBwOdm7cgPmnMjpYgyEqhU2D+7I6IY23zhfyVomOjzbu4RY3eLLbNURUodtfZfQ+PgROnUrAI49QsH49OUuXkvXe+2TNfxfXqCg8+/XD2LcPxt69f+tN7nA4WHv6LB/En2eXwROpM9KjrJAZ0ZEMjuzx277NOjt/8shmvOk4qft+RhzYi95uJ8vdi7XtB5E1eBTRPWPoG+VLF7sDN0PNjkDsDkl8RiEHk/LYfjqT7acyScu3oBPQr50/kwe1ZVSXYHyMFe9NIQR+IZ74hZSfAajBGXx1JHIZ9sJC4kfdjKFVKyKXLK72oWWzPhK52MkfYc1jzm/IQ/8O/Z8A/e+/m+xcdZq9a89x/cRoug1zLlZzlJVx9vbbsecX0Pabr+u05/Pl1PVYHN60jnUfzMXsH4TOdTTofLntmV74tKpaVdtqyToNi8Y5x/muLyFqUI13JaVk+fy3Ob9jMyaTH22jhhCdE0GaezbWwWb6Dh5Spb4V9e3g3t0UrD1HREEwSZ4ZeI2NIqZrxYezw+Fg0eETfHA+k1PuZnQOO92sxYxv5ctdMdGYq1jm5HLvC1tWFgXr1lGwfgPF+/Yhy/ugxHeOZe2g4Wxq14lMTy8MdhsDslN5vKyATg4r9tw87Lm5lCUlUnb2HNakpN/KCbm2b4dp8GA8hg3nkDmMH46ls+1UJvEZzqu59DpBhL+R6CAT4X5GAs1uBJjcMLkZMOgFBp0Oi81BkcVGQamVlLxSknJKSMgu5kRqASVW56kpX6ML/dsHMLB9AMM7tSLQXLWxEEKoI5G6ojeZCJoxg+RnniH3q2X12hmsSetwo7OY47dPwYaX4cT3zrkS/3a/bXLtrW3JTili+1dx+LQyEtHZn8x587DEnSLs3fkNkkDqQ5ehN+Bq9Oebt15HOhYy/KHp9ZNAUg87j0AcNrj/awjtWeNdlZUUs+HD+Zzbuonw2O7cMu0ZjN4+7N2xDcc6B2E/uLDj5+WYbwwntmcfTZLJof17yNpwivaZoQgXI/HXF9DvpjG4uLj8bjudTsf9XTtxf1fYlZTMnGPx7NC58c9cG69sOUgXeyn9vYzcEhlK9+Cgav9bDP7++N55J9bRY9hy+iw/JSSzS7iR7uksZhmanc592zcyft23+JSXx0kDEAKd2YxLaCgeXTrjPfoW3LvEYuzZA72Pz2/7HwAM6OC86CSz0MKes9kcSc4nLq2Qk+kFbD6RgeUqRU0NOkFrHw/CfD2Y1KcNsaHexIZ50z7QVD8XdFRCHYlcgZSShPsfoPTECdpVc5K9xRyJXOzQMvj2abCXwQ0vQ5+Hf2uAVFZqY+Wb+8jPKOGWWz3Je+x+vG+9ldYzX2+Y2Kj7scjPLGHVf/dTkp+JQfc9uamJ9B5zG9ffeS96g8vVd1AV536GLyeBqwnuXQmBNbvUE5yNpH549y3yM9MJ6dWPO5+egU5XcYRttVr5ee2P+O4GX6sX58yp6Pv703vgIAz1XASzzGph/7btWH/OIjI/mAJ9MSldirhu7I0YjVW/Ssxis7Hi+GmWnU/nAC4UujpXdXtYywixW4gyCCI93Ah2d6O10QMvNxdOHD9Ol5gYCsqspJeUkllaxpniUs6W2TgvdWS4GUEIhJREWgoZ7OnGndERdA9phZQSR2Eh0mYDhwOh16Mzm+tkUlxKSaHFRmZhGUUWGzaHxGZ34GrQYXZ3wdNNj5/RFYO+7hJ9TY5EVBK5CktcHPHjb8N79OhqfeC1yCQCkJ/sbIJ0egO0HQpj5zprcwEF2aUse/0XHDlZ9En4hM7LFzXoUUhdjkVeRgmr/rsPa6mdW5/ojm+IGz99+iEH1n1Hq7bR3Dzt6dov0ju4FFb/FXwinAnEp2Z1qyzFxWxfsoj9a7/GJziEkVOfIi4l7bJjUVxcyO4fN+G1XxJk8SXTNZfMtqW0vb4rbdvXPIldyuFwcOrkMRJ2HCEk3oy3zUSmay453R30vWkYnp61e284HA72paTx3blkDhQUc84hSHNxx6q/ekIUUuJTVkqwtBHjbmBgkB83RLXBv4oNuJoqdTqrHrhFR+P/8ENkvfseXmNGN5kJYM14tXYWc9zzkXPifX4/uHk2xE7A7OfOda472UInDnR/gvbSjab4K5mVXMg3bx/AWmZn7PQeBIY7P+xGPDyViNju/PjeHD59dhrXjZ9En7G3V/+oREr46f9g8+sQOdA5ie5R/UvNpZQc27qJLZ9/TFFeLj1GjWHgXffj4uZOXEraZZ9nNJoYMm4MttE2fvlpM5Z9xUQfb4X+eDq7PY6SH2bFLyaUdjExeHtXL660tGTOHj1O/sl0As97ElDmQ3uCiA9Kpai3Bz36jfzDaaua0ul09A4NofdFi/tsdjtphcWcy8snqaCIIpuNM2fPEhYejsnFQKCHO0FGI9H+PhgbsLFTU6aORKrAYbFwZuw4pM1G26/XoPO4+nXpLfZI5GJZp2HVXyBxF8SMpdBnIomP/w3HXdPYlhmDT7CRcU/2wM1YR6d+rqIuxiI5Lpfv5h9Eb9Ax5vHuBIT98VRLUW4Omz55nxM/b8UvtA0D736Adr36Vu3STZsF1kyDg0ug+z0w+n9gqN6HmZSSxCOH2L5kEcknjxHcvgPDH5xCcPuKhXTVHYuMjFQO/7QL/elS2uQG4SKd3z/T3XLIMxdjM4PeyxWdmwGdix6EwF5qxW6xQr4N13yBT6EJP6tzPqFEZyEpIBN9tJmYfr0JCGh1pZevV5r+jjQy6kiknujc3Ah55WXO3XsfGW+/Q6tn/6Z1SE2Dfzt48HvYMQfb96+R/N1u3MJDiHzuIUynCvlu3kHWzDnAmGndcPdsmERSG6f3pbPuo6OY/d0ZM63bZVvbevr4Mnr6DGIGDWPzpwtYPesVWneMof+Euwnv0u3yySTvvLOdbdIvMOxFGPjMb3NKVSGlJOHwAXYuX0zSscOYfP24acoTdB48vNaX7gYGBjP0jrEAFBUVcOLgQXLPpkFqGZ4FrnjneGKyV35cmWcoJNejkIygArJa2whsF0Z0pz5Eu7lXur3StKgkUkXGPn3wmTiR7E8+wevmm/Ho0lnrkJoGnR45YDqpiw5it+wkvNNBdCseIGLUG4yc3IW1Hxxm1X/2Mebx7nh6N65V0hdIKdn/YwI/rzpNcJQXt0zthrvp6kmvbc8+RHTtweFN6/h5+Zcse/VFAsMj6XHzrXS87npcPS760D2zBb56EGylzkWEMWOrHF9JYQHHtm7m4PrvyUpKwOTrx7AHHyV22E0Y6uGUjKenmZ79BkC/3z9eXFxISUkxZWUWpENi9PTE6GkizKVx/r8qdUMlkWoIeuZpCjdtIuUf/yBq6RJEHZ27be7yVq+m4KedBE5/HPfYMmcxx7nXEjX0eUb/ZRLfvX+UlbP3MXpaN3yCGtcsidViZ+Onxzi1N512PYMY/kCnapUy0RsMdLthFJ0HD+fY9s3s+24NP747h40fvktUz95E9+lHWNFuzLtmOismT/ocAq9cv0lKSXZyEklHDxG3+2cSjxzEYbcT3L4DN015gmsGDK6X5HE1RqOpWldSKc2DSiLVoPfyotU/XuT840+Q9eFHBEx5VOuQGj3LmTOkvvwKHr174f/IZNDrofN4+O5v8OMLtAlezNi73uSbryws+789jJwcS1hH7SrHXiwntYgfPjhMdnIR/ca3o8eN4TUuSWFwdSV26I10GXIDySeOcXzHFk7u2ELcrh0AeHsOJMC9J74/bMMr8CRuHkZcPDyQdjtlpaVYigrJTUshNzWFtPhTlBTkA+ATHEKv0ePp2G8graLaXSkERakXKolUk9eNN5I/aiQZc+diGjyowXuANyWOsjLOP/U0OhcXQmfPrrh23icc7loMx76G72cQvPYmJvR6hG9PjOXrt35lwIT2xA4Jq5c+5FUhpeTwT+fZsfwUBlc9o6d1Izymbrr6CSEIvSaGUM4yNGMnGfmSpLBJnC82k518nrMHf8Vus1X6XFcPI74hrWnbs69zH9fE4BsSqtk4KQqoJFIjwf/8J8V79pD87Awily9Dpy4FrFT6rNlYjh0jbN48XIIvaRQkBMTc6myitHU23jvnc4dhBetCZrF1SRyJR7MZem+n+qlBdQUF2aVs/vw4CUeyCe/sx7D7OtXtXE1JLqz7J+xbiC44llZ//pBWgR3pVf7XDoedkvx8ykqKKSspQWcw4OrujqvRE3dPk0oYSqOjfYGcJsjg60vIK69giYsj8+23tQ6nUSrYuJGcRYvwve9ezMOGXn5Ddy/n6va/7sa1Q39utv2Z6wO/IvFoJotf2UXcnrRad5+rCrvVwd61Z/nipZ0kn8xl0J0dGP1Yt7pLIFLCkZUwty/sXwT9H4eHN/xhBbpOp8fTxxffkFBatW1PYHgk3kHBeJjMKoEojZI6Eqkh85Ah+EyYQNaCDzENGYKxV6+rP6mFsKamkvL353GPiSHomWeq9iS/KJi0CHF2O91++Dthjm2sL3qWHxdYObL1PNdPiCYgrO5XtzvsDk7sSmPPd2fIzyylbY9Arp8QjdmvDi8/zToNPzwPJ9dCcFe4ewm07nH15ylKE6BZEhFC+AFLgEjgLM7OhjmX2dYLOAqsklI+1lAxXk3QjBkU/fwzyc/9naiVK+u1oVJT4Sgr4/wT05FWK6H/ebP6p/oiB8Ajm/E/tpoJG2dyJDGSXafuY8mrubTtFkDPkZEERdb+W7mlxMaJnakc3JhIXkYJgeFmxkzrSHjnupn7AJwVd396A35ZAHpXuPHfcO2UP1Q5VpSmTMt383PAhot6rD8HzLjMtq8AWxossirSmzxpPfN1zt13P6kvvUTr2bNa/CmHtNdeo+TAAULfegvXyMia7USng87j0XW6ldjDK4je8BoHkzpz4NBY4g9k4h9qpFP/UCK7BuAdWPWudg6bJP7XDM78msGpfenYyhwERZgZNSWWqG4Bdfd/V5ILv3wA29+GsgLoeR8MeR7M2q3KVpT6omUSGQsMKb+9ENhMJUlECNELaAWsBaq1HL8hGHv3JnDaY2S8NQfPftfhc8cdWoekmdwVK8ldvAT/hx/C66Yba79DnR66TsC983j6Hv+ablvnEhdv4mjGSLZ9Vcy2r+LwDvIgKMKLgDATJl83PMyu6A06HA5JWbGNgpxS8tJLSD+XT/o5yTHHIVw9DHToG0znga0JivCqfZwXFKbDznmwe4EzeXQYCSP+HwSpK/iU5kuz2llCiFwppU/5bQHkXLh/0TY6YCPwJ2AE0Ptyp7OEEJOByQCBgYG9li5dWn/BX8rhwGfOHFxPx5P13AzsoaHYHW8AoNc923BxVKKwsBCTqf4XgBkSEvB7YxZl7dqR+/g053qQeuCVd4w2iasxpCaQYOnOWTmATGsUpZbLz2HoDODuCwazFd8IVzwDQdRVrwXpwCf3MK2T1xKQuQsh7WQEDiAh/HYKzW3r5jXqQUO9L5oCNRYVhg5tZD3WhRDrgeBK/uoFYOHFSUMIkSOl/N0qMyHEY4BRSvmGEOIBrpBELlbXBRirwpaRQfz429B7exP11VL2H38YaBkFGG3Z2Zy9YwJSSqKWL8Pg51evrwc4W8UeXAz7P4OsU1iEL8Wtb6QkZBj20L7oPH1xdTdg8nXD3eSCEKLuxkJKOL8Pjq5y/uQmgLsPdL/b2UPFv/Ev+lNFByuosajQ6AowSilHXO7vhBBpQogQKWWKECIESK9ks37AQCHEVMAEuAohCqWUz9VTyDVmCAwkdNYbJPz5IVJe/Af8SQLNf37EYbGQ9NfHsGVlEfHZooZJIABeIXD9kzBgOiTuxu3oatyOf43vniWwBwjsBJHXOyfqQ7qBT2TNX8tug6xTzmrEZ7bA2a1QmAY6F+c6l6EvOmtduaiCgkrLo+WcyBrgfmBm+Z+rL91ASnnPhdsXHYk0ugRygWe/fgROn07Gf/+LdXgwLiEhV39SEyalJOWFFynZv5/Q//0Xj9jYhg9CCAi/1vlz078h9RCcWgdnt8OvXzgnuAFcPOnpHgpZ3cEc7Ox7YgxwfvAb3J37sZY4f0pyIP+8s8FWZhxkHHcWRgQwtXL2+Gg/HDqOqlGfD0VpTrRMIjOBpUKIh4BzwEQAIURvYIqU8mENY6sx/8mPYDlxnMzEqvUdacoy584j/5tvCJw+Ha+RI7UOx5kIQro6fwY+DXarM6mkHYa0o9hPbHMeTRSkgt1y5X3pXZ2JxjfSeYoqOBZa94SA6GqVZ1eU5k6zJCKlzAKGV/L4HuAPCURK+QnwSb0HVktCCEJefZXkd7fj2HYOS+QZ3NpGaR1WnctbvZrMd97Be9w4/B+drHU4ldO7QGhP5w9wwKP83LeUzqONokxnMrFZwGEHVyO4GMHNCzwDVLJQlCpQq57qgc5opPukFZy5YwKJ26cQ+eWXDTdX0AAKNm4i+fkXMF53HSEv/6vprY0RAox+zh9FUWpF1c6qJy6hoYTNnYstNY3ER6fgKCrSOqQ6UbR7N+effBL3mBjC3nkHoYpPKkqLppJIPTL27EHof96k9MgRkp58Emm1ah1SrZQcOULSX6biEhZGm/ffU2VeFEVRSaS+mYcPJ/illyjaspXk519A2u1ah1QjJUeOkPjnh9B7exP+4QIMvuqqJEVR1JxIg/CdNBF7TjYZ/3sLoROEvPZaRYOmJqDkwAESHn4EvdlM+KcL/9gbRFGUFkslkQYSMGUK0uEgc46z/0hTSSTFe/aQOPlR9AEBRHzyMS6tW2sdkqIojYhKIg0ocOpUADLnvI202giZ+Xqj7oqYv3Ytyc/OwCU0lPBPPsallapCqyjK76kk0sACp05F5+pK+uw3sWVlEfbO2+jNdd9sqTaklGR/9DHps2bh0aMHYfPmqjkQRVEqpSbWNeD/8MO0/r+ZFO/dy7l7/kRZ0nmtQ/qNw2Ih9Z8vkT5rFuaRIwn/5GOVQBRFuSyVRDTiPXYs4e+/hzUlhbO3307h1q1ah0RZYiLn7rqb3K++wn/yZGdnQrc66jGuKEqzpJKIhjz79ydq2VcYgoNJnPwoGXPmaLKWREpJ3po1nLntdsqSkgibN4+gp55E6NTbQ1GUK1OfEhpzjYggcvGXeI8dS+a8+ZyZOInSY8ca7PWtaekkTf0ryc/OwK1dO6JWLMc8bGiDvb6iKE2bSiKNgM7Dg9YzXyfsnbexZWRwZsJE0l6fiT03t95e01FSQua77xI/ahRFO3YQ9NwMIj7/DNewsHp7TUVRmh91dVYjYh4xAo9evUh/802yP/2U3JUrCZj8CD6TJtXZFVyO4mJyV64k64MF2FJTMd8wgqBnnsE1IqJO9q8oSsuikkgjY/D1pfWrr+J3732kvzmb9Nlvkjn/Xbxvvw3vsWNxj4mpUdXc0hMnyFu9hrzly7Hn5eHRvTuhs97A2KdPPfwrFEVpKVQSaaTcO3Yg/P33KTl8hOyFC8n54ktyPl2Ea0QEngMGYOzdC7dOnXANDf1DJV1ps1GWkIjl5EnMq1Zx+o1ZlMXHg8GAachg/B98EI+ePZteCXdFURodzZKIEMIPWAJEAmeBiVLKnEq2CwcWAG0ACdwspTzbYIFqzKNLZ0JnvUGr5/9Owfr1FPzwI7mrVpHzxRfODXQ69L6+zi6Keh2O/ALs+flQXujRw9UVl2uvxfeeu/EaNapZ9TVRFEV7Wh6JPAdskFLOFEI8V35/RiXbfQr8W0q5TghhAhwNGWRjYfD1xXfCBHwnTEBarZQeP47l1GmsiQnYMjJxWErB7kBnNqH39sE1MhK39u3YlZZGzIgRWoevKEozpWUSGQsMKb+9ENjMJUlECBEDGKSU6wCklIUNGF+jJVxc8IiNxSM29uobZ2XVf0CKorRYQkqpzQsLkSul9Cm/LYCcC/cv2mYczn7rZUAUsB54Tkr5h6YcQojJwGSAwMDAXkuXLq3P8JuMwsJCTCaT1mE0CmosKqixqKDGosLQoUP3Sil7V+c59XokIoRYD1TWfOKFi+9IKaUQorJsZgAGAj2ABJxzKA8AH166oZTyfeB9gI4dO8ohQ4bUJvRmY/PmzaixcFJjUUGNRQU1FrVTr0lESnnZk/FCiDQhRIiUMkUIEQKkV7JZEvCrlDK+/DmrgOuoJIkoiqIoDU/LFetrgPvLb98PrK5km18AHyFEYPn9YcDRBohNURRFqQItk8hM4AYhRBwwovw+QojeQogFAOVzH88AG4QQhwABfKBRvIqiKMolNLs6S0qZBQyv5PE9OCfTL9xfB3RtwNAURVGUKlIFGBVFUZQaU0lEURRFqTHN1onUJyFEAXBC6zgaiQAgU+sgGgk1FhXUWFRQY1Gho5SyWiXDm2sBxhPVXTDTXAkh9qixcFJjUUGNRQU1FhWEEHuq+xx1OktRFEWpMZVEFEVRlBprrknkfa0DaETUWFRQY1FBjUUFNRYVqj0WzXJiXVEURWkYzfVIRFEURWkAKokoiqIoNdbskogQYqQQ4oQQ4lR5x8QWSQjRRgixSQhxVAhxRAjxhNYxaU0IoRdC7BdCfKN1LFoSQvgIIZYJIY4LIY4JIfppHZNWhBBPlv9+HBZCfCmEcNc6poYihPhICJEuhDh80WN+Qoh1Qoi48j99r7afZpVEhBB6YC4wCogB7irvjtgS2YCnpZQxOMvn/7UFj8UFTwDHtA6iEXgLWCulvAboRgsdEyFEKPA40FtK2QXQA3dqG1WD+gQYecljF9qWRwMbyu9fUbNKIkBf4JSUMl5KWQYsxtmGt8WRUqZIKfeV3y7A+UERqm1U2hFChAG3AAu0jkVLQghvYBDlPXmklGVSylxNg9KWAfAQQhgAI5CscTwNRkq5Bci+5OGxONuVU/7nuKvtp7klkVAg8aL7SbTgD84LhBCROLtD7tI4FC39D3gWcGgch9aigAzg4/JTewuEEJ5aB6UFKeV5YDbOrqkpQJ6U8kdto9JcKyllSvntVKDV1Z7Q3JKIcgkhhAlYDkyXUuZrHY8WhBCjgXQp5V6tY2kEDEBPYL6UsgdQRBVOWTRH5ef7x+JMrK0BTyHEn7SNqvGQzvUfV10D0tySyHmgzUX3w8ofa5GEEC44E8jnUsoVWsejoQHArUKIszhPcQ4TQnymbUiaSQKSpJQXjkqX4UwqLdEI4IyUMkNKaQVWAP01jklraeXtyrlC2/LfaW5J5BcgWggRJYRwxTlJtkbjmDQhhBA4z3sfk1L+R+t4tCSl/LuUMkxKGYnzPbFRStkiv3FKKVOBRCFEx/KHhtNyW04nANcJIYzlvy/DaaEXGVykKm3Lf6dZVfGVUtqEEI8BP+C80uIjKeURjcPSygDgXuCQEOLX8seel1J+p11ISiMxDfi8/ItWPPCgxvFoQkq5SwixDNiH82rG/bSgEihCiC+BIUCAECIJeAlnm/KlQoiHgHPAxKvuR5U9URRFUWqquZ3OUhRFURqQSiKKoihKjakkoiiKotSYSiKKoihKjakkoiiKotSYSiKK0kCEEJEXV0xVlOZAJRFFURSlxlQSUZSGZRBCfF7ex2OZEMKodUCKUhsqiShKw+oIzJNSdgLygakax6MotaKSiKI0rEQp5fby258B12sZjKLUlkoiitKwLq0zpOoOKU2aSiKK0rDCL+ppfjewTctgFKW2VBJRlIZ1Ame/+2OALzBf43gUpVZUFV9FURSlxtSRiKIoilJjKokoiqIoNaaSiKIoilJjKokoiqIoNaaSiKIoilJjKokoiqIoNaaSiKIoilJj/x9mjE4JKDYkywAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
@@ -109,20 +108,35 @@
"needs_background": "light"
},
"output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.7651976865579666\n"
+ ]
}
],
"source": [
"\n",
- "for n in range (5):\n",
- " x = np.linspace(0,15,1000)\n",
+ "for n in range (-4,4):\n",
+ " x = np.linspace(0,11,1000)\n",
" y = sc.jv(n,x)\n",
" plt.plot(x, y, '-')\n",
- "plt.show()"
+ "plt.plot([1,1],[sc.jv(0,1),sc.jv(-1,1)],)\n",
+ "plt.xlim(0,10)\n",
+ "plt.grid(True)\n",
+ "plt.ylabel('Bessel J_n(b)')\n",
+ "plt.xlabel('b')\n",
+ "plt.plot(x, y)\n",
+ "plt.show()\n",
+ "\n",
+ "print(sc.jv(0,1))"
]
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 85,
"metadata": {},
"outputs": [
{
@@ -163,6 +177,32 @@
"\n",
"plt.show()"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABqdUlEQVR4nO29abQtZ3ke+Lx7Hs987nx179WAhACZ4SLHxrHbTBZxB+GEJJAVW4ntxUrHpDvtdhoI3babhF62O73ISi93EmJjkzjL4OA4yCs4GDAENxjQFUgCSUi6kq505zOfs8eqPXz9o+qrXWef2lXfVLW3dOpZ6657zp5O7dq1v/d7n+d9n5cYY0iRIkWKFIcXmWkfQIoUKVKkmC7SQJAiRYoUhxxpIEiRIkWKQ440EKRIkSLFIUcaCFKkSJHikCM37QNQwcrKCjt79uy0DyNFihQpXlJ4+OGHNxhjq+O3vyQDwdmzZ3HhwoVpH0aKFClSvKRARC8E3Z5SQylSpEhxyJEGghQpUqQ45EgDQYoUKVIccqSBIEWKFCkOOdJAkCJFihSHHEYCARF9gojWiOh7E+4nIvqXRHSRiB4jotf77nuAiJ5x/z1g4nhSpEiRIoU4TGUEvwvgvpD73wHgDvff+wD8KwAgoiUAvwLgBwHcC+BXiGjR0DGlSJEiRQoBGAkEjLGvAtgKecj9AP4dc/ANAAtEdBzATwD4AmNsizG2DeALCA8oxnF1p4P//J2riNuO+/s39vDJr19Cxx7E+ndMYThk+MzDV/Dk9b1YXp8xhs8+chWXt9rGX3u9Yb0kzjVjDP/5O1cTuf78ePTyDr781JrR1+z2BvjUt17EXrdn9HVlwBjD5x+/gd/92vPo9mbrs+ef9RPX4vk+6SKphrKTAC77fr/i3jbp9gMgovfBySZwyy23GDuwD/7hY/jzZzaQz2bwk/ccN/a6fjS6Pbz349/AdruHp2828NGfek0sf8ckPvXQZfyTP/ou6sUcvvnht6BSMHupfO3iJv6nTz2C24/U8MVf/DGjr/2//MdH8dWn13Fjr4sP3HeX0dc2id/75ov43/+zw6Y2uj389A+djf1vWv0B7v/NrwEAvvbBN+PkQtnI6/7O1y7h1//r9/H1ZzfxL9/7OiOvKYt/++fP4f/83PcBAH/+zAZ+64HzIKKpHMs4/vyZDfyjTz+CxUoeD/9vb0MmMxvHxfGSEYsZYx9njJ1njJ1fXT3QIa36mvjOizsAgK8Y3iH58fnHb2K73cNtq1X8p29fRdvux/a3TOEPv30FANCw+vjq0+vGX/9bl5wE8uJaE03L3PnY6/bwtYsbAID/8th1Y69rGlZ/gI994Wn88G3LOH9mEf/qK8+iNxjG/ne//cKO9zM/TybAM4yvPrOeaHbDsdG08M//9Gm87e6j+Cd/5S586ftr+PzjNxM/jkng36Htdg/fv9GY8tEcRFKB4CqA077fT7m3Tbo9Edzcs7xFKM4P58vfX8NqvYh/ev+r0ekN8JWnzC+sJtHtDfDYlR387JvOoZDL4OEXto3/jYtrDd/PTWOv+8S1PQyGDD906zJe3Gpjp20be22T+OITa9hq2fj7P3YbfvZHzuHabhcPXQpjV83AT/WZov0YY3ji2h7yWcJOu4cr2x0jryuDTz90GXZ/iA/cdxd+9k3ncGa5gk987fnEj2MSHr2yg+VqAQDw+LXdKR/NQSQVCB4E8DNu9dBfArDLGLsO4PMA3k5Ei65I/Hb3tkTw9E1nMbrzaB2XNlux/Z1vPr+Jv3z7Cu49t4RyPotvPR//F14Hj17eQW/A8Kbbl3HPyflYAsHTN5u4dbUKALi0Ye7cP+MGlZ96ncMwPj6jnOwXn7yJpWoBb7p9BT/6ilXkMoSvPm1uhz4Jz200MV/O41Un5vDcupnzvt3uoWn18WOvOAIAseg+UfjjR6/hjWcXcfuRGnLZDP7WG0/jW89v4cXN5I9lHIMhw3ev7uIn7zmOXIZiXWtUYap89PcB/AWAO4noChH9HBH9fSL6++5DPgfgOQAXAfxbAP8AABhjWwD+KYCH3H8fcW9LBM+uO4vGm25fQaPbR8sgRcGx1uhio2nj1Sfnkctm8AOn41lYTeJ77uL5A6cX8OqT83j6ZtNouj8YMlzaaOFHbl8BANzc6xp77WduNlAv5vCWVzqL0iyKc8Mhw1efXseP3rGCbIZQK+bw+jOL+Itn4w8EN3a7OLFQxunFCq7tmNm584X/h29bBgC8mHAguLzVxvdvNPD2u495t73j1Y7e95Wn46N8RbHW6KLbG+LOY3WcXqrg0sb0g9M4TFUNvZcxdpwxlmeMnWKM/TZj7F8zxv61ez9jjP0CY+w2xthrGGMXfM/9BGPsdvff75g4HlHc3LOQzxJefXIOAHDD4ILEwReiu084f+P1tyziiet7sPqzVdXgx3PrTSxU8liuFnBmuYKm1cdmyxzFstWy0R8y3LZaQ7WQxc09y9hrX1xr4rYjNSzXipgv5/HC1uztvp7fbGGzZeOHb1vxbnvd6QU8eb0Bux+vTnB9t4vj8yUcmSsaC8CcCrr33BJyGUo8EHzTzbB/9BUj7fDcShVnliszQcPy83NyoYyzyxU8bzADNoWXjFgcBzabFparRRyfdyonbu6aDwRPudrDK485geDOY3V3Rzx7uwKOZ9ebuHWlCiLC2WWHvnnBYDq70XQW/pVaEUfnSrjZMHfer+92cWrR+TxPL5WnwldH4RG3QOG1tyx4t73m1DzswdCjK+PCjd0ujs2XcHSuhL1u30iZ5eVt51o+s1zBycVy4oHg4Re2MFfK4Y4jtX23//idR/D1Zzemvum66l6DpxbLOLNcnQp1FoVDHQg2mhZW6gUcmy8BcBYR07i83cZCJY/5Sh4AcLt7sZoUSE3jufUWblt1jvPMcgUAjAauUSAoYLVexJqhnSljzFno5pzP89RCZTYDweUdVAtZ7xwDwKtPzAOIV0js9gbYbNk4PlfCar0IwOm50MWN3S5qxRzqpTyOz5ewZjDDE8HDL2zj9WcWD5Rk/qVbl9HtDadOD151KbgTC2Ws1otoWGYCsEkc8kBgY6VW9BaOOKihK9sdnF6seL/ftloDEfDM2uyVkAFAxx5grWHh7IqTCZxarIDILO/rBYK6mxEYWjj2On10egMvsJ9aLOPKdnsq5YxhePTKDu45tYCsb+E6vVRBPkt4LkbagC/Qx+ZLOOIGgjUD2dhWy8ZyzamIWakVvc83Cex2enj6ZhNvuOWgIcHr3IyLl4hPC1e2O1iqFlAp5LBaMxeATeKQBwILK7UiyoUsKoUstg3y4ByXt9oeVQEApXwWpxbLM5sRXN91di/H3cW0kMtguVo0smBwbDSc87xaL2K1XjT2peCBnAeCk4tldHtDo/qGLvqDIb5/vYF7Ts3vuz2bIZxZruJ5Q5U8QdhyS2k5JQfASBDeatlYqk4nEPAS2HtOLxy47+hcCScXyvjO5Z3EjicI6w3LC7wrdec8JXmORHBoAwFjDJtN20uRF8p5bLfNtsczxnBlu7MvEADA7au1GQ4EzmLKdRMAODpXNCrobjQtFHIZ1Is5LJTz6PQGRkRSLxC4ixxf7GZp93Vpsw174FSQjOPcSjVWIZH3VMxX8lhxd6abBhakzZbt1cgvVwvY6/YT4+W5pnJXwPkEHB3m21Ou0ttsWd46s1qbvWsSOMSBoGH1YQ+G3gW8UClgt2N257jRtGH1hzjlo4YA4NbVGi5ttmaOsgDglRSeWCh5tzn0jbmMgC8cRIQFVzvZ7egHYa41HKk7x84Xu1naffGF6xVHDy5ct65W8cJmG4NhPNcFP8fz5Tzmy+bO+1bL8jKCZfecbyWUhX3/RgPz5by34x7HPSfncXWng13DmzwZbDQtb53hGcH6DF2TwCEOBHvuF2Cu5HwhFip57Bi+WK641RTjGcHpGaQsOHhGwOkVwHxGsNfpeQvRnLcg6Z+LbXfHu1h1XnOlNntp+NM3GyDCPqGY49aVKuzB0KsyMQ1+fS+U8yjkMijns9qBgDHmUkMu9eGe881mMtf20zcauPNofaKnEM+8vn9jeoLxZtP2AuRyNdUIZgqNrtM8Vi85ZmoLlby3kJiCVz88Fgh4hjCLFS3XdztYqRVQzGW9247OlbDZsox54ex1e14AMLkz3W73kHMbtABHjAZGmsQs4JmbTdyyVEG5kD1wHy/VfT6mzlMeCOZ9515389Ow+ugN2Iga4mJoAsGXMYanbjYCaTaOVx53yran5e/Ttvto2wMvOy3kMpgr5YxvOnWRBgIvIygYWYz84HTK8bmxQLDk/M4zhlnCtZ3uPn0AcKgWxszt8nY7fV8mVnBv0z/3O20bC5WCtzusF3Mo5DIzlYY/s9bAHUeCFy6+YbhuqON3HDsdG/ViDrms87VfqOS1zzsvsFh0AwGniJLweFprWGh0+15JdhCO1ItYqOSnlhHw7wyvqgIcjWbWPLAOcSBwvgBeRuDujkzy9htNG4VsBnPl/RbO3Pp3VjOC4z5aCACWXKrFFO+71+l554TvTk3skLZbPSy6mgMAEBFWa0VszEgaPhwyvLDZ9jyWxnF0rgQi4FoM/SwAsNvuef0sgEPL7WgGgr2Os6Gac79H/H9+e5zgJc281yUIRIS7jtWnlhFwWpJnTACwUDa/6dTFoQ0EfIAGpygWKnn0h8yoJfJ6w8JyrXCAv6yX8lio5GcyI7i5Z+3TB4DRrt3ULmav2xtlBEapIRuLlcK+21bqxZnJCG42urD6Q9yyFLxw5bMZHKkXY8wIep44DzhBeE/zvDcsvqHar/novq4IXnAN5SadT45XHK3jGcN+WaLgG5xFXyCYL+tnYqZxaAPBuEZgcmfKsdEclY2N49RiOTZRUBV2f4jdTs/jMzl4ur9lIBAM3WB7UCw2QQ3tX+gAYLVWwEZCwmUUeHc21wKCcHy+HEuHO+BSZ2WzC9L49yifzaBS0BehRfDiVhsZwoGqvHHculJF0+pP5TrwV2pxzFf0MzHTSAOBewHXis4H1TI4NGa9YR1YVDlOLsyeDw6nfvx8JgBvcTXRZ9Ho9sHYKABw983YMoKEG5zC8KJrgBdGZRyfL+HabnwZgZ8aWjAhFnc5NeSjnEr5REZWvrjZwvH5Mgq58GXsnFuhNQ2zt8BAYCATM41DGwj2uj0UchmvOqbmBgSTVtRO53Ih8L5jhmvzTWDEZ+4PXnwXaaLz2qPkSiPdpFrMom3pNSAxxpyMoLo/I1ipFbHVsjGMqTZfBpc228hnCSdCxkMeny/j+k43Fhpjt93btyDNuc18OtVg41qb87q5xDSCKFoIcDICAHh+I/kmzqBAEIceqYtDGwga3f6+xahWzHq3m8BwyLDZsidSQ0fnHffHWRqwzvsaxoMX7wI2UV7Lvxhzvi9GtZhDUzMTa9sD2IPhgYxgsVrAYMiMfa46eGGzhdOLlX0eQ+M4sVBCpzcwTq0wxhyNYOy8A3qbH35ea77vUlIc+ItbndDsiuPEQhmFbCZWH6dJ2O30UC1kkc+Oltr5sqNHtmfou3+oA0Hdl8561JDmzpRju21jMGQTqaGjde71MjtZwabPHnocC9W8kYyAi/H1oj8I57QzMa+ZbEwj4AvfjuGucRW8sNnGLRELFy/dNa0TNK0+BkO2b2dadXsZWhoLUtPqo5TP7FvokqCGWlYfG00LpwUyAsfHqRKrj9Mk7IxlYcCIap0lncDUhLL7iOgpIrpIRB8MuP9jRPSI++9pItrx3Tfw3fegieMRwV6nty+drboZQdMy8+FwYWpiRjA3e4HAo4YC6KylSsGIRtB2d/5VXyCoFnLa1JDXNVsJ1jem3cDDmFM6GiYUA8CRuXg6Tz0u33hG0Nu3oeJ/I+5A4J+BIIK4fZwmYbfT23fOgVGFVSMBHUUUueiHhIOIsgB+E8DbAFwB8BARPcgYe4I/hjH2P/se/w8BvM73Eh3G2Gt1j0MWzgU8evt1NyNoGsoINkJ214Bj2wDEY32tis2mjUIu43Xm+rFQKRihhnjGxQMv//najt558Nsn+OGVvk5598Xn+kbtYOPyR+KLfXUsEwOgVTK91+3v+x4BXAyNl4q7ssWHvQgGgtUqvvLUOgZDFkrNmcZe52Alm4kAbBomMoJ7AVxkjD3HGLMBfArA/SGPfy+A3zfwd7XQ6Pa9xR/wZQSGuGRegbNUDRaLj7q1+kkP8QjDRtPGSvVg3wPgvA8zgcA5v5WCPxvLaVdrNboHtQfAnxFMlxriZn7jvlPj4PqM6YyAL/a1fQHYjEZwICMo5bDX7cUq0F93N1AnxnpeJuHcsuPjZGpOsyh2OwepIR6AZ0G34jARCE4CuOz7/Yp72wEQ0RkA5wD8me/mEhFdIKJvENG7Jv0RInqf+7gL6+v6c0gbYzuZXDaDUj5jrHyU70DHdwMc9WIO5Xx2tjKCluX584xjoZLHdkt/V8356H3UkAGNoGHtLwfmWIihP0QFfErVyZCKIcBZJEr5TAwZgXveCwfpUF1qaG7snM+V82AM2gUAYbix20EuQ563URR4JpZ0yXZYIDClR5pA0mLxewB8hjHmPwNnGGPnAfxtAP+CiG4LeiJj7OOMsfOMsfOrq6tBD5FCELdZK+aMRekdNyPwN/D4QUSuq+fsBAK/Xe44FisFNK2+tvFc28sIfDvTQlb7S+H1hRT3f6ZxNAqq4JpvXGEYiAgrNXPDejiaodSQ+rlvdPsHqMQkuouv73ZxpF4Upnl4JpZ0N/9Oxz4YCEr8vM+ORmAiEFwFcNr3+yn3tiC8B2O0EGPsqvv/cwC+gv36QSwYDhla9mBfmgyYqV7h2HHLxsKaXY7OJT/fNQx+u9xx8J22bqBs2n0UcvurTKrFHDq9gZYPP6f0qmOfaS7rlL5Ou2ro2k4HpXzmQFVTEFbrReNdsC2PGtqfiQEjAV8FzQCNgDeXxVlCenOve8AKJQzH58sgSjYjsPoDdHvDAwUMtYJ+ADYNE4HgIQB3ENE5IirAWewPVP8Q0V0AFgH8he+2RSIquj+vAHgTgCfGn2saXXd6Urmw/wKuFnPGvIa2XSfMMBydK80MNcQntgVVDAGjL7dupUPbGhzYQXqpss6CZPVQzmc9Z00/5iv5qQ4mARxX1xML5Ym++X7E0Q3dmlCtBeiJxYFVQwkYz13fPeiSG4ZCLoNjc6VEA0FQzwxgXo80Ae1AwBjrA3g/gM8DeBLAHzDGHieijxDRO30PfQ+AT7H97XSvBHCBiB4F8GUAv+avNooLbftg5QrgLEimAsFugO/NODg1NAsdhnxi20o13oygZff30UKAb2eqSVGM70w54pg1IYurO51IfYAjTmrIf45K+QwypK4RDNzMevy8m8g0wsAYw41duYwAcOihJKmhcWdWjlzWGQpk0s5GF9rlowDAGPscgM+N3fbLY7//asDzvg7gNSaOQQa8m7ec378g1Us57TJGjnGnxyAcqZdg9YfY6/T3ecBMA1vN8ConvuvTrQ9vWf19giUw0gu0dqZWf193qx8L5cLUy0ev7XTw43ceEXrsar2IrbaN/mAYmOGooNntI5shFH1UJRG5Qr1aAG4G0E3AKBCYdPL1Y6/rDHvhs6lFcWqxgm89vxXLMQUhiI7jqBrUI03gUHYW80hciZsamiAUc/D5pRut6esEQZ4ofvD5AbrpftseBGZigF71SrPb39et7Me0qSGrP8Baw4oUijlWawUwZnburxOAsweoKZ0suBNQAcZfE0BsFgq8wEIlI7ix10Xf0KS9KATRcRz1kjk90gQOZSDgF+g4RWFSLBahhrzmoRkYnOIFggnHbEojaFn9A1+MqgGNoNHthWQE06WGbu46n++JBbGFi3vXm+jk5mgGaDOAXunuaEO1/3tUMVCWGgZuvzE+QCkKpxbLGAxZbDbf4wgq2eWoFrOxZUwqOJSBwKOGAgJBw8CH4xl8iQaCGfDLj8oITGkEbXsQGIABvbrqptU/UDrKMVfOu/bX09FiRHsIOLhxnsngFRSAAb0seBLFakKEDsMN16b7qAI1BIzsKeLGyE7l4Hxqk3qkCRzKQOCJxQHUkN0fatfKN1yDr3EnzHHwCp3NlwA1ZKobshmwIPHAoEsNTcoI6qUc+kOGbi8ZSmAcoj0EHN78B5PUkB0cCGrFrDKF055ADWUzhHJe/XWjcMPNsGQDAQ/EpnTAKAT1bnDUirmXV9XQSxE8Uo9nBHxB0r2AOR89aVHlWKoUQDRj1NCEY85lM6gWstpicdseHAjAJjxvGtbBxiYOU0K3KnggEOW0l2KhhoLPT6WgTw2Nf4+AeKmPjaaFhUo+ciDNOPj5T6qJs20FB0rApaFnqGrokAaCYI2AX9DdXjxOmOPIZTNYqhSwYXDnp4q9jjOop5Q/+KXmqJfyRjSCSjG4fFR1QeLjL8fL9DjmPFprSoFgt4uVWiH03PoRFzUUFAiMiMWBHHh8Yqgz8EnMWsKPUj6LhUoe12OaADcOfl7HqTPApeTSjGC6mBQITGUEQVO4JmG5VpiZjCAqg6mX9Ere+oMhrP7Q66zk4F8UVeqm3RuAMUykhua8jGA6X7ybe10pGqOUz6KUzxg1ymtZgwkaQVZ5wZ70PQKc4BCXl07Y5L8oHJsr4UZCYnHb7qOczwbaYNRKqUYwdXQmlI/yBUm3EWY0vi+6N2BWZurudg6ah42j7rpKqoIbzlXGFqSMW9/eUczE+M6qNkEsrnudrtPJCGQDAeBkBSapoUa3d8BSBXCueeUAHEENxZURhFmhROHYfHLd/C07OPgCjs2EZUCPNIVDGQja9gC5DB3gGLnlhC41xHeekzpd/ViuFb0RkdPEXjc6I+DVN6poTyg3BJzFRPW888A7MSMo89LXaWUEllogMHRdMMbc/o2D56ecz6LTGyhVVE0qugAc6iOuzuL1poVVxUBwfD65jMCp1AqmA2dtJsGhDQRBu5hRRmDGCXNOKCN4KVFDuoFgMpVQzmeV5zfzTCNoxwuYK31VQW8wxGbL8gYRiWKxaq73oTdg6A9Z4HkvubdZffmdadvqg8ixqhiHyeZMP7q9ARrdvgY1VMZG04bVj9/wrWUdLIzg4J+FahZsGoc0EBz0uwF8H452IAjfofqxUiuiZQ+mPsReXCNQpyv4jj9INOU7UxV4FEV+9qqG1hsWGJMvdVyoFIxZZ3dCznslr37Nt+0BKvmD3cqAGWvxIPDsWZ0acp6XhOtvWEZQNqRHmsIhDQTBkbpsKEo3uk47v4hXOt/ZTFsn2A0Ysj0O3SaYsEBQ1AgE/HWDsjzAWZQyNJ2qIV6qKJ0RGDTK4+dnXBMD9K75dm9wwMGXw8TUuSBsRoyAjcIx17E0CZ2gPaF3AxixD9PeAHIcykDQiZ0aOmjNOwlxzaiVwXDI0LD6kYGgWsih2xsqe7VwUTKonK6czyhrBO0JHa4cRKRNa6mCB4IjdXmNYLfT05rRwOGdn8LBrzsPykqBwArOrAFeNWS+m3s0C1yNGuK2FEnoBM0Ag0UOHpTTjGCKCLJCBsxRQ3udyZbI4+CBYHOKNhOO/cJB3/Rx8DS3rblzD+KUywV1jaAToj1w6Ja+quKmS0HIGqQtVgoYMjOVTpOsIPy3KVNDkwJBMYchUy8JnoSNhvM9Uc0IOEWXRCAIMljkMMU+mMKhDARORnBwodbZHfnRsHrCgWB5BqihqK5iDt1KhzCuWkcjCKOcOOZK+amUj97c6yKXISxFNBeOY7Hq2kwYoIdCz7tGE2VYIODCvWl6iDv1qgaCuVIOlUI2EeO5ptUPpOMAfwB+GVUNEdF9RPQUEV0kog8G3P93iWidiB5x//28774HiOgZ998DJo4nCo5GEMBT55xBHfpicV+aGppmCWlSgSCMGippicWzmxHc2HNm62YEZ+tyLFTM2UyMMqbg8lFAkRoK4cD53zJdHrnRsFEtZCfqQVEgIhybL8VuM8FLdifZnphqXjUF7cE0RJQF8JsA3gbgCoCHiOjBgEljn2aMvX/suUsAfgXAeQAMwMPuc7d1jysMbXsQuBgRESqFnJHy0VuWKkKPLeWzqBVzxidSyUA4EHjmcHo792IQNZTPoqtKDQlkBPVSPvHB5YBTnXJEsmIIGNlMmOgu5udnUgAG1KmhSTvzuIbTbDQt5YohjmNzpdhtJqz+EIMhO2CnwjFrgcBERnAvgIuMsecYYzaATwG4X/C5PwHgC4yxLXfx/wKA+wwcUyi6vYFXPz0OZ2eq31kcxbf7sVQtTNUvP2oWAYd+RhBOUahmBB17gGIuE1qlNVeelkbQlZ6kBTgzFAAzA+C9QBAgFmtVDYVSQ/GIoTr2EhzH5kqedhMXwqaTAeZ8zUzBRCA4CeCy7/cr7m3j+OtE9BgRfYaITks+1yi6vQFKucmRWlssDpmfG4SlasHoNCpZiGcEfICMZpmnYY2g0wuuAvNjrpSfSh+BYy8hv4PlGwkTugbPtCZpM4CGWDyJ+uAD2g1nBJtNW1kf4FidK2K9acU6n4JnzVEawcspIxDBHwM4yxi7B86u/5OyL0BE7yOiC0R0YX19Xetguv1hYOUKAG0fdas/gN0fCnUVc7xkAoHm5Klub4hshpAPmMNbcj1vhgrlkpOoPj/qrsmXyuuromMPsNftK1FDnj+SgSymPcFbC9DTCDp232tIG4eJ8aNB2GhaWKlrBoJaEXZ/GKsJIRfJJ3W757IZFLKZl1UguArgtO/3U+5tHhhjm4wxnov9FoA3iD7X9xofZ4ydZ4ydX11dVT7Y3sDh7iYtHDoUBTCyMZDNCEwOIZHFbqeHfJYiF1PduQGd3gClCR7yfEevYnUgmhEwBjQTrNIYNZPJB4J8NoNKIWumfDSsf0ORGmKMhZ53TiO2DXYXD4YMW20bK1U9amjVDSRx6nI8AE7KCABeMv3yqRp6CMAdRHSOiAoA3gPgQf8DiOi479d3AnjS/fnzAN5ORItEtAjg7e5tsSGq1FCXGlINBJste2qjFLm9RJBVgB8Vj/dV1wgmLRx6O1OxjABI1m9ItauYwxSdxc9pMSAI89tkhXp7MMSQTf4e8cICk9TQTtsGY6PBParggWCtEV/lEKdPJ1VVAc5aMysZgXbVEGOsT0Tvh7OAZwF8gjH2OBF9BMAFxtiDAP5HInongD6ALQB/133uFhH9UzjBBAA+whjb0j2mMPASxjBqSMfjxbOgnmCJHITFSgFWf4hObxC6g4gLex0xcZvTAE3lqqEhihO0mdFMArVAEFY6Coz8hpzPR2xkpC64jYGKWAw4AvdeR38h7fYGKOUzgSWsRKSkz4y+R5M2VHqbhiDwUtpFzUBwJMGMYFJDGaCni5mGkVWHMfY5AJ8bu+2XfT9/CMCHJjz3EwA+YeI4RDAqYZxMDeko+SoZwbJ7YW82bVSWkg8EIoZzgDM3oFLIoq1RNTQpIyhpVK90eoPI883vT3IqFF9oZO0lOExlBI7JYgRFIR0Iwm09CrkMchkyutDxUtqoyX9RWK05n0cigSCSGpqNQHDoOou5/WwYNaSTrskMpeFYrJofTSgD0UAA6JmJ8Z1pEHSqV0QygtoUqKH1hoVCNoO5slpwnysboobsYSh15liAy2kzYXYh3usapj54QYVsl/Y45so5FLIZrMfYzT/KCF4a1NChCwT8gp8oWmqmazJDaTg45zmtyiGpQFDIqlND/cllu1rUUE9AI3C/kI0EB4GsNy2s1ouR2sskzJXMUkOTUFIw/BNp4tOZMRGE0Sxw8U1WEIgIq/VivBmBpxGEnJ9CTtm3yzQOXSDoRmQE5UJO6+JtvtwDQTGnTA1Ncn0FRs1Oqo1Nk+yQOXiGljQ1pNP8ZCwjiKiqUqOGJlcicZje8fKMWVcjAICVuAOB1XemIAaUSnOU8xnlbnrTOHyBIGInU85nYQ/UrZZFUsJx8FR3GoFgOGRCYyo5dCZPhYnF/HaVINwVyAhG1FByTWXrDcurUFEBN8rTrSZr231UJgztAdR27vzxQXYh3usasGvxY6tto5DNBPqEyeJIzIGAjwYNywYrhRzami4GpnAIA0F41ZDuCLmWPUAhlwlsmpqEuXIO2QxNJRA0LMeCWoYaUv1yh2oEGvXsbbsfaJ/gR7WQBZH5TtcwbDQ1A0HZsXJW7eTm6PSGEy1VADXDP55ZR2UEunYtfuy0elioRJc5i2C1XozV8deZRRAesFKxeIqIqnbwFiTFD6htR18A4yAiZ1j5FMRi3rAk2gldLea0vIYmnndFjYDXs0eV3RIRasXk/IYGQ4atlq08ZB0YfSa6TWVde4By2M49L18pF2ZbwWHCrsWP7bbtmfHpYrVWxGbLVs78oxDmzMpR0XQxMIlDGwjCqCFAIyOw1HoBlqdkM8HtJURN8qoFDWqoP4w+75JfjK4dXs/ux1yCU8o2WxaGDFp2CDxL09UJovpTlDQCgYxA165lHNtt25vToIvVehGMxUfHNq3JPkwc/LxPq5HUj8MXCFwLg0ncpq49bNjA6jAsVvNTDQRSYrHGJLFoakhuh8Y51qjyUQBuRpCMRsD5Z62MwDOe0wtebXtgvLqnIxCAde1axrHd7pnLCLzu4njoobbVn+gzxFEuZMGYmq2KaRy6QGBFZAQl3UAgkBIGYVrGc7KBoFbMomXLz6JljKHbn0wNcasD2YUjbAzjOGol9WxGFhvu6FFdsRgwQA1FiOlxNJQB5quGdtq2djMZh+c3FJNO0LKjmQHeqT8L9NChCwQeNTTJhlqjnh3g089egoFAsDa7UsyBMfmL1x4Mwdjkjm5udSB73keD2aMDQT3BQMAzAh3LZN6IpkMNjczhDGsEfYGqobxeKbYfjDFst3tYMkUNuZ/LekxzCVqCYjFg1oZDFYcuEHR6A2QIyGeDKw90B0a0rL4QTTGOpUoBO50eBgnaJANq1BAgP4tWhMtXqaIQ2ZlyJCkWe9TQlDMC23XbDdUI8ln0Bgw9CeG0aw9AFGxkx1ExyIHvdfsYDJlxaiiujEBELOa9L7NQOXToAkG35wiWk0rQtMViDWqIMTMTqWSw1+khmyHhSifVcZWi4qLseZfLCJITizeaFiqFrNK1wGFiJoFoAAbkNj/d/hCl3OTvEX/dwZDBNlCZY8pniKOUz6Jeim9EbNMSqxoC1NcakziEgSBcONOZ4Qo4/utqYjFvKkt2drGoBTVHRTGdFfGmKeUz8hqBREbgDLBPTizWnaSVc5undDICkfNTUliQwoR/Dh3/qHF4PkOGqCEAsdlMDIYM3d4wkiKepbnFhzAQDCf6DAGjL4UyNWT3lTUCANhqJZsRyNhLAOrprIg3TUlhgH1HIiOoFXOw+kPYCVRp6HYVc+jaTITNK+ZQ2fyIdHObXOhGPkNmMgIAWKnG01TGadOoDWFJs2fJJA5fIOhPHlwP6A3z5jsBlT6CpSlmBKI9BIB657WIN005n/UoJFHw4xDRZTwr6gQE442mpVU6yuHYTKgfL8/cyhEWE8DoMxJBJyKzBvxiqP5C5/kMGQwEy7V4CjT4VLZIamiGBtgfukBghQyuB0aupLK2vID4TiAI08oI9mQzAsWSt9EciPCdqcxiBEiWj/JRmwnoBOua9hIcc+WcVkbgiemhFhOZfY8Ve93JzYEcFYNiKB9Ko2tB7QefDGgaTUust4WvQy8bjYCI7iOip4joIhF9MOD+XySiJ4joMSL6EhGd8d03IKJH3H8Pjj/XNJwLePLb5kOllVwwBXcCQeA7naRtJmSpoYpiOitGDanbIYuKxQDQsOINtlZ/gJ12T1sjAPSH0/ANjYhGIBcIojUCXd8uP7ZbNjIk5+obheVaEdtt23ilXtsbXB/dWQy8TAIBEWUB/CaAdwC4G8B7iejusYd9B8B5xtg9AD4D4Dd893UYY691/71T93iiECUWA2oLEjDKCFTKR0v5LKqFLDab0wgE4l+u0QhCufNjCYiWRYWqoY7tlAOH2f1yJDW3eNNAMxlHXXMmgZhYLN/MFzZtjsNknfxOx8Z8OR84blMVy26lnunNV1NgcD2gX5hiEiYygnsBXGSMPccYswF8CsD9/gcwxr7MGGu7v34DwCkDf1cJ3b5IIFAbVykyni4Mi9VkjecYY9jr9hWpIdmqIYEyxnwWlqzFhNvBKVL1lNS4Si5AmggEut3QnkYQ4T4KKGgEIRQrYLZqaK8jd52KYLkWj/07ZwYiMwLNwhSTMBEITgK47Pv9invbJPwcgD/x/V4iogtE9A0ietekJxHR+9zHXVhfX1c+2ChqCFD3SGlpUEOAs0OJg7OchKblNOnIVQ3pUUNRO1MVakjEcA4YfTHjpoZGXcX6fHatmNcKXGIagXOfJSHUi2TWJquGZIsaRMB1OdOVQx4zEKEV5rOErOG5zqpIdFI6Ef0dAOcB/Jjv5jOMsatEdCuAPyOi7zLGnh1/LmPs4wA+DgDnz59XJvU6tthORmUX09YQiwEnI0iSGpLtKgZGQ8llR+wJ9RHk5DOxjsAsAo5aQhmBia5ijnopB3swhNUfTBzqEwYRMV1NI4gWiz1qyMBCJ6tliYBrOKYzgpZgRsBtVVQKU0zDREZwFcBp3++n3Nv2gYjeCuDDAN7JGPNCMGPsqvv/cwC+AuB1Bo5pIqz+YKLfDYfKoA5gNEBEpXwUSN5vSCUQAKpWENHUED/vMpYEnd4gdPqWH55lQ0LUkAmxmC8msp3cHNzNNUy34pVyMtSQmFjsHLuJcYx73fgyAtObr5Zg1RCgvtaYholA8BCAO4joHBEVALwHwL7qHyJ6HYB/AycIrPluXySiovvzCoA3AXjCwDFNhBA1pKsRKGYES5XpBALZL5jjKim3mPKLPcybplzIYsiA3kAmEIRP3/Kj6GYzcfcRrDcs1Es5YcoqDLolrx33cwo77yqdxSINZaqlxkGQLXMWwWKlACIYp2NHRSPRG5RyQa0wxTS0AwFjrA/g/QA+D+BJAH/AGHuciD5CRLwK6P8CUAPwH8fKRF8J4AIRPQrgywB+jTEWcyAQuIAL8vXsgNq8Yj8WqwV0eoPEqgj2FDOCisIsWsvdQYaJunyxkmkq69h9z7MlCkTkOJDGTQ0Z6iEAfLOWFXWNjnu9h513WWqIO5pGBbpshlDIZbTn8jLGHI1AcIqeKLIZZzLgpmmNwOqjnM8iK1DhpEpDm4YRjYAx9jkAnxu77Zd9P791wvO+DuA1Jo5BBP3BEP0hi+Y2FdM1vjiKLkzjWOZNZW0bJwtlpdeQgTI1pDLIRKhsd7QgiX7pO70BjtTFj7+WgN/QRkNvRKUfdd2MQKDMM5shFLIZ4c1Pb8AwZGK9GybGVXZ6A/QGckUNoohjMmDLHVwvAtW1xjQOVWcxn04WRQ0V8xmli7dl9x36QWJwvR/ceG47IXpINRBUFKqqRDIxLxBIiGdtO3qh86NezMdPDTUtrRGVftQ0bTE69lCo67ooUbElQvNxmJjLy/so4ggESzEUaMhMKXw5aQQvGUTNK+bQ0Qh0bId5RpBUCelup4cMyfc9lBUmTwlVmfBAIFPGaEcHGD9qpVzsYvF6w4zPEODTCFQDQa8vFChleme85kCB11UpLBjHSMsyX+S4Uiti07C/V8sSH07l0NBpIEgUUdPJOJSpIUULao5pZARzCt2aKul+pzeI3EGqeN60BTINP+rFeDWCjj1A0+qb1wiUxWKx8yOz+ekIfo8AR0/S3fGqZq4iiMNvSCYjmBWN4JAFgvDB9Ry8oUx2spKqBTVH8hmBWrdmpZCTFgBFLAmUOlztgZSlR72Ui7WhzGRXMeBQWYBORiAWCJxmPrHzLlIKzFFWqDAbh2pRgwiWawXstHvoGxiewyEynYwj1QimAFFqqJTPgjHAkvStb0suSuOYK+WRzVCiGYHKl6uksIuxesPIHaSs581wyGD1oyknP2oxVw2t8WYyQ9RQKZ9BNkMa5aNiGkpJwgJcZMYBh4kdb5wZgb9AwxSalviGsJRSQ8lDRiMAIO17IzKeLgyZDGGxkk9UI1DLCOQ1go5AA5JsGaPMLAKOeskRi03M0Q2Cya5iwCl5rRXV/YaEM4Kc+IItSrECatfKODyNwHD5KOA4kAJmu4vbtjhFnFJDU4CX0kZy1Wr2sG0JkWgSnO7iZIbT7Cn6t6gMJZejhmR3phIZQTGH3oBJZ3uiME0NAc4xK2sEAucdcKuGBM+JpxEIisXGAkFMGgFgtru4afWF3QU4NRTXxkQUhywQiC0cPOWVDQQtux9pNBWFxUoB2wkNp1HNCMoFhzqTsiToR3s8SQcCiaE0HHMxW1HzjIAvMCZQL+XQVG0os8WoM8f5Va5qSDQj0KU+9ro91Is5oQYtWXBjQFNZOGMMbXsQ6TPEodJNHwcOVyDoy1FDsilbS4IbnITlWsF4OVsQeLemEjWkYEXdsYfRHk+SnjdKGYEXCOIJthtNC4uVPPKKvSRB0KKG7L6w500cmZhKF/o44nAe5ViqOpmbqe5iqz/EYMiEN4Sq7INpHK5A4FFDYjtT+YxAvKNwEpIynmvZA2kLag6V4TSWoLUHIJ4ReJ3cUtSQXhVOFDaalhGzOT9UBW5uBRFf1ZCgWNwbYKgxBUyVwhTBQjmPDJmjhrjNjHBGMCMzCQ5ZIIi2QgbUPpzeYAi7P0RVo2oIcIzndjo94+PzxqFTiSG7YAN8IFCENpOTKx/lGZtM1VDcU8o2mrb5QFDMoaEQuOzBUNgKQqbDVYaS864ViSbBcThDaeJxzM9kyGgvwWhzIkoN8RnpaSBIDKMB6mI7U5kPx7sADGQEjAE7MU8q222rBwLZgSP9wRC9AYtcODKu543wguT2Mkh1FhfjDgTm7CU4VI3yuFWHqEYgGthFKVbAzHCaOGYR+LFcLRqjhprelELxqiEgpYYShSXoNaRiddCSvAAmYSmmYRnjMJERiH65Rx5Phj1vbO61Lx58eQlibNRQwzIymcwPVY2AN/2JUGfFfBZWfyhUvcIzNpE50SbGVcbhPOqH2YxAzoE41QimgI49AAkMOlcZKi17AUzCUiWeOarj2OvqZATOe+wIdheLUnKAW70i29gk2VAGxCMWd+wBWvYgBmooj7ar6cgeDyB2fvhnI1JW23XtQkSsSUbXyuxmBEu1grEmzqY3rlYuIzAxvEcHhyoQdN2B21GDzlVG97UkL4BJ4GWHM50RSA4ckeHyneoVUY0gejD7OHQHvYTB6yGIQSwG5LMYr95fsKEMENv8iMwr5tClhuz+EJ3eIGZqyGBGIDmTxKOh04wgOYgIloDahyMzlSgMy4brmidhT6NJR/bLbUlwyiUJC3CV8tFCLoNiLqMkvkZhnY+orJulhuqKDqR8IyNCDcmIuiKW4hwlb9Ogdr69zLUSLzW02+mhZ8BvaKQRHEJqiIjuI6KniOgiEX0w4P4iEX3avf+bRHTWd9+H3NufIqKfMHE8kyBihQyM6tllhkp7GYFmIFhwL/gkMgKi0SIjA1kxXcakTMbzpq3QUAa4xnNxZAQNc7OK/fAyAslj9s6PUNWQeA+HyLhXjopC4YUfcdpLcHC/oW0DBRr8nMuYzgEvg6ohIsoC+E0A7wBwN4D3EtHdYw/7OQDbjLHbAXwMwK+7z70bzozjVwG4D8D/675eLBDdyeSyGanqFcCvEegdfjGXRb2YSyQQzJXkLagB+YxAhsuXbWwq5DLSHaf1Uj4WjWDd4NB6P0YzCeSOWUoj8Ep3Z4saitN5lIM3lZn4zjUlBtcDajR0HDCREdwL4CJj7DnGmA3gUwDuH3vM/QA+6f78GQBvIYeovx/ApxhjFmPseQAX3deLBd1edHcrR0miegXwawT69c5LtfibynQEuBGfbF4sltMI5GYRcOh06oZho+F8Zsumq4YUex+kNAKJBanbF/8e6XLgcfoMcSxW3SzcQFNZ2+4jlyGh6W2A3Pm5cGkL/8PvPYxrOx2tYwyCiUBwEsBl3+9X3NsCH+MOu98FsCz4XAAAEb2PiC4Q0YX19XWlAz06V8Rtq1Whx8pODmrbcjuBMCxWZjsQZDKEssQIQimxOCdTPqpm+x3XAPuNpoX5ch5FAQ8eGSShERQlLMC79iDSuJHDqxrSpIbiaigDnD4CwIwu17KcazKqIIVDhoa+vN3Gn3zvRiyGifGdXcNgjH0cwMcB4Pz580pttx/9qdcIP1Z2lugoJdQ/pcvVAq7vdrVfJwy6JXmVQhZt4QYkSY1AghpSzQheaLalnxcFx17CbDYAGNAIBBvKADHr9W5/gMWK2Ps0RQ3FmREsGdQIWlZf2F4CkKOhZaw9ZGHiFa8COO37/ZR7W+BjiCgHYB7ApuBzpwJZn/C2S1OYcEhMwm9INxCUC1nh2mfZPgIpakghI6iVYqKGYvAZAtTnFstUVUlRQwKzJTiKuQyIxGnEcfD50nFqBItugYYJvyHHgVhuMyhKQ8vMgZCFiUDwEIA7iOgcERXgiL8Pjj3mQQAPuD+/G8CfMaeF8UEA73Gris4BuAPAtwwckzZkMwKZOaVR4IEgTo9yXSMvmYEjogOBnMdkpCZlqWQEc6W8V5ZoEhtN27i9BDCqRJPVCLpuA6UIX+0FAqHy0aHweSeSoxHHsdvpoZTPGKfb/MhlM1io5I1svlqWvPFkWXAGOKeEokbtqkCbx2CM9Yno/QA+DyAL4BOMsceJ6CMALjDGHgTw2wD+PRFdBLAFJ1jAfdwfAHgCQB/ALzDGpj+uB3LeKwAfU2mGaVuqFmAPhmhJ+JrLgFtQz2nwruVCTpwakqwaEs3E2vbAM5GTAReLGWPCXK4INhqW8WYywNFkVARunqWKvEdvTKgAVy1TNQTI0Yjj2G3Hay/BYSoLd6zo5YKW6NziODMCI6sMY+xzAD43dtsv+37uAvgbE577UQAfNXEcJlEuZLHWEN816o6p9MPrLm7asQSCTm+A3oBhoazOZ1fyWYmqIRmvoZHnTdQC1u0NcERhB14v5cAYjAbabm+AhtWPRSMA3OClUDUkunOXcdyVDQSiO94g7HXjtZfgcLqL9Y3nWvYAi5JDiUTZh25viEJWzNpDFoeqs1gGMlw14FQN6RrOcXjj82IaULOj4TzKITOCsNMbIJ8lIf3EEy0FKiPailVDquJrGDZi6iHgUNE1OhILthQ11B9K0RPVQk65szhunyEOU5V6ShmBYIUi93iKA2kgmICihNUB4JaNGc4ITFQxBIGX5C1otO3L7PJkdpCjDtfo1xadxzuOuudAak4n2HCFxtgCgcJMApE50RxFwelwgyGD3R9K0RM6c4vjnE7mx7Kh3p22Lc8MiBamWBL9G7JIA8EEyGoEKjuBSfDqmg0O1PbDREZQkRAARa09ADnvlY4tR1Fw8Lr8PZMZAbeXiEEsBnjvg1zgksmYiJwmqKhrXsY3iqOqMa4yqYxgqVrAdrunNUkNUKOIRTUCS6JaSxZpIJgA0Q+Ho21gTCWH1+kYUwmpjvMoh1M1JN5ZLHoBi3re8DGMs0cNxagRyFJD9kBq5y7Sw6FSy66TEewlFgiKGAyZVjXZYMjQ7Q2l/cZKBUGNoK+28RFBGggmoOx+OKIlnC2DGkGtmEMhm8FWbNSQ87p6GkFOOFDKuFWKipa9AcNgGD31LAhxjKuMXSNQFYslrkmRLFimAoxDZtPgx3DI0LD6yVBDVX3X35ai31g5L9aT0+0NU40gaZTyWTAmJloCQNugRkDkzFE14X0SBBMaQaWQRW/AhKx7ZTSCoiA15BmqKZTsqpq4hWGjaaNezMW2Y6uV5DUCWQsOkQH2Mj0hHBVFaqjR7YMxYE6hRFgWJuaAtBX9xoSpoTQjSB4yLfd2fwh7oD+43o/FGLuLdzs9ZN3adFXIWAdIVa8IumCqTCfj4GKxyYxgPYZZxX7Ufb0PouB9BKKIixqqKJaP6kzRk4VXqaex+ZJ1HuUoi1JDEvbfskgDwQTIuAKaGlPpx3K1EBs1tNN2eFedZiqZmQRyYrE7MjEiAOuY/MUxwD6OWcV+1NzeB5mdtUzVEOBkY1HXOy8vlaleqRSyaNlyQQwwo2WJgjvGamUE7jUpu8HijrtR54dPWIwDaSCYgJKEG2OLD6Mw1FkMxOs3ZKISY5QRRC+mzgUsZ8srmhGopMrZDKFayBr1G4rLZ4ijVuQlr+LHLJsRlPOZyADMuWyZBalSyEnRrBxJWFBzLHqzwtV7d7gVvazDgGjvjCXZvyGDNBBMgMzkID6ntGLIawhA7BqBbiAo552LXWSHKrMz9WYdCGsEaue8VsoZHU6z0bTjDQSSArdKVZXIdLiuVz4qRw0B8g6kSWYEpXwW1UIWWy31a6JlqWUEZc/eI1qoTzOChCFTzy47p1QES9UCGlYfdgze4yYzAmFuU/ACHrlghr9v/ndV5z+YHE5j9QfY7fRiDQSyMwk8Ll8mEOTENQKpaiT3sS3J853EdDI/nIFQGhmBrbYhFKWhZQZrySINBBMg470iO6dUBHF2F++0e1oVQ4DcLs+pf5btIxDMCBS/GM64SjOBgAuMpofW+yHb++AFSimxONoXX8X4jG+QZKeUJZkRAE4vgVb5qOLcctFNp5VaTCQPGTG0pVgtEAYTVQyTYIQa8s5P9MLUsQfCO1NRzxsZr/0gmBxgH3cPASBf8joS08UXJcfzJqp8VNxAkKOimBHw6jaT36swLGvqcvz9qfQRAALUUFo+mjzKggsS8NLKCIZu9+SCNjUkphEMhwyWhDcNH2QS1WCjnxGY0wh4IFiNsXxUttLJ27nLVA0JUUPqGoFsCSl3HjVpFR4G3QINVYpYpEBiMGToDdQaKEWQBoIJKEmIxU3FnUAYTHQ6BsFr0jFWNRTlTSO3g/Q8byK0Ef53Z0Ej4EPr45hFwMG7oUWP2Ts/kn0EkVVDCl5DopuGcex2+onRQgC3olYfCMX9xmRtossC1JBKAJZBGggmQGZ0n9dHYFAsXvRmEpi1oh51Fevx2aLU2ciSQPxSE2ls0ikfBRyNwJTX0HoC1BDPNoU1AoWqqlI+A3swxCDEeI1najJctScWS9pM7HZ6iXQVcyxWC7D7Q68cXBaqM0lENp2613sUtAIBES0R0ReI6Bn3/8WAx7yWiP6CiB4noseI6G/57vtdInqeiB5x/71W53hMQqahjItEJtO2xUoBRMBW2+xIxR0DPkPAaKcZtctT2UGKeN507AEygmMYg1Ar5tCyB6GLnig2mhaqhayyXiGCfDaDUj4jnhEoaCgim59uf+jSd+K7Xp4py1JDSVlQc3h0rGIW3pQcXM8hIhareDzJQDcj+CCALzHG7gDwJff3cbQB/Axj7FUA7gPwL4howXf/P2aMvdb994jm8RgDb4ASGd3XtvuoKKSEYchmCAvlvFY5WxBM+AwBzpzXQjaDdi98YeJffplA4Exsii4fFR3DGARZqiUMcc0qHketmBf2G+oqaCgilXKy3coAUJHoOfGjkZDzKIcuHdtSzAhENAIu0s9qQ9n9AD7p/vxJAO8afwBj7GnG2DPuz9cArAFY1fy7sYMvdGJ9BOYsqP2Io7vYxCwCjkox2kNGxZtGxBe/basNpeEYOZDqZ1yOvUT8gcCZSSCpEUhSQwBC9RmVpqaypyfJU0NJBoKR8Zza5ssZXC9/TYpUDamY/clANxAcZYxdd3++AeBo2IOJ6F4ABQDP+m7+qEsZfYyIJn6biOh9RHSBiC6sr69rHrYYHDdGMY3ApOEcx3Kt6AmRpuBlBCYCgcBwmlGZp3igFDM/0wsEKpYNk+DYS8TXQ8AhI3CrmPIJUUMKxmeFXAb5LEllBIyxxKkh3YFQqtTQSCwOD8D+x5pG5CdKRF8kou8F/Lvf/zjmSO0TCVciOg7g3wP4e4wx/o4/BOAuAG8EsATgA5Oezxj7OGPsPGPs/OpqMgmF6CzRljWQ9hcRwWqt6JUmmoJJ/xaRcZUqF3BZoHqlI+mjMw6TMwni9hniqBXFS15VxOJiTmxnqrIrLUtMtAOcQNYfsmQzAk3juZatFgi4zhWuEcj3b8gg8qgZY2+ddB8R3SSi44yx6+5CvzbhcXMA/guADzPGvuF7bZ5NWET0OwB+SeroY0ZJ0Cfc4QbNf0ArtYJXkWIKu50eSvmMkQuqIjCUXKXev5TPeDOAJ6HdGyjNIuAwNaWsNxhiux2vvQRHrZTD5a220GNVMgIeNKyQ3plOb6BkcyByrfiRdFcxAFQLWRRyGeVA0OyqaQSZDEWyD6OqodnUCB4E8ID78wMAPjv+ACIqAPgjAP+OMfaZsfuOu/8THH3he5rHYxSiQ6UdsTiGjKBeRKPbl5qdHIWdtm3syyUygnBEDZktH+3aA6mS1HHwskTZYS/j4ItGEmJxXYIaatsDFLIZ5LIS511ggL3VGwo7yfpRKcplBF7mWkouEBCR10ugAlVqCIhea6ZODUXg1wC8jYieAfBW93cQ0Xki+i33MX8TwI8C+LsBZaL/gYi+C+C7AFYA/DPN4zEK0YxA5wIIA99lmmwqMynAVQQGaqjUP4u4YLZ7esGXawS6YvG6O7R+NQmNoCQeCGTmRHOIlY+qUUMVybnFuwaLGmSwWCkolY/2B0NY/aFy0UjUlLK4xWKt1YsxtgngLQG3XwDw8+7Pvwfg9yY8/806fz9uiNSzA3xwfRzUkBMINhoWTi6UjbzmbqeHhbKZRatSyOLKtnmNgA/qCIOuRmCKGkrCZ4iDzy1mjEWWzapkqaL17Crn/aVADQHOgBqVjVdLcUwlR9QAe/49mtXy0Zc1REfINa14qCFON5gUjHfa5ioxyvmcuFgsOztXwGtIZ3dULWRBpC8Wcy0jKY2g73o3RaHTG0pXVY2cX8OqV9TGJcqOq5xWIFAt2W5608nUrsmoAfae/feMUkMva5QFdqaMMbRio4acnTunH0xgu21jqWqOGooWi91qB4nacxFqSHboyjiIyIjfkEcNJaQRAGLBq2P3pRcN0YYyVWpIxrrhpRYIRkNp1I532tRQGghCUBIQi63+EENm1nmUw6OGDGUEjDFst3qej5EuRHjfjuuhLtN1Xcpl0Rsw9AeTg3BHs48AcITIPU2NYK3RRbWQjeXzH0dNohta5fwUYw0E0dmjH3vdPohGZb5JYblaQNPqh1ZOBYEHZ1WKOIp96PQGyGYIeQnxXwZpIAiBSENZHM6jo7+fRb2YiyylFEXbHsAeDLGkaTjHUS5kYfUjTMoUFiReYTSpw3U4ZOj2htppMufcdbDWsBLJBgBfE5zAMbdt+YyJUz5h1JMzJUuNGpLRCPY6PdSLOaO2LSJYcpvKZLMC1TGVHFGbThPXexjSQBCCqHQN8A2jiEEjABydwFQvAb+4TWYEQLi4qCLqRlWvcNpINyOoS1ThTMJ6w8KReknrNUThzSQQGE6joqEUss4siEkL0mDIYA/EZ0v4UVaghuY1/bBUoDoQajSURr1qKLpaK77lOg0EIeDpWpg/uW61QBRWa0VsGNII+JAbcxkBNxObvJh2FKpM+EIz6YuhO4uAo2ZgStl6w8LqXDIZQV2i0klFQyGi0AXJUnCS5agWcrD7w1C6z4+kfYY4VAdCNTUzAhGNoBjT4HogDQShKOWzYCw8VeYe63FQQ4AzB9eURmA8IxD0UZddOIoR1SsqjqZBMCEWr+11cSQxakhCI1Asrw0T6keVK2rUEDCyx46CM4tgeoFAlRpSzggiqqp0vbWikAaCEIhUUTQ1L4AorNSKxjQCLyMwTA2FCcZKGkHEeVexTwiCM8BeXSxuWX207EFi1JCMdXZH0Z21lMtMDMA6lSsyM8CB6WUEy4rUkK5WGNU7o1q2K4o0EIRg5BM++QNqu9RQHOWjgBMIdjs92AK141HYajmLnkmxGAgPBA5XbbbDdTQjWl8j0KGG1lzKLrGMQMIoT4WSA8K76XUCQVVyXOW0AsF8OY9shqQzgqblWHqo0jflfDZ0OpyK/bcM0kAQAr6AhXF3PCXU5asnYWQzoU8PbbdsZDNkrCSPN9FFUUPqYnFw8Gu757yc13sf9WIOVn+oHGST7CEAHHfQQjZ6SpndH6I/ZErXpDO3OJwaUtmZeuMqBam4aQWCTIawWMlLdxfrGk96lXIhWXBKDU0JIgMjWraeSBQF3lRmYi7BVtvGYiVvrCRvRA2Fi8WyO8hRh2v8YjGgPpNgrdEFABxJSCwGXL+hiIxAZ76tUzI9QZvxbA7UMwKRTv1ubwC7P0x0FoEfTlOZ3MZLdToZR9QA+25vmIrF04KI98ooI4ivfBQA1ptd7dfabtlYNEQLAWJznbsa5aOTXpcLjrrUkCe+KtJDa3ucGkpGIwDEBO6OFyjV5udOrBriAUaxfBQQo4am1VXModJdrGs8GTXA3lIwEZRBGghCICYWO9xgQXGIehRWPeM5AxlByzZWMQSIicUqKW2kWOxmIDrzCABHLAag3F281rCQzzpUQlJwhtOIZQQy1t8coRqBVz6qUTUkkH1NOxAsV4vyVUO2ZkYQMbdYVfMRRRoIQiBS6dC24xlKw8E1AhNNZTvtnjGhGBAbSq5yARcjZufy3o2KdtWQPjW0WitGOoGahGNFHR64OFWnoqGEddN75aMKlJyMWLw35UCwWM3LZwRdvYwgmhrSM1mMQhoIQhD14QDxOY96x1DIol7KGTGe22qbzQhGgTJ4IeVWEPIagTspK6p81EBnMaDuQOo0kyVHCwFiw2lUHF85wsoYPW1GIcDIDLCfdkawVC1ip9MLtU4Zhy41FKVHznT5KBEtEdEXiOgZ9//FCY8b+IbSPOi7/RwRfZOILhLRp91pZjMDkUEdcTmP+nF0roSbe3oagWM4ZxulMQq5DHKZyUPJeSOetB1yxOzctt1HNkPerFdVjBq01Kih9YblUXdJQUQs9jIm1aqhCQ1lI0pO/nVH2dfsawTL1QIYk+subll6M0mKIZtOxphS0YUMdEPMBwF8iTF2B4Avub8HocMYe637752+238dwMcYY7cD2Abwc5rHYxQigSCuoTR+HJ0rageChtVHf8iMNZNxhI2rVG38ymcJ2QxN7HBt2wNU8lltSoZrBMpiccNKtGIIEBOL+a5bxf+qlJucEehkYkV30yASdKcdCFS6i01VDQWtNXxDNcuB4H4An3R//iScucNCcOcUvxkAn2Ms9fwkIFIV09S8AETgZAR61BAfv2eyaggIHziiGgiIKLTDtW2Zqanmu9Q9hUBg94fYatmJNZNxiPgjjfyv1MpHJ1Zr2eod3USEqqDbKw8ESVtQc8h2Fw+GDA2rr2WJEbbWWL3ZDwRHGWPX3Z9vADg64XElIrpARN8gone5ty0D2GGM8SvjCoCTmsdjFHxINx+uEoSW1Y/NeZTj6FwJa40uhhKc5Tj47sZ0RlAp5Cb6x3ieQMpc9eTyURPBd7RLlQ8E3P8pydJRQKwJbuR/pcDl57MYDBl6AeZwHduZLZFV7EOpFXNoCFYN1Yo55GLy3o/CUk0uI+DBTafvYaQRBJx3ry8kvvMReaUQ0RcBHAu468P+XxhjjIgmrVRnGGNXiehWAH/mDqzflTlQInofgPcBwC233CLzVGXkshkUspN3SADnBmMOBPUiegOG7baNZUVOmvOdJsViwHVNnCAAqswr5ggrY1SZvhUEInJtJuQ1gvWE7SU4uK7Rsvoo5II/Sy8jUOwjAJzPbnwIim53a72UE+osnlZXMceIGhLLwnn58ZxGBhNWmKLzPRJF5JEzxt466T4iuklExxlj14noOIC1Ca9x1f3/OSL6CoDXAfhDAAtElHOzglMAroYcx8cBfBwAzp8/r741lkTUcJpWzOWjgJMRAMDNPUs5EHDjumXjGYF5jQBwzrs1gRpqWXpjKv2ol/LY68hnBGsJ20tw1LiuYfUnBvWW1UeG1HaQ/rnF48kO12ZUIer2utcxN1dbBZw+5d5cUfACgcYxl0IsJnQ6xUWhm2s8COAB9+cHAHx2/AFEtEhERffnFQBvAvAEc0z+vwzg3WHPnzbKhfCBEboikQiO8EDQUBeMOZVhesh6pZibHAg4p6zY2BRGDZnyXVms5KW954Hp2EsAvuE0IVx7y3boShUxPWxcpaqjKYdIxRPAM4Lp6AMAkM9mMFfKiWcE7kZCRyMoZDPITBgK5GkzM+w19GsA3kZEzwB4q/s7iOg8Ef2W+5hXArhARI/CWfh/jTH2hHvfBwD8IhFdhKMZ/Lbm8RhH2MAIuz9Eb8ASKB91FpubuxqBoGGjWsgav5iqhezEdF/P8yacGjKlyyxUCthpy1NDa3sWiMwH1iiINMG1rD4qGnbIwOSdqVYgkNAIpkkNAcByrShsPDfKCNSvST4UKOia9yxDpkkNhYExtgngLQG3XwDw8+7PXwfwmgnPfw7AvTrHEDfCZonG7TzKwQVJncqhjabl+RaZRK04mffV0wgyIX0E5qihpWoBz643pZ+31uhiuVqIbZj4JIj0PrRsdd1qVMZ4kJZr232lZjKOulRGMN1AIOM3xDuhdQfpTBpg39YQ/0WRdhZHIGxnqlOdIYNCLoPlakGbGopj91oN2eXpTBIrR3S4mspsFip5pYzgxm4Xx+aTrRgCxGYS6FSyeRpBQA+HNjUkrBH0X1qBoKtPDQEuHRqw+THVSR+GNBBEIGyGq051hiyOzJWwptFUttGMpwuWZwRBc535sHKVQFkMGZnYtvvGMoLFSgFNqy89k+D6bhfH5spGjkEGdQGNoK3R5RpFDemc91oxj7Y9CLVusPtDdHqDqQeC5WpBnBpyM4KaZt/DJGpIp1NcFGkgiMCkdA3QH08nA6e7WJ0aWm9YWKmbd/ColXIYsglUggZ1VsoF744Grn+RKX8nbrmxIykY39jr4th8svoAIOaY2tLQUMLsPdqKc5A5ROY/8M9hwXDjoyyWqgVst+zADc449ro91Is55f4KjihqSIeWi0IaCCJQDtEI2jEPpfHjaL2EG4oZQW8wxHa7Fxs1BACNAM66ZQ9QyGWUePRSPhPoPsq/KMYyArcEc1uCHur2Bthp93B8PvmMoJR3elvCSl4dsVh1iPpk51d9ash5blgg2GrH0wEvi6VqAf0hE+o6b3T7RspdJ+mRnZdA1dDLHmFujFz4ilsjAJyMYKNpBXZ8RoFznXEEgrrX4BS8k6kqXryTKDlvd2SQGgLkDMZuuNVbxxJ2HgWc6pK5ct6zYQhCyx54i64s+BSsuKghINzbadut3U9yxkMQZPyG9jo9I3YYE6/53gD5LMU28wRIA0EkKoWsJwqPg/O0SXiinFgogzEomc/xLtg4M4KgL7eODxPvIxhPzXWmbwVhQYEauu4GguNTEIsBYL6c83jpILQ0rNEnWYBzB0wz1NDkY58laggQ6y7e65ppgJukEbQtM530YUgDQQRqIW3xnKeta1YLiODEgkNDXNuRDwS8mWw1Bo2gGpLut62BVvXKkAH2WAZkal4xxygjEKeGbux1AABHpxQI5sr5iRrBcMhcR1y9qqHxBanbG4IxvalwIs1w/HNYrE5bLHY2TSLGc3udvpa9BMdkjWAQ68wTIA0EkagVc+gNWKBHO7+gk9AIeCC4utOWfm6cGUG9OLI8GEfLVm9s4hd+e4xyamt44gdBjRpyzuc0qCHAsWeeRA1585w1KDngoPmZCW2GZ85BNCLH9qxoBBLGc3vdnnbpKMA1goCiC01KTgRpIIhA2IDzhjueTrdaQAQntTKC+DQCnhEEZU1tWz0j8MzVxmi5tmFqqFzIopTPeDbdIrix28FcKZeINhSE0EBg6elWOXf+9vgksdH4S70+AiCcGtpu2Sjns7H66ojAs6IW1AhMUUOTrD1UN1SiSANBBKohYmija0YkEkG5kMVStYAr2x3p5240LVQK2VgWrrCSQMeHSe0CnnTeTVNDgLP7lKGGrk+pmYxjrjQ5EJgoaQ5q/DJRuSLSDLfd7k1dKAac3XmlkI3MCIbeLAIT1FCw07FuR7cI0kAQgVpIeWSj2090eMbJhTKu7cgHght73dhojNEuL5gaUs0IJmkPnZgCgYxYfHOvi2NTKB3lmC/nsdfpBda48/PFK3RUUC0edJQ1QQ3xayGqj2DaQjEH7yUIQ8vugzE951GOSbMgTHbST0IaCCJQC8sIrF4iQjHHiYUSrqoEgt2uZ2VtGuV8FhmaQA1Z6imt33ffj9FCZy4AL1bz0hnB8SnpA4ATCIYseEFteHYH6uenWjiYEfDrX2dBymYI1UI2tHx0q21PXSjmEOkuNmUvAYwqtsazApPeWpOQBoIIhJW8JZ8RVHBtpyPU7ejHjd1ubKWOfARhULrf1PC84RrAeCDwBHqD532xEr3z4+gNhlhvWtOlhlyXyyB6aK+jX8lWDTAS5IGhrpFpAK4VdWhG0Ju6UMyxKOA3xDNJHedRDh5kxzvqO2nV0PQx6oYMrhpKOiNo2wMpk7ThkLlURnwLV5ADaX8whNUfKusSkyinptVDNkNG66pXakWsN8XsO27udcHY9HoIgNFQ96DuYhO9LdVizvOJ4uCfr24ArofoG4BTNTQrgUDEeG7UAKd/zJOmlJn01pqENBBEIKwbstHtJVI6ynFqkZeQitNDGy0L/SGLPxCMV5locsqTqpGabqWWytCVSVitF9Ho9kMHEHFwsf7k4vQ0As5HB2YEBqZl1YoHZ0w0DIjQALAQUvE0GDLsdmZDLAYc+/f1hhWagfNyVxOzwCcFglZKDU0fYeWRe10z1QKiGDWViQeCJOwQgqghXv+vmhF4VUNjO9OG1TcefPm4Sd5vEYarbiA4tVgxegwy4Hx0cCDQ11AqhYMZXssQNRRW+uoI4NPvKuY4OleE7fp0TYLJWeAld7H3C/WDIYPdH862WExES0T0BSJ6xv1/MeAxP05Ej/j+dYnoXe59v0tEz/vue63O8cQBznGPe+5b/QHs/jDxqiFALiPwAkHC1BCndFR3MsVcBrkMBWoEps85DwRrAoGAZwSzQQ0F6Vb6TpiBn2dXfQ6yH/Mh8x+2DO6uTWA0K3xy7w6njhYMVA1VA3Qx095ak6CbEXwQwJcYY3cA+JL7+z4wxr7MGHstY+y1AN4MoA3gT30P+cf8fsbYI5rHYxwZt9JhkmiZpEawVC2glM9I9RJwx9K4A8E4l6/rzMpF6KAFyXggqElkBDttHKkXp9rwNF+ZbEW919E/P9ViFi17v89T0zJDyS2UCxMzgpHP0GxQQyKBYLtlY66UQ87ApLp6QJ+F6QbKSdA9+vsBfNL9+ZMA3hXx+HcD+BPGmLxPwhQRNHQ7ScM5DiLCmaUqXtgUP33Xd7vIZQgr1fi8850Fe1xc1L+AnQCz/3WbMVBDRzg1JCAYX9nuTFUfAIBaIQeiYGqoYcAArVLIYTBksHxW1KbO+0Ilj6bVD3TR5R3wyzFeqzLwZoWHZQTtnrEMZhQIRp9rUuuMbiA4yhi77v58A8DRiMe/B8Dvj932USJ6jIg+RkQTrwAieh8RXSCiC+vr6xqHLI9qMYemPR4IkjOc8+PMcgUvbLaEH3/T7SHIxGiDUQ8oCWwZEBerAaJl0+qjZvicL1ULIBLNCDpT1QcAJ0ud1F28Z6DbPaiHo2X1jZTs8t1+0LFzc8Q4BiipgFOGYQOhdtq2EX0AGK0l/ozAK9uddiAgoi8S0fcC/t3vfxxz8siJ8joRHYczxP7zvps/BOAuAG8EsATgA5Oezxj7OGPsPGPs/OrqatRhG0W9eDAj4Dxn0mns2ZUqXthqYxgy7s+P67tdb2cTF6rFLJpj4ypHF7BmPXtAADb9pchlM1iuFiMDwWDIcG2n42k108SkWcuNbl+7uSnI3kPHUtwPrm8EHftGY7YygmLOsXWJ0giWDInbPAD7h+E0PfE/3nUm8pNljL110n1EdJOIjjPGrrsL/VrIS/1NAH/EGPOuAF82YRHR7wD4JcHjThRBXPXIJTHhQLBchd0f4vpeV2hBurLTxutOH9DwjaJeymMwZn/slTFqLNpB2kOj2/eG4ZjEaj06EKw1uugNmFfGO004/kgHa9wb3T7uOKKbERy09zAl0s+HlL5uNC3Ml/OxDmCRxdG5UqRGcNexOSN/K5sh1Iq5fdQQb2SNu0xd94w/COAB9+cHAHw25LHvxRgt5AYPkKNAvQvA9zSPJxbUS7kDwhy/kJMudTu77NASL2xE00P9wRDXdro4vRTvwuXN/fV9uU10uFbGRHq77zSpxfGlcAJBuLPr1RnoIeBYrhYCvfJNDEnxLMDt/dSQiUDAvy+7nYPHvtG0sFKbDVqII2pW+FbbxpJBS4x6aX8p9ktFI/g1AG8jomcAvNX9HUR0noh+iz+IiM4COA3gv409/z8Q0XcBfBfACoB/pnk8sWChXDiQyvKOwnkDZWMyOLNSBQBcEhCMr+92MRgy3LIUL6c9X3a+vH7jtr1u35mvq7G7GxehTXW3BmG1Fp0RcJH+9JQ1AiC465UxZmTn7k2ds/Zz1ap2IX4shFBDm007Fqt0HRytT84IOvYA3d7QmEYA8EDgzwiSCQRar84Y2wTwloDbLwD4ed/vlwCcDHjcm3X+flJYqDp8LGPMK5/bbtuoF3NKg9l1cHyuhEIuIyQYX95KZuHyBMC2v9pBf1jHeMdynCW7q3XHZsL/GY/j0mYLGULsgVUESzUnEPiPt20PMBgyI+cdOKgRmBSLAzWCpoVXnjBDs5jC0fkSNpoW+oPhgRJRT9w2qGnUS/n9YnFCc9Fnh4ybYSxWCrAHw32t3zttGwtTcEnMZAhnlip4XoAaepEHgpgXroVAakh/Z8rTZC5CN2LkS1frRfQGLLSL9PmNFk4tVmaCw16uOtekf9fO6Up9amh/Nz1jzKkaMnDeeRDfCdAI1puW19MxKzg6V8SQBZcW80zhiMFijAPUkOVk1nFvOKd/Rb8EwDlw/yKxPUWXxHMrVTy73ox83OXtNrIZir0LdsGjhnyBwABXvVAuYDBk3mLXjJEvPSlg3/H8RgvnXGpu2lhyd6F+eoj/rFvXzj83rot1egMMmZkAnM0QFir5A0Phu70BGt3+zGkEYdcF70Q3afE+V8of6COIu2IISAOBEDgH7rcqnuYAjTuP1XFpsx1pkvbiVgcnFkpGuh7DsOAFyv0agS5FMV5hshdjIOCVQFe2g7UXxhguzVAgCBqlyAPBsmYgqBf3N6yZpidWa0WvVJSDv49Z0wh4z0hQN7+XEdTjywiahkT6KKSBQACLAU0w0xypd+exOgZDFpkVPLfexLmVWuzHU8o7c3/956fR0a/3nxsTFuMcbD4KBMEZwXrTQsseeFVb0wbf9W/5KodMGaBlMrTPHM50AF6tF7E2VqEVB81iAmHXxVrDQj5LRq/HcY1gz8D3SARpIBAA/2L5d7zT9E2/82gdAPD0zcbExwzdQHH7avyBAOCVVf6MQH9627i52o5Bp8egv1UtZCcGgufXHU3mXELnMwpeIAiihgxcl/5AwEs9TWXAR+oH5z9c33ECwfEpjgANQimfxUqtGJgp3tzr4kjdbNd+vZSDPRh62X5SzEMaCATAS964RtAfDNHo9hMvHeU4u1JFPkt46sbkjODqTgfd3hC3H0koEPg6XYdDR3TVra8etyPYavWQzzomgKZBRDi1WJno7HrJrdI6tzwj1FAtmBrKkJmS5vny6PMcDV8xc72v1otY29vv83991znvJ2YsEABOVhCYEexZxjOYuTHjuaSYhzQQCMBrgnF3pLziYVrUUD6bwW2rNTx1Y2/iYy66tFFSgWC+nPfOy163h8GQeYKmzmsCo/PNd0cmh9L4cXLCFx4AnltvoZDN4MTC9Oyn/agUcijns9j07ay3Wk6WamKH6s8ITFNyR+olWP3hPmv3aztdVApZIyMfTWNiIGh0jeoDwMGhQ0kxD2kgEEAhl0G1kPUyAi8Fn6KwdeexOp66MZkaenYt2UDgZATOedk0JFqOi8XbbXO+LkFwvvDtwIlUT95o4PYjtdiFdxkcmy95NuOAc12a8r6aL+d9lJxZX62gQUDXdzs4Pl+KLcjr4NRiBVe3Owf8vW7uWUYrhoAR5bfdtj3mIQk/s9m5qmccCz5vFy5sxTn1KwqvPD6Ha7vdiTNVn77ZwFK1kNiQj4Vy4WCg1PzblUIW+Sz5xOJerF+Ks8tVNLp9zw7Zj+9f38Mrj89Ys9Nc0Rs8BDji5ZG6mWvSn+Ftt23kXB8cE+C76DWfdcO13a43gW/WcGa5Answ3EcbNq0+djs943M+uOHeZtPyMQ9pRjAz8HPg3HskblfPMLzu9AIA4JHL24H3P3ZlF68+OZ/Y8azUnU7XwZB5Hji6gYDIqcjgNefbrXjT5Fe4Ivwza/szrc2mhbWGhVcer8f2t1VwfL68LyO4sds11jPCqSHGmBeATe3WVwPmP1zf6Ux16lsYeFZ9cW2kyfGu/TNLZjUjrv1sNO1EB/WkgUAQR+pFLxMY1Q9P78J9zal5ZDOE77y4c+C+jj3AM2tN/MCp5ALB0bmSGwSsUT27geYgx/3RWTC2Wua834Nwx1HnC//Mzf0iPKfgTLlMmgJ3xhwOGYZDhrVGF0cNLaYrtSIGruhvunKFf2/W3O+R3R9ivWnNXMUQB6+88wcC7jtl2m6Eb3Q2m7aXYacZwQzh+EIZ1900fG2vi7lSLvaB0mGoFHK461gdj1zeOXDfE9d3MRgyvCbBjGA01s/ydvAmaKkj9SLWGhas/gCbLTvWXeORehFzpdyBstzvXdsFANw1cxlBCb0Bw2bLxmbLRm/AjNGV/PNca3RdEdrcrnSunEOtmPME2Ks7HTCGmbD3DsJitYDlaiEwI7jFcF9JIZfBfDmPzdZoQ5UGghnC8bkStlo2ur1BLCKRCt5wZhEPv7ANu79/7N+jl52F6wdc+igJ8AXoxl4XN/a6mC/nUczpB8ojc449NOeT45y9TER4xdE6nlnbnxE8dGkbZ5YrM9f1yu0PLm+3R7qVofMzGtNo4cZeF8cM7taJCGeWK15JLi9suC2hwgYV3H6k5lXiAU458Xw5H0sJ+XLNsRjn+s/xBCrV0kAgiOPul+7GbhdXdtre79PEX75jFW17gAuXtvbd/o3nNnFyoZxosDrqCwSXtzrGZiCs1kvYbNneDizuOvM7j9Xx5PU9r0KEMYYLl7bwxrNLsf5dFZxbdfjp59dbnheOqYzJ+zx3O7i+0zVeNnt2eTR7m3fI35ZAF7wqbj9SwzM3G15F2fdvNHDnsXgyxBV3Wt61nQ4KuYx29Z0I0kAgiBPuF+zaTgfPr7dw6wx4zvzwbcsoZDP4ytOjGc79wRB/8ewm/vIdK4key0qtgAw5C8fl7bYx6+ujc0UwBnz3qpPlxJkRAE6W1ej28bQrGD+73sR2u4d7ZzAQnF6sIJshPL/R8rIYU15IXNB94toe7MHQ+HjOM8sVXN5qoz8Y4tn1JlZqRcxPqS9HBPecmsdet4/nNloYDhmevL6Hu2OqIju9VMELWy2nkiqhkto0EAiCWzl/47lNtOwBbludfiCoFnP4wVuX8KeP3/B2Kt98fgsNq48fe0Wyc51z2QzOLlfx9M0mrmx3jFlf8x3uhRec6qi4AwHf+X/reSfL+vNnNgAA956bvUBQyGVwy1IFz200cXGtiRPzJWOzGkr5LBYqeXzbLUYwnYndcbSG/pDh4noTj13ZnbmKrHG84Ywz7vXhF7bxwlYbbXsQWyA4t1LBzT3L+UwTYh60AgER/Q0iepyIhkR0PuRx9xHRU0R0kYg+6Lv9HBF9073900Q0Wx60PpxaLGO+nMdnH70GALh1Rjxn7n/tSVzabOOb7sL1h9++gnoxhx+/60jix/LK43P4b0+vw+4PjQl/3DTvi0/exEqtEPvs1lOLZZxZruBPH78JAPjcd6/jrmN1nJ2BDDAIdx6t47Eru3j6ZgO3HzW7mJ5ZqniZmGme+vW3OAvrl7+/jqduNnD+zOwFWj9uXalhsZLH1y5u4P+76GwOXn8mnlng/Fp78vpeYpVUuhnB9wD8NQBfnfQAIsoC+E0A7wBwN4D3EtHd7t2/DuBjjLHbAWwD+DnN44kNRIR7Ts17vOZdMfGDsvjJ1xzHSq2A//tPn8LTNxt48JFr+KnXn0Qpn3xF0yuP1z3h2lSp5enFMiqFLBhLpnyTiPBX7zmBrz+7gT9+9BoeurSNd772ROx/VxVvun0ZV7Y7ePyaeariDjewZMhZCE3ilqUKVmoF/D9/9gwYA86fjWdRNYVMhnDfq4/hC0/cxB8/eg23LFViYwX89F5S64xWIGCMPckYeyriYfcCuMgYe44xZgP4FID73YH1bwbwGfdxn4QzwH5mwXniu4/PYXlGKkjKhSw+cN9deOjSNu77F19FrZTDL/z47VM5lvM+Hv0eQz0MuWzGS8t/+PZlI68ZhZ/+oTOoFnL4h7//HSxVC/jpv3Qmkb+rgh/1UYBvu9tsFvhDtzrn+44jdeOl0kSEt7/qGNr2ACu14kxSb+N49xtOo20P8K3nt/Cu152Mjbt/hS+zS+q8JOHwdBLAZd/vVwD8IIBlADuMsb7v9gNzjTmI6H0A3gcAt9xySzxHGoEH3nQW2+0e3vW62doh/o3zpwEA33huCz/3I+emVtr6g+eW8Mv//d04sVA2mpH8yl99FT71rRcTW5CPzpXwb37mDfhP376Kn/mhM7HMSDaFM8tVfPSnXg2rN8QbDNMrf/UHTuDSZgtvu/uo0dfl+KW334lyPot3vPpY4rO/VfCGM4v4jb9+D55db+If/He3xfZ38tkMfvfvvRFP3WgkVgJOQQZb+x5A9EUAxwLu+jBj7LPuY74C4JfcofXjz383gPsYYz/v/v7TcALBrwL4hksLgYhOA/gTxtirow76/Pnz7MKFA38qRYoUKVKEgIgeZowd0HMjMwLG2Fs1//ZVAKd9v59yb9sEsEBEOTcr4LenSJEiRYoEkUQ+9hCAO9wKoQKA9wB4kDmpyJcBvNt93AMAPpvA8aRIkSJFCh90y0d/ioiuAPghAP+FiD7v3n6CiD4HAO5u//0APg/gSQB/wBh73H2JDwD4RSK6CEcz+G2d40mRIkWKFPKI1AhmEalGkCJFihTymKQRzL5UnyJFihQpYkUaCFKkSJHikCMNBClSpEhxyJEGghQpUqQ45HhJisVEtA7gBcWnrwDYMHg4LwWk7/lwIH3PL3/ovt8zjLED1sQvyUCgAyK6EKSav5yRvufDgfQ9v/wR1/tNqaEUKVKkOORIA0GKFClSHHIcxkDw8WkfwBSQvufDgfQ9v/wRy/s9dBpBihQpUqTYj8OYEaRIkSJFCh/SQJAiRYoUhxwvq0BARPcR0VNEdJGIPhhwf5GIPu3e/00iOuu770Pu7U8R0U8keuCKUH2/RPQ2InqYiL7r/v/mxA9eETqfsXv/LUTUJKJfSuygNaF5Xd9DRH9BRI+7n/d0xtdJQuPazhPRJ933+iQRfSjxg1eEwHv+USL6NhH13YFf/vseIKJn3H8PSP9xxtjL4h+ALIBnAdwKoADgUQB3jz3mHwD41+7P7wHwaffnu93HFwGcc18nO+33FOP7fR2AE+7PrwZwddrvJ+737Lv/MwD+I5yJelN/TzF/zjkAjwH4Aff35Vm/rg28578N4FPuzxUAlwCcnfZ7MvSezwK4B8C/A/Bu3+1LAJ5z/190f16U+fsvp4zgXgAXGWPPMcZsAJ8CcP/YY+4H8En3588AeAs5E6jvh3PxWIyx5wFcdF9vlqH8fhlj32GMXXNvfxxAmYiKiRy1HnQ+YxDRuwA8D+c9v1Sg857fDuAxxtijAMAY22SMDRI6bh3ovGcGoEpEOQBlADaAvWQOWwuR75kxdokx9hiA4dhzfwLAFxhjW4yxbQBfAHCfzB9/OQWCkwAu+36/4t4W+BjmDMzZhbNLEnnurEHn/frx1wF8mzFmxXScJqH8nomoBmcQ0v+RwHGahM7n/AoAjIg+71IK/2sCx2sCOu/5MwBaAK4DeBHAP2eMbcV9wAagswZpr1+RM4tTvHxBRK8C8Otwdo4vd/wqgI8xxppugnAYkAPwIwDeCKAN4EvuYJIvTfewYsW9AAYATsChSf6ciL7IGHtuuoc123g5ZQRXAZz2/X7KvS3wMW7qOA9gU/C5swad9wsiOgXgjwD8DGPs2diP1gx03vMPAvgNIroE4B8B+CdE9P6Yj9cEdN7zFQBfZYxtMMbaAD4H4PWxH7E+dN7z3wbwXxljPcbYGoCvAXgpeBHprEH669e0RRKDYksOjkhyDiOx5VVjj/kF7BeY/sD9+VXYLxY/hxkX1TTf74L7+L827feR1Hsee8yv4qUjFut8zosAvg1HNM0B+CKAn5z2e4r5PX8AwO+4P1cBPAHgnmm/JxPv2ffY38VBsfh59/NedH9ekvr70z4Bhk/mXwHwNBz1/cPubR8B8E735xKcipGLAL4F4Fbfcz/sPu8pAO+Y9nuJ8/0C+N/g8KiP+P4dmfb7ifsz9r3GSyYQ6L5nAH8Hjjj+PQC/Me33Evd7BlBzb3/cDQL/eNrvxeB7fiOcLK8FJ/t53Pfcn3XPxUUAf0/2b6cWEylSpEhxyPFy0ghSpEiRIoUC0kCQIkWKFIccaSBIkSJFikOONBCkSJEixSFHGghSpEiR4pAjDQQpUqRIcciRBoIUKVKkOOT4/wEvwj3sw7mOBwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "<Figure size 432x288 with 1 Axes>"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "\n",
+ "x = np.linspace(0,0.1,1000)\n",
+ "y = np.sin(100 * 2.0*np.pi*x+1.5*np.sin(30 * 2.0*np.pi*x))\n",
+ "plt.plot(x, y, '-')\n",
+ "plt.show()"
+ ]
}
],
"metadata": {
diff --git a/buch/papers/fm/RS presentation/FM_presentation.pdf b/buch/papers/fm/RS presentation/FM_presentation.pdf
new file mode 100644
index 0000000..496e35e
--- /dev/null
+++ b/buch/papers/fm/RS presentation/FM_presentation.pdf
Binary files differ
diff --git a/buch/papers/fm/RS presentation/FM_presentation.tex b/buch/papers/fm/RS presentation/FM_presentation.tex
new file mode 100644
index 0000000..92cb501
--- /dev/null
+++ b/buch/papers/fm/RS presentation/FM_presentation.tex
@@ -0,0 +1,125 @@
+%% !TeX root = RS.tex
+
+\documentclass[11pt,aspectratio=169]{beamer}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{lmodern}
+\usepackage[ngerman]{babel}
+\usepackage{tikz}
+\usetheme{Hannover}
+
+\begin{document}
+ \author{Joshua Bär}
+ \title{FM - Bessel}
+ \subtitle{}
+ \logo{}
+ \institute{OST Ostschweizer Fachhochschule}
+ \date{16.5.2022}
+ \subject{Mathematisches Seminar}
+ %\setbeamercovered{transparent}
+ \setbeamercovered{invisible}
+ \setbeamertemplate{navigation symbols}{}
+ \begin{frame}[plain]
+ \maketitle
+ \end{frame}
+%-------------------------------------------------------------------------------
+\section{Einführung}
+ \begin{frame}
+ \frametitle{Frequenzmodulation}
+
+ \visible<1->{
+ \begin{equation} \cos(\omega_c t+\beta\sin(\omega_mt))
+ \end{equation}}
+
+ \only<2>{\includegraphics[scale= 0.7]{images/fm_in_time.png}}
+ \only<3>{\includegraphics[scale= 0.7]{images/fm_frequenz.png}}
+ \only<4>{\includegraphics[scale= 0.7]{images/bessel_frequenz.png}}
+
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+\section{Proof}
+\begin{frame}
+ \frametitle{Bessel}
+
+ \visible<1->{\begin{align}
+ \cos(\beta\sin\varphi)
+ &=
+ J_0(\beta) + 2\sum_{m=1}^\infty J_{2m}(\beta) \cos(2m\varphi)
+ \\
+ \sin(\beta\sin\varphi)
+ &=
+ J_0(\beta) + 2\sum_{m=1}^\infty J_{2m}(\beta) \cos(2m\varphi)
+ \\
+ J_{-n}(\beta) &= (-1)^n J_n(\beta)
+ \end{align}}
+ \visible<2->{\begin{align}
+ \cos(A + B)
+ &=
+ \cos(A)\cos(B)-\sin(A)\sin(B)
+ \\
+ 2\cos (A)\cos (B)
+ &=
+ \cos(A-B)+\cos(A+B)
+ \\
+ 2\sin(A)\sin(B)
+ &=
+ \cos(A-B)-\cos(A+B)
+ \end{align}}
+\end{frame}
+
+%-------------------------------------------------------------------------------
+\begin{frame}
+ \frametitle{Prof->Done}
+ \begin{align}
+ \cos(\omega_ct+\beta\sin(\omega_mt))
+ &=
+ \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t)
+ \end{align}
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \begin{figure}
+ \only<1>{\includegraphics[scale = 0.75]{images/fm_frequenz.png}}
+ \only<2>{\includegraphics[scale = 0.75]{images/bessel_frequenz.png}}
+ \end{figure}
+ \end{frame}
+%-------------------------------------------------------------------------------
+\section{Input Parameter}
+ \begin{frame}
+ \frametitle{Träger-Frequenz Parameter}
+ \onslide<1->{\begin{equation}\cos(\omega_ct+\beta\sin(\omega_mt))\end{equation}}
+ \only<1>{\includegraphics[scale=0.75]{images/100HZ.png}}
+ \only<2>{\includegraphics[scale=0.75]{images/200HZ.png}}
+ \only<3>{\includegraphics[scale=0.75]{images/300HZ.png}}
+ \only<4>{\includegraphics[scale=0.75]{images/400HZ.png}}
+ \end{frame}
+%-------------------------------------------------------------------------------
+\begin{frame}
+\frametitle{Modulations-Frequenz Parameter}
+\onslide<1->{\begin{equation}\cos(\omega_ct+\beta\sin(\omega_mt))\end{equation}}
+\only<1>{\includegraphics[scale=0.75]{images/fm_3Hz.png}}
+\only<2>{\includegraphics[scale=0.75]{images/fm_5Hz.png}}
+\only<3>{\includegraphics[scale=0.75]{images/fm_7Hz.png}}
+\only<4>{\includegraphics[scale=0.75]{images/fm_10Hz.png}}
+\only<5>{\includegraphics[scale=0.75]{images/fm_20Hz.png}}
+\only<6>{\includegraphics[scale=0.75]{images/fm_30Hz.png}}
+\end{frame}
+%-------------------------------------------------------------------------------
+\begin{frame}
+\frametitle{Beta Parameter}
+ \onslide<1->{\begin{equation}\sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t)\end{equation}}
+ \only<1>{\includegraphics[scale=0.7]{images/beta_0.001.png}}
+ \only<2>{\includegraphics[scale=0.7]{images/beta_0.1.png}}
+ \only<3>{\includegraphics[scale=0.7]{images/beta_0.5.png}}
+ \only<4>{\includegraphics[scale=0.7]{images/beta_1.png}}
+ \only<5>{\includegraphics[scale=0.7]{images/beta_2.png}}
+ \only<6>{\includegraphics[scale=0.7]{images/beta_3.png}}
+ \only<7>{\includegraphics[scale=0.7]{images/bessel.png}}
+\end{frame}
+%-------------------------------------------------------------------------------
+\begin{frame}
+ \includegraphics[scale=0.5]{images/beta_1.png}
+ \includegraphics[scale=0.5]{images/bessel.png}
+\end{frame}
+\end{document}
diff --git a/buch/papers/fm/RS presentation/Frequency modulation (FM) and Bessel functions.pdf b/buch/papers/fm/RS presentation/Frequency modulation (FM) and Bessel functions.pdf
new file mode 100644
index 0000000..a6e701c
--- /dev/null
+++ b/buch/papers/fm/RS presentation/Frequency modulation (FM) and Bessel functions.pdf
Binary files differ
diff --git a/buch/papers/fm/RS presentation/README.txt b/buch/papers/fm/RS presentation/README.txt
new file mode 100644
index 0000000..4d0620f
--- /dev/null
+++ b/buch/papers/fm/RS presentation/README.txt
@@ -0,0 +1 @@
+Dies ist die Presentation des Reed-Solomon-Code \ No newline at end of file
diff --git a/buch/papers/fm/RS presentation/RS.tex b/buch/papers/fm/RS presentation/RS.tex
index 8e3de17..8a67619 100644
--- a/buch/papers/fm/RS presentation/RS.tex
+++ b/buch/papers/fm/RS presentation/RS.tex
@@ -1,3 +1,5 @@
+%% !TeX root = RS.tex
+
\documentclass[11pt,aspectratio=169]{beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
@@ -13,7 +15,7 @@
\logo{}
\institute{OST Ostschweizer Fachhochschule}
\date{16.5.2022}
- \subject{Mathematisches Seminar}
+ \subject{Mathematisches Seminar- Spezielle Funktionen}
%\setbeamercovered{transparent}
\setbeamercovered{invisible}
\setbeamertemplate{navigation symbols}{}
@@ -24,139 +26,98 @@
\section{Einführung}
\begin{frame}
\frametitle{Frequenzmodulation}
- \begin{itemize}
- \visible<1->{\item Für Übertragung von Daten}
- \visible<2->{\item Amplituden unabhängig}
- \end{itemize}
+
+ \visible<1->{\begin{equation} \cos(\omega_c t+\beta\sin(\omega_mt))\end{equation}}
+
+ \only<2>{\includegraphics[scale= 0.7]{images/fm_in_time.png}}
+ \only<3>{\includegraphics[scale= 0.7]{images/fm_frequenz.png}}
+ \only<4>{\includegraphics[scale= 0.7]{images/bessel_frequenz.png}}
+
+
\end{frame}
%-------------------------------------------------------------------------------
- \begin{frame}
- \frametitle{Parameter}
- \begin{center}
- \begin{tabular}{ c c c }
- \hline
- Nutzlas & Fehler & Versenden \\
- \hline
- 3 & 2 & 7 Werte eines Polynoms vom Grad 2 \\
- 4 & 2 & 8 Werte eines Polynoms vom Grad 3 \\
-\visible<1->{3}&
-\visible<1->{3}&
-\visible<1->{9 Werte eines Polynoms vom Grad 2} \\
- &&\\
-\visible<1->{$k$} &
-\visible<1->{$t$} &
-\visible<1->{$k+2t$ Werte eines Polynoms vom Grad $k-1$} \\
- \hline
- &&\\
- &&\\
- \multicolumn{3}{l} {
- \visible<1>{Ausserdem können bis zu $2t$ Fehler erkannt werden!}
- }
- \end{tabular}
- \end{center}
- \end{frame}
+\section{Proof}
+\begin{frame}
+ \frametitle{Bessel}
-%-------------------------------------------------------------------------------
+ \visible<1->{\begin{align}
+ \cos(\beta\sin\varphi)
+ &=
+ J_0(\beat) + 2\sum_{m=1}^\infty J_{2m}(\beta) \cos(2m\varphi)
+ \\
+ \sin(\beta\sin\varphi)
+ &=
+ J_0(\beat) + 2\sum_{m=1}^\infty J_{2m}(\beta) \cos(2m\varphi)
+ \\
+ J_{-n}(\beat) &= (-1)^n J_n(\beta)
+ \end{align}}
+ \visible<2->{\begin{align}
+ \cos(A + B)
+ &=
+ \cos(A)\cos(B)-\sin(A)\sin(B)
+ \\
+ 2\cos (A)\cos (B)
+ &=
+ \cos(A-B)+\cos(A+B)
+ \\
+ 2\sin(A)\sin(B)
+ &=
+ \cos(A-B)-\cos(A+B)
+ \end{align}}
+\end{frame}
-\section{Diskrete Fourier Transformation}
- \begin{frame}
- \frametitle{Idee}
- \begin{itemize}
- \item Fourier-transformieren
- \item Übertragung
- \item Rücktransformieren
- \end{itemize}
+%-------------------------------------------------------------------------------
+\begin{frame}
+ \frametitle{Prof->Done}
+ \begin{align}
+ \cos(\omega_ct+\beta\sin(\omega_mt))
+ &=
+ \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omgea_m)t)
+ \end{align}
\end{frame}
%-------------------------------------------------------------------------------
\begin{frame}
- \begin{figure}
- \only<1>{
- \includegraphics[width=0.9\linewidth]{images/fig1.pdf}
- }
- \only<2>{
- \includegraphics[width=0.9\linewidth]{images/fig2.pdf}
- }
- \only<3>{
- \includegraphics[width=0.9\linewidth]{images/fig3.pdf}
- }
- \only<4>{
- \includegraphics[width=0.9\linewidth]{images/fig4.pdf}
- }
- \only<5>{
- \includegraphics[width=0.9\linewidth]{images/fig5.pdf}
- }
- \only<6>{
- \includegraphics[width=0.9\linewidth]{images/fig6.pdf}
- }
- \only<7>{
- \includegraphics[width=0.9\linewidth]{images/fig7.pdf}
- }
+ \begin{figure}
+ \only<1>{\includegraphics[scale = 0.75]{images/fm_frequenz.png}}
+ \only<2>{\includegraphics[scale = 0.75]{images/bessel_frequenz.png}}
\end{figure}
\end{frame}
%-------------------------------------------------------------------------------
+\section{Input Parameter}
\begin{frame}
- \frametitle{Diskrete Fourier Transformation}
- \begin{itemize}
- \item Diskrete Fourier-Transformation gegeben durch:
- \visible<1->{
- \[
- \label{ft_discrete}
- \hat{c}_{k}
- = \frac{1}{N} \sum_{n=0}^{N-1}
- {f}_n \cdot e^{-\frac{2\pi j}{N} \cdot kn}
- \]}
- \visible<2->{
- \item Ersetzte
- \[
- w = e^{-\frac{2\pi j}{N} k}
- \]}
- \visible<3->{
- \item Wenn $N$ konstant:
- \[
- \hat{c}_{k}=\frac{1}{N}( {f}_0 w^0 + {f}_1 w^1 + {f}_2 w^2 + \dots + {f}_{N-1} w^N)
- \]}
- \end{itemize}
- \end{frame}
-
-%-------------------------------------------------------------------------------
-
-%-------------------------------------------------------------------------------
- \begin{frame}
- \frametitle{Ein Beispiel}
-
- \begin{itemize}
-
- \onslide<1->{\item endlicher Körper $q = 11$}
-
- \onslide<2->{ist eine Primzahl}
-
- \onslide<3->{beinhaltet die Zahlen $\mathbb{F}_{11} = \{0,1,2,3,4,5,6,7,8,9,10\}$}
-
- \vspace{10pt}
-
- \onslide<4->{\item Nachrichtenblock $=$ Nutzlast $+$ Fehlerkorrekturstellen}
-
- \onslide<5->{$n = q - 1 = 10$ Zahlen}
-
- \vspace{10pt}
-
- \onslide<6->{\item Max.~Fehler $t = 2$}
-
- \onslide<7->{maximale Anzahl von Fehler, die wir noch korrigieren können}
-
- \vspace{10pt}
-
- \onslide<8->{\item Nutzlast $k = n -2t = 6$ Zahlen}
-
- \onslide<9->{Fehlerkorrkturstellen $2t = 4$ Zahlen}
-
- \onslide<10->{Nachricht $m = [0,0,0,0,4,7,2,5,8,1]$}
-
- \onslide<11->{als Polynom $m(X) = 4X^5 + 7X^4 + 2X^3 + 5X^2 + 8X + 1$}
-
- \end{itemize}
-
+ \frametitle{Träger-Frequenz Parameter}
+ \onslide<1->{\begin{equation}\cos(\omega_ct+\beta\sin(\omega_mt))\end{equation}}
+ \only<1>{\includegraphics[scale=0.75]{images/100HZ.png}}
+ \only<2>{\includegraphics[scale=0.75]{images/200HZ.png}}
+ \only<3>{\includegraphics[scale=0.75]{images/300HZ.png}}
+ \only<4>{\includegraphics[scale=0.75]{images/400HZ.png}}
\end{frame}
-
-
+%-------------------------------------------------------------------------------
+\begin{frame}
+\frametitle{Modulations-Frequenz Parameter}
+\onslide<1->{\begin{equation}\cos(\omega_ct+\beta\sin(\omega_mt))\end{equation}}
+\only<1>{\includegraphics[scale=0.75]{images/fm_3Hz.png}}
+\only<2>{\includegraphics[scale=0.75]{images/fm_5Hz.png}}
+\only<3>{\includegraphics[scale=0.75]{images/fm_7Hz.png}}
+\only<4>{\includegraphics[scale=0.75]{images/fm_10Hz.png}}
+\only<5>{\includegraphics[scale=0.75]{images/fm_20Hz.png}}
+\only<6>{\includegraphics[scale=0.75]{images/fm_30Hz.png}}
+\end{frame}
+%-------------------------------------------------------------------------------
+\begin{frame}
+\frametitle{Beta Parameter}
+ \onslide<1->{\begin{equation}\sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omgea_m)t)\end{equation}}
+ \only<1>{\includegraphics[scale=0.7]{images/beta_0.001.png}}
+ \only<2>{\includegraphics[scale=0.7]{images/beta_0.1.png}}
+ \only<3>{\includegraphics[scale=0.7]{images/beta_0.5.png}}
+ \only<4>{\includegraphics[scale=0.7]{images/beta_1.png}}
+ \only<5>{\includegraphics[scale=0.7]{images/beta_2.png}}
+ \only<6>{\includegraphics[scale=0.7]{images/beta_3.png}}
+ \only<7>{\includegraphics[scale=0.7]{images/bessel.png}}
+\end{frame}
+%-------------------------------------------------------------------------------
+\begin{frame}
+ \includegraphics[scale=0.5]{images/beta_1.png}
+ \includegraphics[scale=0.5]{images/bessel.png}
+\end{frame}
\end{document}
diff --git a/buch/papers/fm/RS presentation/images/100HZ.png b/buch/papers/fm/RS presentation/images/100HZ.png
new file mode 100644
index 0000000..371b9bf
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/100HZ.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/200HZ.png b/buch/papers/fm/RS presentation/images/200HZ.png
new file mode 100644
index 0000000..f6836bd
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/200HZ.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/300HZ.png b/buch/papers/fm/RS presentation/images/300HZ.png
new file mode 100644
index 0000000..6762c1a
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/300HZ.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/400HZ.png b/buch/papers/fm/RS presentation/images/400HZ.png
new file mode 100644
index 0000000..236c428
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/400HZ.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/bessel.png b/buch/papers/fm/RS presentation/images/bessel.png
new file mode 100644
index 0000000..f4c83ea
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/bessel.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/bessel2.png b/buch/papers/fm/RS presentation/images/bessel2.png
new file mode 100644
index 0000000..ccda3f9
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/bessel2.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/bessel_beta1.png b/buch/papers/fm/RS presentation/images/bessel_beta1.png
new file mode 100644
index 0000000..1f5c47e
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/bessel_beta1.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/bessel_frequenz.png b/buch/papers/fm/RS presentation/images/bessel_frequenz.png
new file mode 100644
index 0000000..4f228b9
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/bessel_frequenz.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/beta_0.001.png b/buch/papers/fm/RS presentation/images/beta_0.001.png
new file mode 100644
index 0000000..7e4e276
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/beta_0.001.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/beta_0.1.png b/buch/papers/fm/RS presentation/images/beta_0.1.png
new file mode 100644
index 0000000..e7722b3
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/beta_0.1.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/beta_0.5.png b/buch/papers/fm/RS presentation/images/beta_0.5.png
new file mode 100644
index 0000000..5261b43
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/beta_0.5.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/beta_1.png b/buch/papers/fm/RS presentation/images/beta_1.png
new file mode 100644
index 0000000..6d3535c
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/beta_1.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/beta_2.png b/buch/papers/fm/RS presentation/images/beta_2.png
new file mode 100644
index 0000000..6930eae
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/beta_2.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/beta_3.png b/buch/papers/fm/RS presentation/images/beta_3.png
new file mode 100644
index 0000000..c6df82c
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/beta_3.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/fm_10Hz.png b/buch/papers/fm/RS presentation/images/fm_10Hz.png
new file mode 100644
index 0000000..51bddc7
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/fm_10Hz.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/fm_20hz.png b/buch/papers/fm/RS presentation/images/fm_20hz.png
new file mode 100644
index 0000000..126ecf3
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/fm_20hz.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/fm_30Hz.png b/buch/papers/fm/RS presentation/images/fm_30Hz.png
new file mode 100644
index 0000000..371b9bf
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/fm_30Hz.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/fm_3Hz.png b/buch/papers/fm/RS presentation/images/fm_3Hz.png
new file mode 100644
index 0000000..d4098af
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/fm_3Hz.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/fm_40Hz.png b/buch/papers/fm/RS presentation/images/fm_40Hz.png
new file mode 100644
index 0000000..4cf11d4
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/fm_40Hz.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/fm_5Hz.png b/buch/papers/fm/RS presentation/images/fm_5Hz.png
new file mode 100644
index 0000000..e495b5c
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/fm_5Hz.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/fm_7Hz.png b/buch/papers/fm/RS presentation/images/fm_7Hz.png
new file mode 100644
index 0000000..b3dd7e3
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/fm_7Hz.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/fm_frequenz.png b/buch/papers/fm/RS presentation/images/fm_frequenz.png
new file mode 100644
index 0000000..26bfd86
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/fm_frequenz.png
Binary files differ
diff --git a/buch/papers/fm/RS presentation/images/fm_in_time.png b/buch/papers/fm/RS presentation/images/fm_in_time.png
new file mode 100644
index 0000000..068eafc
--- /dev/null
+++ b/buch/papers/fm/RS presentation/images/fm_in_time.png
Binary files differ
diff --git a/buch/papers/fm/main.tex b/buch/papers/fm/main.tex
index de3e10a..00fb34b 100644
--- a/buch/papers/fm/main.tex
+++ b/buch/papers/fm/main.tex
@@ -2,8 +2,8 @@
% main.tex -- Paper zum Thema <fm>
%
% (c) 2020 Hochschule Rapperswil
-%
-% !TeX root = /.../...buch.tex
+%
+% !TeX root = buch.tex
%\begin {document}
\chapter{Thema\label{chapter:fm}}
\lhead{Thema}