diff options
author | Andrea Mozzini Vellen <amozzinivellen@gmail.com> | 2022-08-15 13:41:03 +0200 |
---|---|---|
committer | Andrea Mozzini Vellen <amozzinivellen@gmail.com> | 2022-08-15 13:41:03 +0200 |
commit | c0bbcf891e2e02a760eb640b735b2da80d2dc286 (patch) | |
tree | 7e73dc7be01f9a10a32678b9077215d9ac869cf3 /buch | |
parent | gegengelesene Fehler angepasst (diff) | |
download | SeminarSpezielleFunktionen-c0bbcf891e2e02a760eb640b735b2da80d2dc286.tar.gz SeminarSpezielleFunktionen-c0bbcf891e2e02a760eb640b735b2da80d2dc286.zip |
korrektur 15.08
Diffstat (limited to 'buch')
-rw-r--r-- | buch/papers/kreismembran/references.bib | 6 | ||||
-rw-r--r-- | buch/papers/kreismembran/teil1.tex | 27 | ||||
-rw-r--r-- | buch/papers/kreismembran/teil2.tex | 8 | ||||
-rw-r--r-- | buch/papers/kreismembran/teil3.tex | 22 |
4 files changed, 39 insertions, 24 deletions
diff --git a/buch/papers/kreismembran/references.bib b/buch/papers/kreismembran/references.bib index 3d9d0c1..65173f8 100644 --- a/buch/papers/kreismembran/references.bib +++ b/buch/papers/kreismembran/references.bib @@ -89,4 +89,10 @@ type = {Dissertation}, author = {{Eric John Ruggiero Doctor of Philosophy In Mechanical Engineering}}, date = {2005}, +} + +@online{noauthor_laplace_nodate, + title = {Laplace Transform of Bessel Function of the First Kind of Order Zero - {ProofWiki}}, + url = {https://proofwiki.org/wiki/Laplace_Transform_of_Bessel_Function_of_the_First_Kind_of_Order_Zero}, + urldate = {2022-08-15}, }
\ No newline at end of file diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index f6ba7d1..a9db48f 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -7,7 +7,7 @@ \section{Lösungsmethode 1: Separationsmethode \label{kreismembran:section:teil1}} \rhead{Lösungsmethode 1: Separationsmethode} -An diesem Punkt bleibt also nur noch die Lösung der partiellen Differentialgleichung. In diesem Abschnitt wird sie mit Hilfe der Separationsmethode gelöst. +An diesem Punkt bleibt also "nur" noch die Lösung der partiellen Differentialgleichung. In diesem Abschnitt wird sie mit Hilfe der Separationsmethode gelöst. \subsection{Aufgabestellung\label{sub:aufgabestellung}} Wie im vorherigen Abschnitt gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt: @@ -30,7 +30,7 @@ Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so d ergibt. Es wird eine runde elastische Membran berücksichtigt, die das Gebiet $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist. -Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran nach den Annahmen von \ref{kreimembran:annahmen}. +Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran nach den Annahmen von Abschnitt \ref{kreimembran:annahmen}. Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$: \begin{align*} @@ -50,9 +50,9 @@ Nun wird das in Abschnitt \ref{sub:aufgabestellung} vorgestellte Problem mit Hil \subsubsection{Ansatz der Separation der Variablen\label{subsub:ansatz_separation}} Hierfür wird folgenden Ansatz gemacht: \begin{equation*} - u(r,\varphi, t) = F(r)G(\varphi)T(t) + u(r,\varphi, t) = F(r)G(\varphi)T(t). \end{equation*} -Dank der Randbedingungen kann gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetzt in der Differenzialgleichung ergibt sich: +Dank der Randbedingungen kann gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$-periodisch ist. Eingesetzt in der Differenzialgleichung ergibt sich nach Division durch $u$: \begin{equation*} \frac{1}{c^2}\frac{T''(t)}{T(t)}=-\kappa^2=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}. \end{equation*} @@ -71,9 +71,9 @@ In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rec \end{align*} \subsubsection{Lösung für $G(\varphi)$\label{subsub:lösung_G}} -Da für die zweite Gleichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt man die gemeinsame Konstante als $\nu=-\omega^2$, was die Formeln später vereinfacht. Also: +Da für die zweite Gleichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-n^2 G(\varphi)$ gilt, schreibt man die gemeinsame Konstante als $\nu=-n^2$, was die Formeln später vereinfacht. $n$ muss auch eine ganze Zahl sein, weil $G(\varphi)$ sonst nicht $2\pi$-periodisch ist. Also: \begin{equation*} - G(\varphi) = C_n \cos(\nu\varphi) + D_n \sin(\nu\varphi) + G(\varphi) = C_n \cos(n\varphi) + D_n \sin(n\varphi) \label{eq:cos_sin_überlagerung} \end{equation*} @@ -85,17 +85,20 @@ Die Gleichung für $F$ hat die Gestalt (Verweis auf \label{buch:differentialglei \end{align} Wie bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Bessel-Funktionen \begin{equation*} - J_{\nu}(x) = r^\nu \displaystyle\sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+\nu}m! \Gamma (\nu + m+1)} + J_{n}(x) = r^n \displaystyle\sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+n}m! \Gamma (n + m+1)} \end{equation*} Lösungen der Besselschen Differenzialgleichung \begin{equation*} - x^2 y'' + xy' + (\kappa^2 - \nu^2)y = 0 + x^2 y'' + xy' + (\kappa^2 - n^2)y = 0 \end{equation*} Die Funktionen $F(r) = J_n(\kappa r)$ lösen die Differentialgleichung \eqref{eq:2nd_degree_PDE}. \subsubsection{Lösung für $T(t)$\label{subsub:lösung_T}} -Die Differenzialgleichung $T''(t) + c^2\kappa^2T(t) = 0$, wird auf ähnliche Weise gelöst wie $G(\varphi)$. - +Die Differenzialgleichung $T''(t) + c^2\kappa^2T(t) = 0$, wird auf ähnliche Weise gelöst wie $G(\varphi)$. Um eine Einschränkung der möglichen Frequenzen zu erhalten und die Lösung als Reihe schreiben zu können, muss die folgende homogene Randbedingung definiert werden: +\begin{equation*} + u\big|_{\Gamma} = 0 \quad \text{für} \quad 0 \leq \varphi \leq 2\pi,\quad t \geq 0, +\end{equation*} +welche die $\kappa$ auf mögliche werte $\kappa_{mn}$ einschränkt. \subsubsection{Zusammenfassung der Lösungen\label{subsub:zusammenfassung_lösungen}} Durch Überlagerung aller Ergebnisse erhält man die Lösung \begin{align} @@ -120,5 +123,7 @@ für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membr \label{buch:pde:kreis:fig:pauke}} \end{figure} - +\begin{center} + * \quad *\quad * +\end{center} An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche wurde festgestellt, dass eine weitere Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist. diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex index ec27bd3..4ceeb84 100644 --- a/buch/papers/kreismembran/teil2.tex +++ b/buch/papers/kreismembran/teil2.tex @@ -7,12 +7,12 @@ Hermann Hankel (1839--1873) war ein deutscher Mathematiker, der für seinen Beitrag zur mathematischen Analysis und insbesondere für die nach ihm benannte Transformation bekannt ist. Diese Transformation tritt bei der Untersuchung von Funktionen auf, die nur von der Entfernung des Ursprungs abhängen. -Er untersuchte auch Funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art. +Er untersuchte auch Funktionen, jetzt Hankel- oder Bessel-Funktionen genannt, der dritten Art. Die Hankel-Transformation, die die Bessel-Funktion enthält, taucht natürlich bei achsensymmetrischen Problemen auf, die in zylindrischen Polarkoordinaten formuliert sind. In diesem Abschnitt werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert. \subsubsection{Definition der Hankel-Transformation \label{subsub:hankel_tansformation}} -Wir führen die Definition der Hankel-Transformation \cite{lokenath_debnath_integral_2015} aus der zweidimensionalen Fourier-Transformation und ihrer Umkehrung ein, die durch: +Wir führen die Definition der Hankel-Transformation \cite{lokenath_debnath_integral_2015} aus der zweidimensionalen Fourier-Trans\-formation und ihrer Umkehrung ein, die durch: \begin{align} \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) \; dx \; dy,\label{equation:fourier_transform}\\ \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r})}F(k,l) \; dx \; dy \label{equation:inv_fourier_transform} @@ -49,13 +49,13 @@ wo $\tilde{f}_n(\kappa)$ ist die \textit{Hankel-Transformation} von $f(r)$ und i \subsubsection{Inverse Hankel-Transformation \label{subsub:inverse_hankel_tansformation}} Wie bei der Entwicklung der Hankel-Transformation können auch für die Umkehrformel Analogien zur Fourier-Transformation hergestellt werden. Vergleicht man die beiden Transformationen, so stellt man fest, dass sie sehr ähnlich sind, wenn man den Term $J_n(\kappa r)$ der Hankel-Transformation durch $e^{-i( \bm{\kappa}\cdot \mathbf{r})}$ der Fourier-Transformation ersetzt. Diese beide Funktionen sind orthogonal, und bei orthogonalen Matrizen genügt bekanntlich die Transponierung, um sie zu invertieren. Da das Skalarprodukt der Bessel-Funktionen jedoch nicht dasselbe ist wie das der Exponentialfunktionen, muss man durch $\kappa\; d\kappa$ statt nur durch $d\kappa$ integrieren, um die Umkehrfunktion zu erhalten. -Von \eqref{equation:hankel} also ist, die inverse \textit{Hankel-Transformation} so definiert: +Die inverse \textit{Hankel-Transformation} ist also als \begin{align} \mathscr{H}^{-1}_n\{\tilde{f}_n(\kappa)\}=f(r)=\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) \; d\kappa. \label{equation:inv_hankel} \end{align} +definiert. -Anstelle von $\tilde{f}_n(\kappa)$, wird häufig einfach $\tilde{f}(\kappa)$ für die Hankel-Transformation verwendet, indem die Ordnung angegeben wird. Die Integrale \eqref{equation:hankel} und \eqref{equation:inv_hankel} existieren für bestimmte grosse Klassen von Funktionen, die normalerweise in physikalischen Anwendungen vorkommen. Alternativ dazu kann die berühmte Hankel-Integralformel diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index a9dcd95..d143ec7 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -60,19 +60,23 @@ so dass $\tilde{g}(\kappa)\equiv 0$ und \tilde{f}(\kappa)=Aa\int_{0}^{\infty}r(a^2 + r^2)^{-\frac{1}{2}} J_0 (\kappa r) \; dr=\frac{Aa}{\kappa}e^{-a\kappa}. \end{equation*} -Aus der Laplace-Transformation und unter Verwendung der Skalierungseigenschaft ergibt sich, dass +\noindent Die formale Lösung \eqref{eq:formale_lösung} lautet also +\begin{align} + u(r,t)=Aa\int_{0}^{\infty}e^{-a\kappa} J_0(\kappa r)\cos(c\kappa t) \; dk=AaRe\int_{0}^{\infty}e^{-\kappa(a+ict)} J_0(\kappa r) \; dk. + \label{form_lösung2_step1} +\end{align} +\noindent Aus der Laplace-Transformation und unter Verwendung der Skalierungseigenschaft \cite{noauthor_laplace_nodate} ergibt sich, dass \begin{align*} - \int_{0}^{\infty}e^{-px} J_0(\kappa x) \; dx = \frac{1}{\sqrt{\kappa^2 + p^2}}. + \int_{0}^{\infty}e^{-px} J_0(\kappa x) \; dx = \frac{1}{\sqrt{\kappa^2 + p^2}}, \end{align*} -Die formale Lösung \eqref{eq:formale_lösung} lautet also -\begin{align*} - u(r,t)&=Aa\int_{0}^{\infty}e^{-a\kappa} J_0(\kappa r)\cos(c\kappa t) \; dk=AaRe\int_{0}^{\infty}e^{-\kappa(a+ict)} J_0(\kappa r) \; dk\\ - &=AaRe\left\{r^2+\left(a+ict\right)^2\right\}^{-\frac{1}{2}}. -\end{align*} +\noindent \eqref{form_lösung2_step1} kann somit vereinfacht werden in: +\begin{equation*} + u(r,t)=AaRe\left\{r^2+\left(a+ict\right)^2\right\}^{-\frac{1}{2}}. +\end{equation*} -Nimmt man jedoch die allgemeine Lösung durch Überlagerung, +\noindent Nimmt man jedoch die allgemeine Lösung durch Überlagerung, \begin{align} u(r, t) = \displaystyle\sum_{m=1}^{\infty} J_0 (k_{m}r)[a_{m}\cos(c \kappa_{m} t)+b_{m}\sin(c \kappa_{m} t)] @@ -84,6 +88,6 @@ kann man die Lösungsmethoden 1 und 2 vergleichen. \label{kreismembran:vergleich}} Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, welche unter der Annahme einer rotationssymmetrischen Lösung nicht vorhanden sein können. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist. -Die Funktion hängt also nicht mehr von der Besselfunktionen $n$-ter Ordnung ab, sondern nur von der nullter Ordnung. +Die Funktion hängt also nicht mehr von der Bessel-Funktionen $n$-ter Ordnung ab, sondern nur von der nullter Ordnung. |