aboutsummaryrefslogtreecommitdiffstats
path: root/buch
diff options
context:
space:
mode:
authorFabian <@>2022-08-16 22:53:23 +0200
committerFabian <@>2022-08-16 22:53:23 +0200
commit7d969250f8860f407255091a61b0b441b172c524 (patch)
tree5fd74cc15444e9115a69f9163e9c28b8ee968d95 /buch
parent3. Ueberarbeitung, bilder (diff)
downloadSeminarSpezielleFunktionen-7d969250f8860f407255091a61b0b441b172c524.tar.gz
SeminarSpezielleFunktionen-7d969250f8860f407255091a61b0b441b172c524.zip
3.Ueberarbeitung, bilder2
Diffstat (limited to 'buch')
-rw-r--r--buch/papers/0f1/images/konvergenzNegativ.pdfbin18226 -> 18524 bytes
-rw-r--r--buch/papers/0f1/images/konvergenzPositiv.pdfbin17532 -> 18253 bytes
-rw-r--r--buch/papers/0f1/teil3.tex12
3 files changed, 5 insertions, 7 deletions
diff --git a/buch/papers/0f1/images/konvergenzNegativ.pdf b/buch/papers/0f1/images/konvergenzNegativ.pdf
index 232c964..07d2a44 100644
--- a/buch/papers/0f1/images/konvergenzNegativ.pdf
+++ b/buch/papers/0f1/images/konvergenzNegativ.pdf
Binary files differ
diff --git a/buch/papers/0f1/images/konvergenzPositiv.pdf b/buch/papers/0f1/images/konvergenzPositiv.pdf
index 71b1042..8e1e7e4 100644
--- a/buch/papers/0f1/images/konvergenzPositiv.pdf
+++ b/buch/papers/0f1/images/konvergenzPositiv.pdf
Binary files differ
diff --git a/buch/papers/0f1/teil3.tex b/buch/papers/0f1/teil3.tex
index eb32c52..b6c0f4f 100644
--- a/buch/papers/0f1/teil3.tex
+++ b/buch/papers/0f1/teil3.tex
@@ -15,12 +15,10 @@ Ebenso kann festgestellt werden, dass je grösser der Wert $z$ in $\mathstrut_0F
\label{0f1:subsection:konvergenz}}
Es zeigt sich in Abbildung \ref{0f1:ausblick:plot:airy:konvergenz}, dass nach drei Iterationen ($k = 3$) die Funktionen genaue Resultate im Bereich von $-2$ bis $2$ liefert. Ebenso kann festgestellt werden, dass der Kettenbruch schneller konvergiert und im positiven Bereich mit der Referenzfunktion $\operatorname{Ai}(x)$ übereinstimmt. Da die Rekursionsformel eine Abwandlung des Kettenbruches ist, verhalten sich die Funktionen in diesem Fall gleich.
-Erst wenn mehrerer Iterationen gerechnet werden, um die Genauigkeit zu verbessern, ist der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen.
-Interessant ist auch, dass die Rekursionsformel nahezu gleich schnell wie die Potenzreihe konvergiert, aber sich danach, wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} zu beobachten ist, auf. Dieses Verhalten ist auch bei grösseren $z$ zu beobachten, allerdings ist dann die Differenz zwischen dem ersten lokalen Minimum von $k$ bis zum Abbruch kleiner.
-Dieses Phänomen ist auf die Lösung der Rekursionsformel \eqref{0f1:math:matrix:ende:eq} zurück zu führen. Da im Gegensatz die ganz kleinen Werte nicht zu einer Konvergenz wie beim Kettenbruch führen, sondern sich noch eine Zeit lang durch die Multiplikation aufschwingen.
+Erst wenn mehrerer Iterationen gerechnet werden, ist wie Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen. Allerdings muss beachtet werden, dass die Rekursionsformel zwar erst nach 35 Approximationen gänzlich konvergiert, nach 27 Iterationen sich nicht mehr gross verändert.
+
+Ist $z$ negativ wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies zu aufgrund des Vorzeichens zu alternierenden Termen. So steigt bei allen Algorithmen zuerst die Differenz zum erwarteten Endwert. Erst nach genügend Iterationen sind die Terme so klein, dass sie das Endresultat nicht mehr signifikant beeinflussen. Während die Potenzreihe zusammen mit dem Kettenbruch nach 34 Approximationen konvergiert, braucht die Rekursionsformel noch zwei Iterationen mehr. Wohingegen die Rekursionsformel der genauste Algorithmus im negativen Bereich ist. Da der Computer mit einer relativen Genauigkeit von $10^{-15}$ rechnet, ist dies das Maximum an Präzision, dass erreicht werden kann.
-Ist $z$ negativ wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies zu aufgrund des Vorzeichens zu alternierenden Termen. So steigt bei allen Algorithmen zuerst die Differenz zum erwarteten Endwert. Erst nach genügend Iterationen sind die Terme genügend klein, so dass sie das Endresultat nicht mehr signifikant beeinflussen.
-Auch hier konvergiert der Kettenbruch am schnellsten von allen Algorithmen. Ebenso bricht die Rekursionsformel nahezu gleichzeitig mit der Potenzreihe ab.
\subsection{Stabilität
\label{0f1:subsection:Stabilitaet}}
@@ -41,14 +39,14 @@ Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Gru
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzPositiv.pdf}
- \caption{Konvergenz mit positivem $z$; Logarithmisch, vorzeichenlose dargestellte Differenz vom erwarteten Endresultat.
+ \caption{Konvergenz mit positivem $z$; Logarithmisch dargestellte absoluter Fehler.
\label{0f1:ausblick:plot:konvergenz:positiv}}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzNegativ.pdf}
- \caption{Konvergenz mit negativem $z$; Logarithmisch, vorzeichenlose dargestellte Differenz vom erwarteten Endresultat.
+ \caption{Konvergenz mit negativem $z$; Logarithmisch dargestellte absoluter Fehler.
\label{0f1:ausblick:plot:konvergenz:negativ}}
\end{figure}